本发明属于新材料领域,具体涉及一种耐腐蚀、抗老化、低密度表面涂层复合材料吸声板材。
背景技术:
很多建筑物的刚性结构表面对声音的多次反射会造成内部空间声波相互干扰,增加室内噪声声压级,特别是在大空间建筑中,声反射的影响造成室内混响大,影响了正常的语言交流和听觉享受,在很多场合,如候车室,餐厅,音乐厅,酒吧、体育馆、录音播音室、会议室、报告厅、多功能礼堂、家庭影音室等需要对室内空间墙体表面做吸音处理,来达到降低噪音,消除混响等效果。传统吸音方法一般是包覆吸音棉,吸音板等材料,彩钢板行业也有吸音彩钢板的研发和销售。
吸音彩钢板的制造方法多种多样,究其原理都是通过涂层中的吸音成分或板体中的吸音结构将声波的能量吸收转化为热量,从而达到降低或消除声音的效果,但效果往往没有宣传的那样理想。作为吸音彩钢板,首先要解决的就是削弱反射声,目前吸音彩钢板尚不能很好的降低反射声;其次,当前吸音彩钢板中常用到的如玻璃纤维,空心玻璃微珠等吸音材料对高频声音吸收效果好,对中低频声音吸收效果偏差;再次,由于成本限制,难以通过增加吸音彩钢板中的吸音涂层厚度来提高吸音效果。
低密度炭纤维复合材料对各个频率的声音均具有优良的吸声效果,加速吸音效率,起到了隔声降噪的效果,同时还具有阻燃隔热的作用。
技术实现要素:
本发明的目的是针对现有技术的不足,而提供一种工艺简单、硬化效果好、具有防水、防火、抗老化、抗冲击能力好且经过表面涂层封孔,用材低能耗、环保、废弃后对环境无污染,在使用过程中,吸声效果好等优点的轨道交通用炭纤维低密度表面涂层复合材料吸声板的制备方法。
为了实现上述目的,本发明所采用的技术方案是:一种轨道交通用炭纤维表面涂层复合材料吸声板的制备方法,其特征在于该方法包括以下步骤:
步骤一:采用炭纤维针刺体作为预制体材料,预制体密度控制在0.08g/cm3-0.15g/cm3。
步骤二:配置树脂浸渍液,将树脂和酒精按一定的比例混合搅拌,其混合比例为树脂:酒精=1:(4-10),搅拌均匀。
步骤三:将步骤二中配置好的树脂浸渍液加压浸渍在预制体坯体内,压力为0.8mpa-4.0mpa下进行浸渍。
步骤四:将步骤三中浸渍处理后坯体置于固化炉内进行固化处理,固化温度为110℃-200℃。
步骤五:将步骤四中固化处理的坯体置于炭化炉内进行炭化处理,炭化温度为700℃-900℃。
步骤六:将步骤五出炉的低密度复合材料坯体按照图纸进行机械加工。
步骤七:将步骤六加工后的吸声板坯体进行表面涂层封孔处理,将石墨粉添加在树脂溶液中作为涂料,均匀涂刷在加工后的吸声板坯体上下表面及侧面,然后在固化炉内进行固化处理,固化温度为150℃-250℃。制得轨道交通用炭纤维低密度表面涂层复合材料吸声板。其最终密度为0.30g/cm3-1.50g/cm3。
上述的一种轨道交通用炭纤维表面涂层复合材料吸声板的制备方法,其特征在于,步骤一中所述的炭纤维为pan基炭纤维,丝束数为1k-12k,炭纤维针刺体布针密度为10针/cm2-40针/cm2,炭纤维长度控制在5mm-100mm。
上述的一种轨道交通用炭纤维表面涂层复合材料吸声板的制备方法,其特征在于,步骤二中所述的树脂为环氧树脂或酚醛树脂,酒精为工业酒精,纯度≥95%。
上述的一种轨道交通用炭纤维表面涂层复合材料吸声板的制备方法,其特征在于,步骤三中所述的浸渍工艺,浸渍时间为1h-10h。
上述的一种轨道交通用炭纤维表面涂层复合材料吸声板的制备方法,其特征在于,步骤四中所述的固化升温速率为5℃/h-20℃/h,保温1h-5h。
上述的一种轨道交通用炭纤维表面涂层复合材料吸声板的制备方法,其特征在于,步骤五中所述的炭化升温速率为5℃/h-30℃/h,保温1h-6h。
上述的一种轨道交通用炭纤维表面涂层复合材料吸声板的制备方法,其特征在于,步骤六中所述的石墨粉在树脂溶液中添加量为2.0wt%-20wt%,石墨粉的粒径为200目以下,固化处理升温速率为5℃/h-20℃/h,保温1h-5h。
本发明与现有技术相比具有以下优点:
1、与传统吸声板的制备技术相比,本发明采用炭纤维作为骨架,树脂炭基体作为增强体且经过表面涂层封孔后的低密度、多孔炭/炭吸声板具有一定的机械强度,抗老化和耐腐蚀性能好等优点。
2、本发明工艺简单,吸声效果好,并且易于大批量生产,可按照不同要求将材料随意进行加工切割成型。
