多相复合增强的低摩擦碳化硅陶瓷密封材料及其制备方法与流程

文档序号:20695674发布日期:2020-05-12 14:56阅读:350来源:国知局
多相复合增强的低摩擦碳化硅陶瓷密封材料及其制备方法与流程

本发明涉及一种多相复合增强的低摩擦碳化硅陶瓷密封材料及其制备方法。



背景技术:

碳化硅陶瓷作为一种典型的共价键结合的陶瓷材料,具有密度低、强度高、硬度高、耐磨、耐腐蚀以及耐高温等优异性能,在机械、化工、能源、军工等高技术领域得到了大量应用。例如,用作高温、耐磨、耐腐蚀机械密封部件,各种砂轮和磨具,高效率的热交换器和大容量的超大规模集成电路的衬底材料,原子能反应堆结构材料、火箭尾气喷管、火箭燃烧室内衬、反射镜镜体等。现在碳化硅越来越为世界各国所重视,尤其在高温结构陶瓷领域已成为国内外研究的热点。虽然碳化硅陶瓷具有许多优异的性能,在很多领域得到应用,但是碳化硅陶瓷与其它结构的陶瓷一样属于脆性材料。目前采用无压烧结所制得的碳化硅陶瓷密封件摩擦系数高,在高速运转、运转、润滑液出现故障时,密封面瞬间磨损,导致密封失效,出现严重的安全事故。

对于低摩擦系数无压烧结碳化硅陶瓷已有相关研究,主要在碳化硅陶瓷的原料配方中加入固体润滑材,如普通石墨颗粒、氟化石墨、二硫化钼等润滑剂来降低碳化硅陶瓷的摩擦系数。但降低摩擦系数的同时,碳化硅陶瓷的力学性能下降的很快。近年来,石墨烯的出现,引起了越来越多的关注和研究。石墨烯是一种新型的二维材料,具有高强、高杨氏模量、高韧、高导热等特点,在陶瓷增强以及高热导陶瓷领域具有很好的应用前景。将石墨烯与碳化硅陶瓷进行复合解决碳化硅陶瓷密封材料存在的强度低、摩擦系数高、自润滑能力差等问题,引起了碳化硅陶瓷及相关行业的广泛关注。

公开号为cn110028322a、cn104926312a、cn108585875a、cn110106429a、cn10355309、cn105801154a、cn106045520a、cn105777124b、cn105110798a、cn105110799a、cn104926312a、cn107353009a、cn103085372a等专利公开了在碳化硅陶瓷体系中加入石墨烯或原位生长石墨烯,制备碳化硅-石墨烯复合材料、密封环、棚板、耐磨材料等研究。但从现有研究应该看到,加入石墨烯后,碳化硅陶瓷的力学性能随着石墨烯添加量的增加仍然快速下降,虽然也有研究将石墨烯与其它增强相一同加入,但因分散问题,协同增强效果有限;在烧结方法上,主要采用无压固相烧结、反应烧结和热压烧结工艺,固相烧结温度高,反应烧结中硅残留量较大,热压烧结工艺复杂及设备成本高;在性能方面,都关注复合材料的机械、力学、电学和热学性能,对复合材料的摩擦性能等关注较少。



技术实现要素:

本发明提供了一种多相复合增强的低摩擦碳化硅陶瓷密封材料及其制备方法,本发明制备而得的碳化硅陶瓷密封材料不仅摩擦系数低,而且力学性能较高。

为了解决上述技术问题,本发明提供一种多相复合增强的低摩擦碳化硅陶瓷密封材料,该低摩擦碳化硅陶瓷密封材料的原料由以下重量百分比的成分组成为:碳化硅(粉状)86%~88%,钇铝石榴石(粉状)6%~8%,石墨烯1%~2.5%,纳米二硼化锆1%~2.5%,碳化硅晶须1%~2.5%。

本发明中,以碳化硅粉为主要原料,钇铝石榴石为烧结助剂,并引入石墨烯、纳米二硼化锆、碳化硅晶须作为增强相。

本发明还同时提供了上述多相复合增强的低摩擦碳化硅陶瓷密封材料的制备方法,包括以下步骤:

1)、在原料中加入液态分散介质、分散剂和粘结剂,湿法搅拌(湿法立式搅拌磨)(4±1)小时后再加入消泡剂搅拌30~60分钟,得水基复合料浆;

液态分散介质:原料=1.0~1.2:1的重量比;

分散剂占原料重量的3.5~4.5%;

粘结剂占原料重量的3.5~4.5%;

消泡剂占原料重量的2.5~3.5%;

