一种电磁性能不合格的石榴石微波多晶铁氧体材料的处理方法与流程

文档序号:27379283发布日期:2021-11-15 19:24阅读:192来源:国知局
一种电磁性能不合格的石榴石微波多晶铁氧体材料的处理方法与流程

1.本发明涉及磁性材料技术领域,尤其涉及一种电磁性能不合格的石榴石微波多晶铁氧体材料的处理方法。


背景技术:

2.微波铁氧体材料是铁氧体器件的关键核心功能材料,决定着器件的功率容量、温度性能与插入损耗等。石榴石微波多晶铁氧体材料(r3fe5o
12
)具有很窄的铁磁共振线宽

h、低的介电损耗tanδ
ε
以及小的磁晶各向异性,目前在微波铁氧体器件应用中占有统治地位。
3.微波铁氧体材料的电磁性能主要包括本征特性及非本征特性,饱和磁化强度4πms、居里温度tc等是材料的本征参数,只取决于材料各次晶格上磁性阳离子的数量及分布情况,而介电损耗tanδ
ε
、铁磁共振δh等不仅与其化学成分和晶体结构有关,而且与密度、晶粒尺寸、气孔率以及它们在晶粒内部和晶粒之间的分布关系密切,是材料微结构的结构敏感量;并且,其值大小决定了器件的损耗高低。因此,在实际应用中,对于配方确定的材料,主要通过饱和磁化强度4πms、介电损耗tanδ
ε
、铁磁共振δh来判断材料性能是否合格。
4.目前,石榴石微波多晶铁氧体材料的制备方法一般包括一次球磨

预烧

二次球磨

造粒

成型

烧结

测试等步骤,其中,对于二次球磨后的粉料,由于粉料无法直接进行性能判定,因此,针对二次球磨后的粉料,需要选取部分粉料样品经过成型、烧结以后进行性能测试,性能不合格则判定该批粉料不合格,也就是说,如果测试不合格,则判定为废料。
5.目前,对于上述的电磁性能不合格的废料,由于会导致器件性能超限,所以目前的处理方法只能进行报废处理。报废之后的粉料无法进行回收,由于含有各种金属氧化物更无法排放与填埋,只能存放于生产厂商的库房,增加制造商的成本与压力。
6.即,微波多晶铁氧体材料作为一种电子功能材料,目前没有维修性可言,性能不合格的材料无法使用,只有进行报废处理。微波铁氧体材料是由各种氧化物组成,报废之后的粉料无法进行回收,造成了成本压力和环保压力。


技术实现要素:

7.本发明的目的就在于提供一种电磁性能不合格的石榴石微波多晶铁氧体材料的处理方法,以解决上述问题。为了实现上述目的,本发明采用的技术方案是这样的:一种电磁性能不合格的石榴石微波多晶铁氧体材料的处理方法,经过配方计算后,在电磁性能不合格的粉料中加入质量比例为不低于20wt%的氧化物原材料,然后依次通过一次球磨、预烧、二次球磨、造粒、成型、烧结,得到电磁性能合格的材料。
8.所述的“配方计算”过程为:先按配方分子式计算每种元素所需质量,再按不合格

废料”分子式及质量比计算出废料中所代入的元素含量,两者之差则为新加入原材料中各元素的质量。比如,y
2.8
ca
0.2
sn
0.2
fe
4.8

δ
o
12
分子式中,先计出所需y、ca、sn、fe的质量,然后再算70wt%废料所代入的y、fe质量,剩下的就是需要新增加的原材料。
9.发明人通过大量试验证明:通过添加新的原材料重头开始制备就可以完成不合格粉料的性能改造,得到合格的材料;只是如果添加的氧化物原料如果不改变分子式的话(也就是与不合格粉料配方相同的情况下),需要添加更高比例的新的原材料,从而一定程度上稀释废料。
10.关于新添加的氧化物的比例,新添加的氧化物比例越高,肯定是可以更好地改善,发明人经过大量试验证明,添加比例达到20%,即可以基本解决“废料维修”的问题。
11.作为优选的技术方案:所述氧化物原材料的纯度为分析纯及以上。
12.作为优选的技术方案:所述氧化物原材料的元素组成与所述电磁性能不合格粉料的元素组成相同,或所述氧化物原材料中额外添加所述电磁性能不合格粉料中不含有的元素。
13.也就是说,添加的氧化物原材料的配方分子式必须涵盖“电磁性能不合格粉料”分子式中的所有元素,即新分子式中的元素种类要大于或等于“电磁性能不合格粉料”分子式中的所有元素种类。
14.与现有技术相比,本发明的优点在于:本发明解决了石榴石铁氧体材料的不可“维修”难题,在“废料”(性能不合格的半成品粉料)中加入适量与“废料”相同或不同的原材料氧化物,然后通过氧化物湿法工艺重新进行制备,将电磁性能不合格的材料制备成性能达标并可继续使用的材料,节约制造成本,包括节约了材料成本、人工、设备使用成本,以及原有报废处理方式的肥料仓储成本,还可以很好地保护环境。
具体实施方式
15.下面将结合实施例1本发明作进一步说明。
16.实施例1化学式为y3fe5‑
δ
o
12
(δ为缺铁量,0.02≤δ≤0.2)的石榴石微波多晶铁氧体材料电磁性能测试结果如表1所示,判定为电磁性能不合格材料,将该半成品粉料做为不合格半成品处理。
17.表1 y3fe5‑
δ
o
12
材料电磁性能上述不合格半成品按照以下方法,对其进行“维修”处理:根据与“废料”相同的化学式y3fe5‑
δ
o
12
(δ为缺铁量,0.02≤δ≤0.2)进行计算,称取
50wt%的“废料”,分析纯的y2o3原材料22.95wt%,分析纯的fe2o3原材料27.05wt%,然后将“废料”与其它原材料一次湿法球磨4小时混合均匀后烘干;于1250℃预烧,保温5小时;再经二次湿法球磨6小时后烘干,加入9wt%的聚乙烯醇造粒,成型后于1430℃烧结,保温6小时;最后进行性能参数测试。测试后的性能如表2所示,通过“维修”处理后的材料电磁性能达到相应要求,为合格粉料。
18.表2 经“维修”处理后材料的电磁性能实施例2化学式为y3fe5‑
δ
o
12
(δ为缺铁量,0.02≤δ≤0.2)的石榴石微波多晶铁氧体材料电磁性能测试结果如表1所示,判定为电磁性能不合格材料,将其半成品粉料做为不合格半成品处理。
19.按照以下方法,对其进行“维修”处理:根据与“废料”不同的化学式y
2.8
ca
0.2
sn
0.2
fe
4.8

