锂二次电池用阳极活性物质、其制备方法以及包含其的锂二次电池与流程

文档序号:25443038发布日期:2021-06-11 22:03阅读:152来源:国知局
锂二次电池用阳极活性物质、其制备方法以及包含其的锂二次电池与流程

本发明涉及锂二次电池用阳极活性物质、其制备方法以及包含其的锂二次电池,更详细地,涉及如下的锂二次电池用阳极活性物质、其制备方法以及包含其的锂二次电池,该锂二次电池用阳极活性物质在通过利用包含硫(sulfur)的化合物的水洗来减少残留锂杂质的同时,在阳极活性物质表面形成锂-硫(li-sulfur)化合物涂层,降低初期电阻及漏电流的发生,从而能够改善电池性能。



背景技术:

锂二次电池作为利用锂的氧化和还原反应原理来存储电的电池,具有很高的电压和能量密度。以高的能量密度为基础,比其他二次电池(铅蓄电池、镍镉电池、镍氢电池的)更有利于小型化及轻型化,因此用作手机、笔记本电脑、数码相机等小型电子产品的电源。

近来,不仅应用于小型电源装置,还用作重型机床(powertool)、电动汽车等的高输出、高容量的中大型电源装置以及储能系统(ess)用大型电池等而扩大了应用范围。尤其是欧洲和中国的环境管控相关政策的强化加速扩大了电动汽车的需求。欧盟(eu)议会宣布,到2021年,欧洲出售的新车的二氧化碳排放量限制在每公里95g,预计这将使欧洲整车企业减少汽油、柴油车辆的生产,而大幅增加电动汽车款式。随着这样的进程,全球整车企业都陆续把研究开发新一代汽车的焦点聚集在电动汽车上,因此中大型电池的需求正急剧增加。这样,随着中大型电池的需求的增长,为了增大锂二次电池的容量,正在持续对阳极活性物质的镍(ni)的组成增加的高镍(highni(ni≥60%))三元锂电池(ncm)的研究开发,现在,对ni≥80%的研究也正在活跃地进行着。

在这样的高镍(highni)三元锂电池的情况下,具有镍的含量越高,容量越大的优点,但由于阳离子混排(cationmixing,(主要是ni2+/li+的杂乱(disorder))),具有因结构稳定性降低、初期电阻增加、未反应的残留li2co3和lioh等的锂杂质增加而性能低下的问题。

现有的锂二次电池阳极活性物质通过将前体与氢氧化锂或碳酸锂混合后进行热处理来制备,这样的热处理过程后,会存在未参与阳极活性物质的制备反应的残留的氢氧化锂及碳酸锂。当上述残留的为氢氧化锂时,在制备浆料的过程中会增加ph而发生浆料的固化现象,会出现难以制备极板的问题,当上述残留的为碳酸锂时,会增加电池膨胀(swelling)现象,不仅降低循环性能,还会引起气体生成而成为电池膨胀的原因。

尤其是残留在表面的锂杂质lioh会与大气中的co2反应而追加形成li2co3,不仅出现妨碍首次不可逆的容量增加和表面的锂离子移动的问题,还会因再次在电化学反应中与电解液反应,通过分解反应生成co2气体而发生电池的膨胀现象,引起降低高温安全性的问题。

因此,在高镍三元锂电池的情况下(尤其是当ni≥80%时),为了去除锂杂质,介绍并使用了通过水、醇类等进行湿式处理的方法。但是,在湿式处理的方法中,在去除残留锂杂质的过程中,会使活性物质内部的li脱离,从而减少长期的电池寿命,水洗后活性物质表面氧化而形成nio相(phase),会具有降低容量或增加电阻等问题。因此,需要进行一种有关最小化通过水洗而使活性物质的容量减少等问题的,能够去除期望水平的残留锂杂质的水洗添加剂的研究。



技术实现要素:

为解决上述现有技术的问题,本发明的目的在于提供阳性活性物质及其制备方法,该阳性活性物质在进行用于去除含有80摩尔百分比以上的镍的高镍阳极活性物质的表面存在的残留锂杂质(li2co3和lioh)的工序中,添加包含硫的化合物,通过在活性物质表面形成li-s涂层来最小化因水洗而发生的活性物质的容量减少等问题,在有效地去除残留锂杂质的同时,改善电阻及改善漏电流(leakcurrent)的增加。

本发明的另一目的为提供一种包含本发明的阳极活性物质的锂二次电池。

以下,详细说明本发明的实例。但这仅作为例示提出,而不是要以此来限制本发明,本发明仅通过前述的发明要求保护范围的范畴来定义。

为解决上述问题,本发明的一实例提供一种锂二次电池用阳极活性物质,包含:锂金属氧化物活性物质;以及位于上述活性物质表面的涂层。上述涂层包含硫化合物。

更具体地,作为芯的上述锂氧化物活性物质可以由下述化学式1表示:

