本发明涉及新型储热材料领域,尤其涉及一种高效的储热陶瓷基材料及其制备工艺。
技术背景
储热材料就是一种能够储存热能的新型化学材料。它在特定的温度(如相变温度)下发生物相变化,并伴随着吸收或放出热量,可用来控制周围环境的温度,或用以储存热能。它把热量或冷量储存起来,在需要时再把它释放出来,从而提高了能源的利用率。
储热材料吸收太阳辐射或其他载体的热量蓄存于材料内部,环境温度低于材料温度时热量即释放。热量以显热、潜热或两者兼有的形式储存。显热是靠储热材料的温度升高来储存。常温下水和卵石均为常用的储热材料,水的储热量是同样体积石块的3倍。潜热储存是利用材料由固态熔化为液态时需要大量熔解热的特性来吸收储存热量。热量释放后材料回到固态,相变反复循环形成贮存、释放热量的过程。
由于显热储热材料是依靠储热材料的温度变化来进行热量贮存的,放热过程不能恒温,储热密度小,造成储热设备的体积庞大,储热效率不高,而且与周围环境处存在温差会造成热量损失,热量不能长期储存,不适合长时间、大容量储热,限制了显热储热材料的进一步发展。
与显热储热材料相比,相变储热材料储热密度高,能够通过相变在恒温下放出大量热量。虽然气一液和气一固转变的相变潜热值要比液一固转变、固一固转变时的潜热大,但因其在相变过程中存在容积的巨大变化,使其在工程实际应用中会存在很大困难。目前应用于太阳能热发电的储热材料有水、导热油、耐高温混凝土和熔融盐等。水作为储热材料储能密度不大,水和导热油在高温下蒸汽压很大,使用时需要特殊的压力阀等设备,导热油还容易引发火灾,而且价格较贵;耐高温混凝土作为储热材料,对其内部换热管道要求很高,其成本占整个储热系统成本的45%-55%;熔盐普遍存在导热系数小,储能密度低及工作温度低等缺陷,从而导致储能系统较为庞大及太阳能热发电的蒸汽参数较低。相比而言,合金储热材料储热密度大、热循环稳定性好、导热系数高,相对上述材料有较大优势,但是合金储热材料在液态时往往具有较大腐蚀性,现有的容器在高温下容易受合金储热材料的腐蚀变形,引起储热能力下降,而传统的陶瓷材料虽然性质比较稳定,但是导热性不好。因此急需一种在高温下稳定,强度高,能够容纳合金储热材料,不与合金储热材料反应,同时导热性能好的储热陶瓷材料。
技术实现要素:
针对上述不足,本发明提供一种高效的储热陶瓷基材料及其制备工艺,使用本储热陶瓷基材料制备的储热容器,耐高温、材料强度和耐腐蚀性能好,能够很好的容纳合金储热材料,不与合金储热材料反应,不易造成热量损失,同时导热性能好。
为了实现上述目的,本发明提供了如下的技术方案:
一种高效的储热陶瓷基材料,由以下按照重量份的原料组成:碳酸钙40份、硅酸钠25~35份、碳酸钾20~25份、碳酸钠15~20份、硝酸钾10~15份、二氧化硅10~15份、氮化硅5~15份、碳化钾13~18份、碳纳米管6~12份、氧化铍6~10份、五氧化三钛3~8份、高导热碳纤维2~4份、高定向石墨2-4份、掺杂石墨2~4份、氮化硼2~4份、石墨烯1~3份。
进一步的,上述一种高效的储热陶瓷基材料,所述碳酸钙:粒径15-20μm,纯度>99%;所述硅酸钠:粒径5~10μm,纯度>99%。
进一步的,上述一种高效的储热陶瓷基材料,所述碳纳米管:直径5~20nm,纯度>99%。
进一步的,上述一种高效的储热陶瓷基材料,由以下按照重量份的原料组成:碳酸钙40份、硅酸钠30份、碳酸钾22份、碳酸钠18份、硝酸钾12份、二氧化硅12份、氮化硅10份、碳化钾15份、碳纳米管9份、氧化铍8份、五氧化三钛5份、高导热碳纤维3份、高定向石墨3份、掺杂石墨3份、氮化硼3份、、石墨烯2份。
进一步的,上述高效的储热陶瓷基材料的制备工艺,包括以下步骤:(1)将碳酸钙、硅酸钠、碳酸钾、碳酸钠、硝酸钾、二氧化硅、氮化硅、碳化钾,按配方量进行混合均匀,得到混合物a;
(2)将碳纳米管、氧化铍、高导热碳纤维按配方混合后在惰性气体保护下搅拌加热至200℃,保温2-5h后降温至常温,得混合物b;
(3)将高定向石墨、掺杂石墨、氮化硼、石墨烯按配方量混合后加入等质量浓硫酸,在惰性气体保护下回流加热至400℃,保温4-8h后降至常温,使用超纯水漂洗后烘干,得混合物c;
(4)向混合物a中加入超纯水,进行精细球磨,得到矿浆a;
(5)将矿浆a加热至50-80℃,边搅拌边缓慢加入混合物b和混合物c,最终得到矿浆b;
(6)将矿浆b再次球磨后过120-200目筛,再加入配方量的五氧化三钛细粉,得矿浆c;
(7)将矿浆c加入到烧结模具中,加压成型,烘干后进行高温烧结,烧结温度1250~1400℃,烧结时间2~4h,烧结完成后,保温40~60min,风冷,得到所述高效的储热陶瓷基材料。
