一种宽温高磁导率低损耗NiCuZn软磁铁氧体材料及其制备方法与流程

文档序号:19638421发布日期:2020-01-07 12:22阅读:246来源:国知局
一种宽温高磁导率低损耗NiCuZn软磁铁氧体材料及其制备方法与流程

本发明涉及软磁铁氧体材料技术领域,具体涉及一种宽温高磁导率低损耗nicuzn软磁铁氧体材料及其制备方法。



背景技术:

nicuzn软磁铁氧体材料是一种重要的电子信息材料,在通信、电子等领域有着非常广泛的应用,它具有较高的电阻率ρ、高共振频率、高磁导率μ、低损耗、低烧结温度等优点,可广泛应用于高频电感磁芯、传输线变压器磁芯及抗电磁干扰器件等。现有的nicuzn软磁铁氧体材料初始磁导率大多低于1000,且其工作温度范围窄(-40℃~80℃),高频损耗大,不适合作为宽温高品质电感器磁芯材料。

cn103693949a公开了一种宽温低温度系数高频低损耗nicuzn铁氧体材料及其制备方法,原料由主成分和副成分组成,所述主成分各组分含量为:fe2o351-59mol%,nio10-22mol%,zno20-35mol%,cuo0.3-8mol%;按主成分总重量计的副成分选自一下含量的两种以上组分:mn3o40.05-1.0wt%,sio20.05-0.9wt%,bi2o30.01-0.5wt%,tio20.01-0.8wt%,caco30.01-0.6wt%,co2o30.01-0.3wt%。该技术能在-40℃~120℃的宽温范围内使用。

cn102557604a公开了一种nicuzn系铁氧体材料及其制备方法,其主成分按摩尔百分比由47.5-49.5mol%的fe2o3,14.5-20.5mol%的zno,7.3-9.3mol%的cuo,余量为nio组成,还加入主成分重量0.2-0.6wt%的助烧剂bi2o3和主成分重量0.1-0.5wt%的添加剂co2o3。该技术制备的nicuzn系铁氧体材料初始磁导率μi为70~100。

cn104030674a公开了一种nicuzn铁氧体材料及其制备方法,该铁氧体主成分以摩尔百分比为:fe2o348.5mol%~49.5mol%,zno25mol%~29mol%,nio11.5mol%~20.5mol%,cuo5mol%~9.5mol%;掺杂成分质量百分比为:0≤v2o5≤0.12wt%。该铁氧体材料采用传统氧化物烧结制备工艺,在100khz~200khz的频率区间,起始磁导率μi为950~1000,100khz、10mt、25℃下功率损耗pcv为460~500mw/cc,矫顽力<32a/m。

上述专利技术中,有些是工作温度窄,有些是初始磁导率低,还有些是损耗较大,均不能完全满足高品质电感器对软磁材料的要求。另外,随着电子产品小型化、高频化、低能耗化、宽温化的发展趋势,以及现阶段对电子通信设备提出的更高标准,这就要求nicuzn软磁铁氧体材料不仅具有高的初始磁导率、更宽的工作温度及更低的功耗,而且还要保证其具备优异的高频电磁特性、高居里温度、低矫顽力等。然而,现有的nicuzn软磁铁氧体材料和制造工艺已经无法满足上述要求。



技术实现要素:

鉴于技术的不足,本发明的目的在于提供一种宽温度系数高初始磁导率低损耗nicuzn软磁铁氧体材料,该材料能在-80℃~120℃的宽温范围内工作,在0.1mhz~10mhz频率区间,起始磁导率μi为1020~1200,在1mhz、50mt、300k条件下功率损耗pcv仅为320~450kw/m3,饱和磁化强度ms≥64emu/g,矫顽力hc<29oe;且其还具有工作频率高、高频损耗小等特点。

本发明的整体思路为:首先结合nicuzn软磁铁氧体材料的理论知识及nizn铁氧体的三元相图,对配方进行深入研究并进行实验验证,最终确定出合理的fe2o3添加量(64.5wt%~66.7wt%),fe2o3在这一范围内不仅可以使nicuzn软磁铁氧体材料具有相对较高的初始磁导率,同时也能获得相对较低的涡流损耗。除此之外,本发明使用cuo替代了部分nio,同时添加了一些微量元素,例如v2o5、mnco3、mgo,使得产品烧结温度明显降低,烧结密度显著增大,产品的微观形貌和电磁性能得到极大改善,满足了小型化高品质电感器对软磁磁芯的要求。