δ
o
12
(δ为缺铁量,0.02≤δ≤0.2)进行计算,称取80wt%的“废料”,分析纯的y2o3原材料5.24wt%,分析纯的fe2o3原材料7.95wt%,分析纯的caco3原材料2.73wt%,分析纯的sno2原材料4.08wt%,然后将“废料”与称取的原材料一次湿法球磨4小时混合均匀后烘干;于1220℃预烧,保温5小时;再经二次湿法球磨6小时后烘干,加入9wt%的聚乙烯醇造粒,成型后于1420℃烧结,保温6小时;最后进行性能参数测试。测试后的性能如表3所示,通过“维修”处理后的材料电磁性能达到相应要求,为合格粉料。
20.表3 经“维修”处理后材料的电磁性能实施例3化学式为y3fe5‑
δ
o
12
(δ为缺铁量,0.02≤δ≤0.2)的石榴石微波多晶铁氧体材料电磁性能测试结果如表1所示,判定为电磁性能不合格材料,将该半成品粉料做为不合格半成品处理。
21.按照以下方法,对其进行“维修”处理:根据与“废料”不同的化学式y
2.8
ca
0.2
sn
0.2
fe
4.8

δ
o
12
(δ为缺铁量,0.02≤δ≤0.2)进行计算,称取85wt%的“废料”,分析纯的y2o3原材料2.92 wt%,分析纯的fe2o3原材料5.24wt%,分析纯的caco3原材料2.74wt%,分析纯的sno2原材料4.1wt%,然后将“废料”与称取的原材料一次湿法球磨4小时混合均匀后烘干;于1220℃预烧,保温5小时;再经二次湿法球磨6小时后烘干,加入9wt%的聚乙烯醇造粒,成型后于1420℃烧结,保温6小时;最后进行性能参数测试。
22.测试后的性能如表4所示,由于加入的新原材料较少,通过“维修”处理后的材料虽然电磁性能有所改进,但电磁性能仍未达到相应要求,为不合格粉料。
23.表4 经“维修”处理后材料的电磁性能实施例4化学式为y
2.5
gd
0.5
al
0.12
fe
4.88

δ
o
12
(δ为缺铁量,0.02≤δ≤0.2)的石榴石微波多晶铁氧体材料电磁性能测试结果如表5所示,判定为电磁性能不合格材料,将该半成品粉料做为不合格半成品处理。
24.表5 y
2.5
gd
0.5
al
0.12
fe
4.88

δ
o
12
材料电磁性能上述不合格半成品按照以下方法,对其进行“维修”处理:根据与“废料”不同的化学式y
2.5
gd
0.5
in
0.15
al
0.18
fe
4.67

δ
o
12
(δ为缺铁量,0.02≤δ≤0.2)进行计算,称取60wt%的“废料”,分析纯的y2o3原材料14.37wt%,分析纯的fe2o3原材料17.23wt%,分析纯的gd2o3原材料4.62 wt%,分析纯的in2o3原材料2.69 wt%,分析纯的al(oh)3原材料1.09 wt%,然后将“废料”与其它原材料一次湿法球磨4小时混合均匀后烘干;于1250℃预烧,保温5小时;再经二次湿法球磨6小时后烘干,加入9wt%的聚乙烯醇造粒,成型后于1440℃烧结,保温6小时;最后进行性能参数测试。测试后的性能如表6所示,通过“维修”处理后的材料电磁性能达到相应要求,为合格粉料。
25.表6 经“维修”处理后材料的电磁性能以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1