化学式1:lianibcocmndmeo2,

在上述化学式1中,m为al、zr、b或它们的组合的金属,0.98<a<1.2,0.6≤b≤0.9,0.05≤c≤0.2,0.01≤d≤0.2,0.01≤e<0.05,以及b+c+d+e=1。更具体地,在上述化学式1中,0.7≤b≤0.9,0.05≤c≤0.15,0.01≤d≤0.15,0.01≤e<0.05,以及b+c+d+e=1。上述范围仅为本申请的一实施例,而不是要以此来限制本发明。

本发明一实例的阳极活性物质由芯及涂层构成,上述芯为锂金属氧化物,上述涂层包含硫,上述涂层内的硫化物包含锂硫氧化物和/或硫化合物(保持原来的芯)。

本发明的阳极活性物质可以包含涂层,上述涂层包含锂硫氧化物及硫化合物。

在本发明的阳极活性物质中,上述锂硫化合物可以为li2s、li2so4、li2snox(1≤n≤8)。在本发明的阳极活性物质中,它们的含量可以根据处理的硫化合物的种类和处理量不同而不同,具体地,可以为li2so4硫化合物为70~99重量百分比,li2s化合物为5~10重量百分比,剩余形态的硫化合物li2s、li2s4、li2s6、li2s8和li2son(除li2so4以外,1≤n≤8)为0~5重量百分比的重量比。目前尚无因上述多种硫化合物的重量比变化而带来电池特性变化的报告。

在本发明的阳极活性物质中,优选地,硫化合物的添加量具体重量比为0.5~5.0重量百分比。若硫化合物的添加量小于0.5重量百分比,则残留li的减少效果及涂层效果甚微,若硫化合物的添加量大于5.0重量百分比,则因硫数值过高而超过特定数值(大于1000ppm)引起与电解液的副反应,从而可能降低电池的寿命性能。因此,以上述范围内的添加量进行涂层是有利的。

具体的硫化合物的减少残留锂杂质的反应式如下:

反应式:

nna2sxoy+nlioh+nli2co3+nh2o→nli2sox+nna2co3+nco2+no2+nh2o(n=整数)

作为硫化合物的mzsxoy(x=1~8,y=1~8,m为na或k,z为0至3)在水洗中,通过置换反应与残留锂杂质(li2co3和lioh)反应,在活性物质表面形成li-s化合物涂层,能够在减少电阻及减少漏电流方面起到正面的作用。

本发明的阳极活性物质相比于不含有包含锂硫氧化物及硫化合物的涂层的活性物质,可以减少电池的初期电阻。

在本发明的一实例中,提供一种锂二次电池用阳极活性物质,该阳极活性物质在水洗时加入包含硫的化合物来有效地去除锂金属氧化物表面存在的残留锂杂质(li2co3和lioh),同时在表面生成li-s化合物涂层。

在湿式处理前,锂金属氧化物的残留锂(lioh+li2co3)可以为6000ppm以上。残留锂小于6000ppm并不意味着没有减少残留锂杂质的效果或形成涂层的效果。若残留锂的数值小于6000ppm,则会使去除残留锂的效果过高,会通过活性物质内部的锂脱离而引起容量或循环使用方面的性能降低。因此,若要不降低电池性能而获得有效的水洗效果,则优选地,活性物质的残留锂(lioh+li2co3)为6000ppm以上。

本发明一实例的阳极活性物质为由直径为0.1μm至2μm的一次粒子组成的圆形形态的二次粒子。并且,若上述的一次粒子聚团形成二次粒子,则包含上述二次粒子的直径为1μm至20μm以下的锂二次电池用阳极活性物质。

在本发明的另一实例中,提供一种锂二次电池用阳极活性物质的制备方法,包括:对前体原料物质及锂原料物质进行焙烧来获取锂金属氧化物的步骤;将硫原料物质溶于水来制备水洗溶液的步骤;在上述水洗溶液中浸渍上述锂金属氧化物阳极活性物质并进行水洗的步骤;以及对水洗的上述锂金属氧化物进行第二热处理的步骤。

在本发明的锂二次电池用阳极活性物质的制备方法中,可通过如下步骤去除残留锂杂质的同时在表面形成均匀的硫化合物涂层,即,将上述硫原料物质溶于水来制备水洗溶液的步骤;以及在水洗溶液中浸渍上述锂金属氧化物质并进行水洗的步骤。