附图说明
图1是本发明制备轨道交通用炭纤维低密度表面涂层复合材料吸声板的工艺流程框图。
具体实施方式
实施例1
步骤一:采用炭纤维针刺体作为预制体材料,预制体密度控制在0.08g/cm3,炭纤维为pan基炭纤维,丝束数为1k,布针密度为10针/cm2,炭纤维长度控制在5mm-100mm。
步骤二:配置树脂浸渍液,将树脂和酒精按一定的比例混合搅拌,其混合比例为树脂:酒精=1:4,树脂为环氧树脂,酒精为工业酒精,纯度≥95%,搅拌均匀。
步骤三:将步骤二中配置好的树脂浸渍液加压浸渍在预制体坯体内,压力为0.8mpa下进行浸渍,浸渍时间为1h。
步骤四:将步骤三中浸渍处理后坯体置于固化炉内进行固化处理,固化温度为110℃,固化升温速率为5℃/h,保温1h。
步骤五:将步骤四中固化处理的坯体置于炭化炉内进行炭化处理,炭化温度为700℃,炭化升温速率为5℃/h,保温1h。
步骤六:将步骤五出炉的低密度复合材料坯体按图纸进行机械加工。
步骤七:将步骤六加工后的吸声板坯体进行表面涂层封孔处理,将石墨粉添加在树脂溶液中作为涂料,均匀涂刷在加工后的吸声板坯体上下表面及侧面,然后在固化炉内进行固化处理,固化温度为150℃,石墨粉在树脂溶液中添加量为2.0wt%,石墨粉的粒径为200目以下,固化处理升温速率为5℃/h,保温1h。制得轨道交通用炭纤维低密度表面涂层复合材料吸声板,其最终密度为0.30g/cm3。
实施例2
步骤一:采用炭纤维针刺体作为预制体材料,预制体密度控制在0.12g/cm3,炭纤维为pan基炭纤维,丝束数为6k,布针密度为20针/cm2,炭纤维长度控制在5mm-100mm。
步骤二:配置树脂浸渍液,将树脂和酒精按一定的比例混合搅拌,其混合比例为树脂:酒精=1:5,树脂为酚醛树脂,酒精为工业酒精,纯度≥95%,搅拌均匀。
步骤三:将步骤二中配置好的树脂浸渍液加压浸渍在预制体坯体内,压力为2.0mpa下进行浸渍,浸渍时间为2h。
步骤四:将步骤三中浸渍处理后坯体置于固化炉内进行固化处理,固化温度为160℃,固化升温速率为12℃/h,保温3h。
步骤五:将步骤四中固化处理的坯体置于炭化炉内进行炭化处理,炭化温度为830℃,炭化升温速率为12℃/h,保温3h。
步骤六:将步骤五出炉的低密度复合材料坯体按图纸进行机械加工。
步骤七:将步骤六加工后的吸声板坯体进行表面涂层封孔处理,将石墨粉添加在树脂溶液中作为涂料,均匀涂刷在加工后的吸声板坯体上下表面及侧面,然后在固化炉内进行固化处理,固化温度为200℃,石墨粉在树脂溶液中添加量为14wt%,石墨粉的粒径为200目以下,固化处理升温速率为12℃/h,保温3h。制得轨道交通用炭纤维低密度表面涂层复合材料吸声板,其最终密度为1.05g/cm3。
实施例3
步骤一:采用炭纤维针刺体作为预制体材料,预制体密度控制在0.15g/cm3,炭纤维为pan基炭纤维,丝束数为12k,布针密度为40针/cm2,炭纤维长度控制在5mm-100mm。
步骤二:配置树脂浸渍液,将树脂和酒精按一定的比例混合搅拌,其混合比例为树脂:酒精=1:10,树脂为环氧树脂,酒精为工业酒精,纯度≥95%,搅拌均匀。
步骤三:将步骤二中配置好的树脂浸渍液加压浸渍在预制体坯体内,压力为4.0mpa下进行浸渍,浸渍时间为10h。
步骤四:将步骤三中浸渍处理后坯体置于固化炉内进行固化处理,固化温度为200℃,固化升温速率为20℃/h,保温5h。
步骤五:将步骤四中固化处理的坯体置于炭化炉内进行炭化处理,炭化温度为900℃,炭化升温速率为20℃/h,保温5h。
步骤六:将步骤五出炉的低密度复合材料坯体按图纸进行机械加工。
步骤七:将步骤六加工后的吸声板坯体进行表面涂层封孔处理,将石墨粉添加在树脂溶液中作为涂料,均匀涂刷在加工后的吸声板坯体上下表面及侧面,然后在固化炉内进行固化处理,固化温度为250℃,石墨粉在树脂溶液中添加量为20wt%,石墨粉的粒径为200目以下,固化处理升温速率为20℃/h,保温5h。制得轨道交通用炭纤维低密度表面涂层复合材料吸声板,其最终密度为1.50g/cm3。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变换,均仍属于本发明技术方案的保护范围内。