具体地,本发明采取的技术方案概括如下:一种宽温高磁导率低损耗nicuzn软磁铁氧体材料,由主成分和副成分组成,所述的主成分以氧化物含量计算的组成为:fe2o3:64.5wt%~66.7wt%;zno:20.2wt%~23.5wt%;nio:9.5wt%~11.5wt%;余量为cuo;按所述主成分总重量计,所述副成分包括v2o5:0.12wt%~0.45wt%;mnco3:0.10wt%~0.40wt%;mgo:0.15wt%~0.35wt%。

进一步优选地,如上所述的宽温高磁导率低损耗nicuzn软磁铁氧体材料,其中的主成分以氧化物含量计算的组成为:

按主成分总重量计,其中的副成分组成为:

v2o50.26wt%~0.40wt%

mnco30.10wt%~0.25wt%

mgo0.16wt%~0.25wt%。

本发明还提供了一种上述宽温高磁导率低损耗nicuzn软磁铁氧体材料的制备方法,该方法包括下述步骤:

(1)原料选取:按照fe2o3≥99.40%、zno≥99.85%、nio≥99.50%、cuo>99.50%的纯度水平选取主成分,按照v2o5、mnco3及mgo纯度达到分析纯水平选取副成分;

(2)主成分混合:取64.5wt%~66.7wt%的fe2o3、20.2wt%~23.5wt%的zno、9.5wt%~11.5wt%的nio、余量为cuo进行配料;

(3)一次行星球磨:将步骤(2)所得配料装入行星式球磨机,并装入不锈钢球和去离子水,以200-220转/min的转速球磨4.5±0.5h,测试粒度为0.6±0.1μm时,采用压滤去水并烘干;

(4)高温预烧:将步骤(3)烘干后的粉料进行预烧,从室温起以1.5-3℃/min的升温速率升至900℃~1000℃,保温2-3h,随炉冷却至室温后出炉;

(5)副成分掺杂:将步骤(4)预烧后的粉料进行破碎处理,并按主成分总重量的百分比计,添加0.12wt%~0.45wt%的v2o5、0.10wt%~0.40wt%的mnco3、0.15wt%~0.35wt%的mgo,副成分的用量占主成分总重量的0.50wt%~0.85wt%;

(6)二次行星球磨:将步骤(5)所得配料装入行星式球磨机,并装入不锈钢球和去离子水,以230~250转/min的转速球磨7±0.2h,将磨好的浆料用压滤机去水,再放入干燥箱干燥;

(7)造粒并成型:将步骤(6)制得的粉料按料重的6wt%~8wt%加入聚乙烯醇溶液造粒,并按料重的0.015wt%~0.030wt%加入硬脂酸锌作为脱模剂,将造好的球形颗粒使用筛网筛选,取50~70目筛网之间的粉料,将上述粉料冷压成型为环状坯体,成型压力6mpa~8mpa;

(8)高温梯度烧结:对步骤(7)成型好的样坯放入箱式电炉中高温烧结,升温梯度如下:室温至350℃以1.5~1.7℃/min的速率升温,350℃~450℃以0.9~1.1℃/min的速率升温并在450℃保温1±0.2h,后以2.3~2.7℃/min的速率从450℃升至900℃,最终以0.9~1.1℃/min的速率升至1100℃,保温3.5±0.2h,自然冷却降至室温出炉;

(9)产品老化:对步骤(8)烧结后的产品放入电热恒温箱中,以1.7~2.0℃/min的速率从室温升至160℃,保温1.2±0.1h;后以0.4~0.6℃/min的速率降至140℃,保温1.2±0.1h;再以0.3~0.4℃/min的降温速率降温,每降20℃,保温1±0.1h,降至室温后,得到宽温高磁导率低损耗nicuzn软磁铁氧体材料。

进一步优选地,如上所述的宽温高磁导率低损耗nicuzn软磁铁氧体材料的制备方法,其中步骤(3)和步骤(6)球磨时按不锈钢球:料:水=(2~3):1:(1.1~1.5)的质量比混合。