2)、将水基复合料浆进行喷雾干燥(可采用高速离心式喷雾干燥机),得碳化硅复合造粒粉;

3)、先将碳化硅复合造粒粉过筛(过100目的筛),再压制成型(可使用液压机),得碳化硅复合素坯;

4)、室温下,将碳化硅复合素坯放入真空无压烧结炉中,利用钇铝石榴石粉覆盖碳化硅复合素坯的表面,于惰性气体保护下(ar气保护气氛下)升温至1850~1950℃的加热温度保温反应4~5小时;

冷却后(随炉冷却,温度降至150℃以下开炉),得多相复合增强的低摩擦碳化硅陶瓷密封材料。

作为本发明的多相复合增强的低摩擦碳化硅陶瓷密封材料的制备方法的改进:

所述液态分散介质为去离子水,所述分散剂为四甲基氢氧化铵,所述粘结剂为聚乙烯醇,所述消泡剂为正辛醇。

作为本发明的多相复合增强的低摩擦碳化硅陶瓷密封材料的制备方法的进一步改进:石墨烯为层数1~5层的多层石墨烯(机械剥离制备而得)。

作为本发明的多相复合增强的低摩擦碳化硅陶瓷密封材料的制备方法的进一步改进:步骤2)中,采用高速离心式喷雾干燥机进行喷雾干燥,热风进口温度为200~250℃、出口温度为90~100℃。

作为本发明的多相复合增强的低摩擦碳化硅陶瓷密封材料的制备方法的进一步改进:步骤4)中,从室温升温至加热温度的升温时间为4~5小时。

本发明具有以下技术优势:

1)、同时引入二维的石墨烯、一维的碳化硅晶须和纳米二氧化锆作为增强相,不仅可以实现纳米钉扎来抑制碳化硅基体晶粒的生长,而且可同时产生纳米增强、晶须拔出、裂纹偏转等效应,实现增强效应协同,从而解决了单独引入石墨烯导致碳化硅陶瓷力学性能快速下降的问题。

2)、引入了自润滑性能优越的石墨烯后,碳化硅复合陶瓷密封材料的表面光滑度显著提高(图1),石墨烯在碳化硅陶瓷基体中以片状结构均匀分布(图2),密封材料的干摩擦性能明显得到改善,且力学性能并没有明显降低。

3)、引入的石墨烯纳米片是采用机械剥离方法制备而得,与化学方法制备的石墨烯相比,结晶性、力学性能好,且制备成本较低,有助于明显改善碳化硅陶瓷的力学性能和摩擦性能,同时减低成本。

4)、降低了碳化硅陶瓷的烧结温度,抑制纳米增强相和基体相的晶粒尺寸长大,获得细晶结构,改善复合陶瓷的综合性能。

综上所述,本发明采用水基料浆、喷雾干燥、干压成型、低温液相烧结等技术,制备多相复合增强、低摩擦的碳化硅陶瓷密封材料。该复合陶瓷密封材料具有较高的烧结性能和力学性能且干摩擦系数低等特点,可广泛应用于机械密封行业。

附图说明

下面结合附图对本发明的具体实施方式作进一步详细说明。

图1是多相复合增强碳化硅陶瓷密封材料表面的光学电镜照片;

图2是多相复合增强碳化硅陶瓷密封材料断面的扫描电子显微镜照片。

具体实施方式

下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:

以下案例中,

碳化硅粉平均粒径约为0.7微米;钇铝石榴石粉平均粒径约为1.0微米;纳米二硼化锆的平均粒径约为40纳米;石墨烯为层数为1~5层的多层石墨烯,粒径为1~10微米,片层厚度为1.5~4.5纳米,碳化硅晶须的晶相为立方相β-sic,直径200~500nm,长度10~50μm。

搅拌转速为400~500转/分钟。

实施例1、一种多相复合增强的低摩擦碳化硅陶瓷密封材料,其原料由以下重量含量的成分组成:碳化硅粉86%,钇铝石榴石粉8%,石墨烯2.5%,纳米二硼化锆1%,碳化硅晶须2.5%。

制备方法为依次进行以下步骤:

1)、在100重量份的原料中加入110重量份作为分散介质的去离子水、4重量份作为分散剂的四甲基氢氧化铵,4重量份作为粘结剂的聚乙烯醇,采用湿法立式搅拌磨搅拌4小时,然后加入3重量份作为消泡剂的正辛醇,再搅拌30分钟,制备得到水基复合料浆;

2)、将制备好的水基复合料浆采用高速离心式喷雾干燥机进行喷雾干燥,热风进口温度为200~250℃、出口温度为90~100℃,雾化器调速为20~60hz,料泵进料速率为3.5~4.1kg/h,离心转速为20000~25000r.p.m;制得碳化硅复合造粒粉;