在本发明的锂二次电池用阳极活性物质的制备方法中,上述第二热处理的步骤可以在大于130℃及小于550℃的温度下进行热处理。当热处理温度超过130℃时,硫化合物可以保持去除水分形态的结晶状态。但是,若热处理温度大于550℃,则会引起硫化合物结构的变形,使结构的密度降低而导电度下降,从而可能降低涂层的效果。

因此,在本发明的锂二次电池阳极活性物质的制备方法中,利用硫化合物的阳极材料的稳定的热处理温度范围为大于130℃及小于550℃。

包含本发明一实施例的阳极活性物质的锂二次电池在通过水洗减少残留锂杂质的同时在表面涂层硫化合物,可以改善初期电阻及在过度充电测试时漏电流等的问题。

附图说明

图1为利用通过本发明一实施例制备的硫化合物的水洗品和通过比较例制备的纽扣电池的容量数据。

图2为利用通过本发明一实施例制备的硫化合物的水洗品和通过比较例制备的纽扣电池的电阻数据。

图3为利用通过本发明一实施例制备的硫化合物的水洗品和通过比较例制备的纽扣电池的过度充电漏电流检测数据。

图4为利用通过本发明一实施例制备的硫化合物的水洗品和通过比较例制备的纽扣电池的寿命特性和电阻增加率数据。

具体实施方式

以下,详细说明本发明的实例。但这仅作为例示提出,而不是要以此来限制本发明,本发明仅通过前述的发明要求保护范围的范畴来定义

实施例:阳极活性物质的制备

通过下述方法制备阳极活性物质。将金属氧化物干燥的前体与lioh混合后,将混合物填充至耐火匣钵(saggar),在氧(o2)的氛围,以焙烧温度700℃至900℃的烧结条件在烧结炉中进行焙烧来制备活性物质。

然后,为了去除残留锂杂质,添加硫化合物进行湿式处理,在去除残留锂杂质的同时,可以获得形成有以li2s和li2so4为主要化合物的涂层的最终阳极活性物质。

实验例:残留锂的检测

将5g实施例中制备的阳极活性物质放入100ml的去离子水(diw)中搅拌10分钟后,过滤(filtering)后取50ml的溶液,放入0.1m的hcl来检测根据ph变化的hcl消耗量。

通过hcl的消耗量来决定q1、q2,根据如下计算式计算作为残留锂的未反应lioh及li2co3,其结果如表1(通过普通水洗及s水洗的残留锂的结果)所示。

m1=23.94(lioh的相对分子质量(molecularweight))

m2=73.89(li2co3的相对分子质量(molecularweight))

样品量(splsize)=(样品重量(sampleweight)×溶液重量(solutionweight))/水的重量(waterweight)

lioh(重量百分比)=[(2×q1-q2)×0.1×23.94×1000/((5×50)/100)]

li2co3(重量百分比)=[(q2-q1)×0.1×73.89×1000/((5×50)/100)]

表1

实施例:纽扣电池的制备

以96.5重量百分比、1.5重量百分比、2.0重量百分比的比例混合所制备的阳极活性物质、导电剂、粘合剂(聚偏氟乙烯(pvdf)),使用搅拌机混合后,将浆料(slurry)涂敷在铝箔(alfoil),在120℃的温度下干燥来制备阳极板,将锂金属箔(limetalfoil)用作阴极板,将聚丙烯用作隔膜,使用普通的电解液(lipf6saltinec/emc/dmc)来制备纽扣电池(coincell)。

实验例:电化学特性检测-电容量评价

图1为通过利用硫化合物的水洗品和现有水洗品来评价的纽扣电池的容量结果。

从图1中可知,硫化合物处理品和现有水洗品之间的容量结果值为误差范围内的水平。

实验例:电化学特性检测-初期电阻检测

图2为通过利用硫化合物的水洗品和现有水洗品来评价的纽扣电池的0.2c初期电阻的结果。

从图2中可知,使用硫化合物处理时,0.2c初期电阻结果值可以由平均18.5ω改善至平均17.5ω。

实验例.电化学特性检测-漏电流检测

图3为通过利用硫化合物的水洗品和现有水洗品来评价的纽扣电池的4.7v过度充电120hr漏电流结果。

从图3中可知,使用硫化合物处理时,120小时过度充电状态的漏电流结果可以由平均0.35ma大幅改善至0.17ma。

实验例:电化学特性检测-寿命特性及电阻增加率检测

图4为为通过利用硫化合物的水洗品和现有水洗品来评价的纽扣电池的30cyc高温寿命结果和电阻增加率检测结果。

在图4中可知,使用硫化合物处理时,高温寿命由96.4%上升至95.6%,电阻增加率由95%减少至48.0%,可知电池性能改善了。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1