进一步优选地,如上所述的宽温高磁导率低损耗nicuzn软磁铁氧体材料的制备方法,其中步骤(8)中烧结后环状样品尺寸为产品密度为5.3±0.1g/cm3

与现有技术相比,本发明涉及的nicuzn软磁铁氧体材料具有如下优点和进步性:

(1)本发明制备出的nicuzn软磁铁氧体材料可在-80℃~120℃的宽温范围内工作,在0.1mhz~10mhz频率区间,起始磁导率μi为1020~1200,1mhz、50mt、300k下功率损耗pcv仅为320~450kw/m3,饱和磁化强度ms≥64emu/g,矫顽力hc<29oe。

(2)本发明所使用的化工原料价格较为低廉,不含有毒有害成分,工艺过程简单且节能高效,适用于小型化高品质电感器、传输线变压器,便于产业化推广。

附图说明

图1为实施例2制备的nicuzn软磁铁氧体样品的xrd图谱;

图2为实施例2制备的nicuzn软磁铁氧体样品的磁滞回线。

具体实施方式

下面通过具体实施例对本发明的技术方案和技术效果作进一步详细说明。但本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。

实施例1:

(1)原材料纯度分析:对配方原料进行纯度分析,采用电感耦合等离子体质谱仪(icp-ms)、x射线衍射分析仪(xrd)及能谱仪(eds)等分析手段,原材料纯度需满足:fe2o3≥99.50%、zno≥99.85%、nio≥99.50%、cuo>99.50%,辅助成分v2o5、mnco3及mgo纯度需达到分析纯水平;

(2)原材料混合:以fe2o3、zno、nio、cuo为主配方原料,按质量分数fe2o3:65.36wt%,zno:20.8wt%,nio:9.7wt%,余量为cuo进行配料;

(3)一次行星球磨:将上述步骤(2)所得配料装入行星式球磨机,并装入不锈钢球和去离子水以210转/min的转速球磨工作4h,使用粒度分析仪测试粒度为0.7μm,采用压滤去水并烘干;

(4)高温预烧:将上述步骤(3)烘干后的粉料进行预烧,从室温起以2℃/min的升温速率升至900℃,保温2.5h,随炉冷却至室温后出炉;

(5)微量元素掺杂:将上述步骤(4)预烧后的粉料进行轮碾破碎处理,并按配比v2o5:0.38wt%;mnco3:0.12wt%;mgo:0.20wt%添加微量元素(辅助成分);

(6)二次行星球磨:将上述步骤(5)所得配料装入行星式球磨机,按磨球:料:水=2.2:1:1.3的质量比混合,以240转/min的转速球磨6.8h,将磨好的浆料用压滤机去水,再放入干燥箱干燥;

(7)造粒并成型:将上述步骤(6)制得的粉料按料重的6wt%加入聚乙烯醇溶液造粒,并按料重的0.025wt%加入硬脂酸锌作为脱模剂,将造好的颗粒使用50目及70目的筛网筛选,取50目、70目筛网之间的粉料,将上述粉料用120kn全自动粉末成型机采用双向加压模式冷压成型为样环坯体,成型压力6.5mpa;

(8)高温梯度烧结:对步骤(7)成型好的样坯放入箱式电炉中高温烧结,升温梯度如下:室温至350℃以1.6℃/min的速率升温,350℃~450℃以1℃/min的速率升温并在450℃保温1h,后以2.5℃/min的速率从450℃升至900℃,最终以1℃/min的速率升至1100℃,保温3.3h,自然冷却降至室温出炉;环状样品尺寸为样品密度为5.25g/cm3

(9)产品老化:对步骤(8)烧结后的产品进行老化处理,将产品放入电热恒温箱中,以1.8℃/min的速率从室温升至160℃,保温1.1h;后以0.5℃/min的速率降至140℃,保温1.1h;再以0.4℃/min的降温速率降温,每降20℃,保温1h,直到室温全部工序完成。

实施例2:

(1)原材料纯度分析:经理化分析后原材料纯度需满足:fe2o3≥99.40%、zno≥99.85%、nio≥99.50%、cuo>99.50%,辅助成分v2o5、mnco3及mgo纯度需达到分析纯水平;

(2)原材料混合:以fe2o3、zno、nio、cuo为主配方原料,按质量分数fe2o3:65.36wt%,zno:21.54wt%,nio:10.1wt%,余量为cuo进行配料;