3)、将造粒粉过筛(过100目的筛),从而除去粘连的造粒粉;使用y11-63t型四柱液压机对过筛后的造粒粉进行压制成型(压力为150~200mpa,时间为10~20秒),制得碳化硅复合素坯;

4)、将步骤3)所得的素坯在室温下放入真空无压烧结炉中,利用钇铝石榴石粉覆盖住整个素坯的表面,ar气保护气氛下,于4~5小时的升温时间升温至1850~1950℃作为加热温度,然后保温反应5小时;保温结束后随炉冷却,温度降至150℃以下开炉,制备得到多相复合碳化硅陶瓷密封材料。

该多相复合增强的低摩擦碳化硅陶瓷密封材料的密度2.95~3.0g/cm3,抗折强度380~400mpa,维氏硬度20gpa,干摩擦系数0.20。

实施例2、一种多相复合增强的低摩擦碳化硅陶瓷密封材料,该复合陶瓷的重量百分比组成为:碳化硅粉88%,钇铝石榴石粉6%,石墨烯1.5%,纳米二硼化锆2.5%,碳化硅晶须2%。

制备方法等同于实施例1。

制备所得的多相复合增强的低摩擦碳化硅陶瓷密封材料的密度2.98~3.05g/cm3,抗折强度400~420mpa,维氏硬度22gpa,干摩擦系数0.23。

实施例3、一种多相复合增强的低摩擦碳化硅陶瓷密封材料,该复合陶瓷的重量百分比组成为:碳化硅粉87%,钇铝石榴石粉7%,石墨烯2.5%,纳米二硼化锆2.5%,碳化硅晶须1.0%。

制备方法等同于实施例1。

制备所得的多相复合增强的低摩擦碳化硅陶瓷密封材料的密度2.95~3.0g/cm3,抗折强度380~390mpa,维氏硬度21gpa,干摩擦系数0.22。

对比例1:一种碳化硅/石墨烯复合陶瓷密封材料,该复合陶瓷的重量百分比组成为:碳化硅粉91.5%,碳化硼6%,石墨烯2.5%。

制备方法的步骤4)中,加热温度为2200~2300℃,升温时间为6~7小时,保温时间为5小时;其余等同于实施例1的制备方法。

制备所得的碳化硅/石墨烯复合陶瓷密封材料的密度3.05~3.10g/cm3,抗折强度200mpa,干摩擦系数0.25。

对比例2-1、将实施例1原料配方中的“碳化硅粉86%、碳化硅晶须2.5%”改成“碳化硅粉88.5%、碳化硅晶须0%”,其余等同于实施例1。

制备方法等同于实施例1。

制备所得的陶瓷密封材料的密度3.0~3.05g/cm3,抗折强度330mpa,干摩擦系数0.23。

对比例2-2、将实施例1原料配方中的“碳化硅粉86%、碳化硅晶须2.5%”改成“碳化硅粉83.5%、碳化硅晶须5%”,其余等同于实施例1。

制备所得的碳化硅/石墨烯复合陶瓷密封材料的密度2.9~2.95g/cm3,抗折强度300mpa,干摩擦系数0.21。

对比例3-1、将实施例1原料配方中的“石墨烯2.5%,纳米二硼化锆1%,碳化硅晶须2.5%”改成“石墨烯4.5%,纳米二硼化锆1.5%”,其余等同于实施例1。

制备所得的碳化硅/石墨烯复合陶瓷密封材料的密度2.85~2.95g/cm3,抗折强度250mpa,干摩擦系数0.19。

对比例3-2、将实施例1原料配方中的“石墨烯2.5%,纳米二硼化锆1%,碳化硅晶须2.5%”改成“石墨烯3%,碳化硅晶须3%”,其余等同于实施例1。

制备所得的碳化硅/石墨烯复合陶瓷密封材料的密度2.95~3.0g/cm3,抗折强度310mpa,干摩擦系数0.19。

对比例4-1、取消实施例1步骤4)中的“利用钇铝石榴石粉覆盖住整个素坯的表面”,其余等同于实施例1。

制备所得的碳化硅/石墨烯复合陶瓷密封材料的密度2.85~3.00g/cm3,抗折强度300mpa,干摩擦系数0.35。

对比例4-2、将实施例1步骤4)中的加热温度由“1850~1950℃”改成“2200~2300℃”;其余等同于实施例1。

制备所得的碳化硅/石墨烯复合陶瓷密封材料的抗折强度250mpa,干摩擦系数0.20。

最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1