进一步的,上述高效的储热陶瓷基材料的制备工艺,所述步骤(2)中的所述惰性气体选自氦气、氖气、氩气、氪气、氙气中的一种或者多种。
进一步的,上述高效的储热陶瓷基材料的制备工艺,所述步骤(3)中的保温时间为6h。
进一步的,上述高效的储热陶瓷基材料的制备工艺,所述步骤(5)中的矿浆a的加热温度为65℃。
进一步的,上述高效的储热陶瓷基材料的制备工艺,所述步骤(5)具体为:将矿浆c加入到烧结模具中,加压成型,烘干后进行高温烧结,烧结温度1350℃,烧结时间3h,烧结完成后,保温50min,风冷,得到所述高效的储热陶瓷基材料。
进一步的,上述高效的储热陶瓷基材料在太阳能发电领域的应用。
上述方案表明,本发明至少具有以下有益效果:本发明公开的高效的储热陶瓷基材料,通过加入碳纳米管增加了材料的强度、氧化铍增加了材料的耐火性、五氧化三钛增加了材料的耐磨损、耐高温、耐腐蚀、抗氧化性、高导热碳纤维增加了材料的导热性能和强度;高定向石墨和掺杂石墨增加了材料的热稳定性;氮化硼增加了材料的抗腐蚀性能、石墨烯增加了材料的韧性;将上述材料综合并根据本发明所述的工艺生产的高效的储热陶瓷基材料,强度高,耐高温和耐腐蚀性能好,能够很好的容纳合金储热材料,不与合金储热材料反应,不易造成热量损失,同时导热性能好,适合作为原材料制备太阳能发电领域领域中合金储热材料的储热容器。
具体实施方式
下面将通过几个具体实施例,进一步阐明本发明,这些实施例只是为了说明问题,并不是一种限制。
实施例1
一种高效的储热陶瓷基材料,由以下按照重量份的原料组成:碳酸钙40份、硅酸钠25份、碳酸钾20份、碳酸钠15份、硝酸钾10份、二氧化硅10份、氮化硅5份、碳化钾13份、碳纳米管6份、氧化铍6份、五氧化三钛3份、高导热碳纤维2份、高定向石墨2份、掺杂石墨2份、氮化硼2份、石墨烯1份。
实施例2
一种高效的储热陶瓷基材料,由以下按照重量份的原料组成:碳酸钙40份、硅酸钠30份、碳酸钾22份、碳酸钠18份、硝酸钾12份、二氧化硅12份、氮化硅10份、碳化钾15份、碳纳米管9份、氧化铍8份、五氧化三钛5份、高导热碳纤维3份、高定向石墨3份、掺杂石墨3份、氮化硼3份、、石墨烯2份;
所述碳酸钙:粒径15-20μm,纯度>99%;所述硅酸钠:粒径5~10μm,纯度>99%;
所述碳纳米管:直径5~20nm,纯度>99%。
实施例3
一种高效的储热陶瓷基材料,由以下按照重量份的原料组成:碳酸钙40份、硅酸钠35份、碳酸钾25份、碳酸钠20份、硝酸钾15份、二氧化硅15份、氮化硅15份、碳化钾18份、碳纳米管12份、氧化铍10份、五氧化三钛8份、高导热碳纤维4份、高定向石墨4份、掺杂石墨4份、氮化硼4份、石墨烯3份。
实施例4
制备例
按实施例1-3的配方,进行制备,其制备工艺包括以下步骤:
(1)将碳酸钙、硅酸钠、碳酸钾、碳酸钠、硝酸钾、二氧化硅、氮化硅、碳化钾,按配方量进行混合均匀,得到混合物a;
(2)将碳纳米管、氧化铍、高导热碳纤维按配方混合后在惰性气体保护下搅拌加热至200℃,保温2-5h后降温至常温,得混合物b;
(3)将高定向石墨、掺杂石墨、氮化硼、石墨烯按配方量混合后加入等质量浓硫酸,在惰性气体保护下回流加热至400℃,保温6h后降至常温,使用超纯水漂洗后烘干,得混合物c;
(4)向混合物a中加入超纯水,进行精细球磨,得到矿浆a;
(5)将矿浆a加热至65℃,边搅拌边缓慢加入混合物b和混合物c,最终得到矿浆b;
(6)将矿浆b再次球磨后过120-200目筛,再加入配方量的五氧化三钛细粉,得矿浆c;
(7)将矿浆c加入到烧结模具中,加压成型,烘干后进行高温烧结,烧结温度1350℃,烧结时间3h,烧结完成后,保温50min,风冷,得到所述高效的储热陶瓷基材料。
实施例5
测试例
经测试,根据本发明实施例1、2、3的配方并根据实施例4所述的方法制得的储热陶瓷基材料的热导率分别为为20.4、23.4、21.6w/(m·k),1000℃~室温抗热震循环10次均无开裂,合金均无泄漏,合金与陶瓷基体均无化学反应。
综上实施例1-5所述,本发明公开的一种高效的储热陶瓷基材料,强度高,耐高温和耐腐蚀性能好,能够很好的容纳合金储热材料,不与合金储热材料反应,不易造成热量损失,同时导热性能好,适合作为原材料制备太阳能发电领域领域中合金储热材料的储热容器。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进也应视为本发明的保护范围。