(3)一次行星球磨:将上述步骤(2)所得配料装入行星式球磨机,并装入不锈钢球和去离子水以210转/min的转速球磨工作4.5h,使用粒度分析仪测试粒度为0.65μm,采用压滤去水并烘干;

(4)高温预烧:将上述步骤(3)烘干后的粉料进行预烧,从室温起以2℃/min的升温速率升至950℃,保温2.5h,随炉冷却至室温后出炉;

(5)微量元素掺杂:将上述步骤(4)预烧后的粉料进行轮碾破碎处理,并按配比v2o5:0.38wt%;mnco3:0.12wt%;mgo:0.20wt%添加微量元素(辅助成分);

(6)二次行星球磨:将上述步骤(5)所得配料装入行星式球磨机,按磨球:料:水=2.2:1:1.3的质量比混合,以240转/min的转速球磨7h,将磨好的浆料用压滤机去水,再放入干燥箱干燥;

(7)造粒并成型:将上述步骤(6)制得的粉料按料重的7wt%加入聚乙烯醇溶液造粒,并按料重的0.020wt%加入硬脂酸锌作为脱模剂,将造好的颗粒使用50目及70目的筛网筛选,取50目、70目筛网之间的粉料,将上述粉料用120kn全自动粉末成型机采用双向加压模式冷压成型为样环坯体,成型压力7mpa;

(8)高温梯度烧结:对步骤(7)成型好的样坯放入箱式电炉中高温烧结,升温梯度如下:室温至350℃以1.5℃/min的速率升温,350℃~450℃以1℃/min的速率升温并在450℃保温1h,后以2.5℃/min的速率从450℃升至900℃,最终以1℃/min的速率升至1100℃,保温3.5h,自然冷却降至室温出炉;环状样品尺寸为样品密度为5.38g/cm3

(9)产品老化:对步骤(8)烧结后的产品进行老化处理,将产品放入电热恒温箱中,以1.8℃/min的速率从室温升至160℃,保温1.2h;后以0.5℃/min的速率降至140℃,保温1.2h;再以0.4℃/min的降温速率降温,每降20℃,保温1h,直到室温全部工序完成。

实施例3:

(1)原材料纯度分析:经理化分析后原材料纯度需满足:fe2o3≥99.40%、zno≥99.85%、nio≥99.50%、cuo>99.50%,辅助成分v2o5、mnco3及mgo纯度需达到分析纯水平;

(2)原材料混合:以fe2o3、zno、nio、cuo为主配方原料,按质量分数fe2o3:65.36wt%,zno:21.54wt%,nio:10.1wt%,余量为cuo进行配料;

(3)一次行星球磨:将上述步骤(2)所得配料装入行星式球磨机,并装入不锈钢球和去离子水以210转/min的转速球磨工作5h,使用粒度分析仪测试粒度为0.6μm,采用压滤去水并烘干;

(4)高温预烧:将上述步骤(3)烘干后的粉料进行预烧,从室温起以2℃/min的升温速率升至1000℃,保温2.5h,随炉冷却至室温后出炉;

(5)微量元素掺杂:将上述步骤(4)预烧后的粉料进行轮碾破碎处理,并按配比v2o5:0.12wt%;mnco3:0.38wt%;mgo:0.20wt%添加微量元素(辅助成分);

(6)二次行星球磨:将上述步骤(5)所得配料装入行星式球磨机,按磨球:料:水=2.2:1:1.3的质量比混合,以240转/min的转速球磨7.2h,将磨好的浆料用压滤机去水,再放入干燥箱干燥;

(7)造粒并成型:将上述步骤(6)制得的粉料按料重的8wt%加入聚乙烯醇溶液造粒,并按料重的0.020wt%加入硬脂酸锌作为脱模剂,将造好的球形颗粒使用50目及70目的筛网筛选,取50目、70目筛网之间的粉料,将上述粉料用120kn全自动粉末成型机采用双向加压模式冷压成型为样环坯体,成型压力7mpa;

(8)高温梯度烧结:对步骤(7)成型好的样坯放入箱式电炉中高温烧结,升温梯度如下:室温至350℃以1.7℃/min的速率升温,350℃~450℃以1.1℃/min的速率升温并在450℃保温1h,后以2.5℃/min的速率从450℃升至900℃,最终以1.1℃/min的速率升至1100℃,保温3.7h,自然冷却降至室温出炉;环状样品尺寸为样品密度为5.29g/cm3

(9)产品老化:对步骤(8)烧结后的产品进行老化处理,将产品放入电热恒温箱中,以2.0℃/min的速率从室温升至160℃,保温1.3h;后以0.6℃/min的速率降至140℃,保温1.3h;再以0.4℃/min的降温速率降温,每降20℃,保温1h,直到室温全部工序完成。

实施例4:微量元素中不含mg

(1)原材料纯度分析:经理化分析后原材料纯度需满足:fe2o3≥99.40%、zno≥99.85%、nio≥99.50%、cuo>99.50%,辅助成分v2o5、mnco3及mgo纯度需达到分析纯水平;

(2)原材料混合:以fe2o3、zno、nio、cuo为主配方原料,按质量分数fe2o3:65.36wt%,zno:21.54wt%,nio:10.1wt%,余量为cuo进行配料;

(3)一次行星球磨:将上述步骤(2)所得配料装入行星式球磨机,并装入不锈钢球和去离子水以210转/min的转速球磨工作4.5h,使用粒度分析仪测试粒度为0.65μm,采用压滤去水并烘干;

(4)高温预烧:将上述步骤(3)烘干后的粉料进行预烧,从室温起以2℃/min的升温速率升至950℃,保温2.5h,随炉冷却至室温后出炉;

(5)微量元素掺杂:将上述步骤(4)预烧后的粉料进行轮碾破碎处理,并按配比v2o5:0.38wt%;mnco3:0.12wt%添加微量元素(辅助成分);

(6)二次行星球磨:将上述步骤(5)所得配料装入行星式球磨机,按磨球:料:水=2.2:1:1.3的质量比混合,以240转/min的转速球磨7h,将磨好的浆料用压滤机去水,再放入干燥箱干燥;

(7)造粒并成型:将上述步骤(6)制得的粉料按料重的7wt%加入聚乙烯醇溶液造粒,并按料重的0.020wt%加入硬脂酸锌作为脱模剂,将造好的颗粒使用50目及70目的筛网筛选,取50目、70目筛网之间的粉料,将上述粉料用120kn全自动粉末成型机采用双向加压模式冷压成型为样环坯体,成型压力7mpa;

(8)高温梯度烧结:对步骤(7)成型好的样坯放入箱式电炉中高温烧结,升温梯度如下:室温至350℃以1.5℃/min的速率升温,350℃~450℃以1℃/min的速率升温并在450℃保温1h,后以2.5℃/min的速率从450℃升至900℃,最终以1℃/min的速率升至1100℃,保温3.5h,自然冷却降至室温出炉;环状样品尺寸为样品密度为5.27g/cm3

(9)产品老化:对步骤(8)烧结后的产品进行老化处理,将产品放入电热恒温箱中,以1.8℃/min的速率从室温升至160℃,保温1.2h;后以0.5℃/min的速率降至140℃,保温1.2h;再以0.4℃/min的降温速率降温,每降20℃,保温1h,直到室温全部工序完成。

表1为实施例1-4所制备样品性能测试结果

从表1的统计数据可以看出,实施例2具有相对较高的初始初始磁导率(μi=1187)和相对较低的功率损耗(pcv=332kw/m3),且矫顽力也相对较小(hc=19oe),这些指标均可满足目前高品质电感器对软磁材料的要求。实施例1与实施例2相比主成分配方上稍有调整,即实施例2中zn2+、ni2+浓度稍有增加,从性能参数上可以得到随着zn2+、ni2+浓度的增加μi显著提高、pcv明显下降。实施例3则是保持了实施例2主成分配比,仅对副成分中v5+、mn2+离子的添加比例做了调整,从磁性能指标可以看出v5+离子浓度相对较大、mn2+离子浓度相对较小时更易获得高μi、低pcv的nicuzn铁氧体材料。相对于实施例2而言,实施例4中去掉了副成分中的mg2+离子,磁性能指标显示pcv明显变大,同时μi降低。综上所述,不论是主成分或是副成分的改变均会影响产品的性能,尤其是副成分中的mg2+离子协同v5+、mn2+离子共同发挥作用,不可缺少。对比以上实施例可知,实施例2的综合磁性能最优。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1