一种陶瓷纤维表面SiBN/SiBCN复合界面层的制备方法与流程

文档序号:31334259发布日期:2022-08-31 08:11阅读:86来源:国知局
一种陶瓷纤维表面sibn/sibcn复合界面层的制备方法
技术领域
1.本发明属于陶瓷基复合材料界面层的制备技术,涉及一种陶瓷纤维表面sibn/sibcn复合界面层的制备方法。


背景技术:

2.陶瓷纤维是一种具有高强度、高模量、耐高温、抗氧化、耐化学腐蚀等多种优异性能的纤维,可用作金属基以及陶瓷基复合材料的增强体,其强度和韧性对于陶瓷基复合材料的性能具有非常关键的作用。材料制备过程中,陶瓷纤维维持较高的损伤容限和强度是阻止裂纹扩展,实现强韧化的重要保证。
3.在陶瓷基复合材料中,陶瓷纤维和陶瓷基体的占比可达90%以上,界面层只占不到10%。但是,界面层对陶瓷基复合材料的性能起着决定性作用。沉积界面层前后纤维的复合材料能够明显增加。如沉积碳界面层后,相比于未沉积界面层的纤维,化学气相浸渍工艺制备的sicf/sic复合材料弯曲强度由100mpa增加到500mpa,性能改善非常明显。界面层不仅可以增强复合材料的韧性,同时还可以保护纤维,弥合纤维表面的裂纹,提高工艺过程中纤维的强度保留率。
4.目前,陶瓷基复合材料常用的界面层体系主要有两种:热解碳(pyc)和氮化硼(bn)。这两种界面层均具有六方层状晶体结构,在复合材料断裂过程中能够偏转裂纹,使裂纹不直接贯穿纤维,从而提高复合材料的韧性和强度。但是热解碳(pyc)和氮化硼(bn)分别在400℃和900℃左右发生氧化,pyc氧化生成co挥发,bn界面在水蒸气下氧化生成hbo3、h3bo3等气态物质挥发,造成界面层的失效,导致纤维与基体由弱结合转为强结合,材料发生脆性断裂。通过在bn中引入si元素形成sibn界面层,可以提高其抗氧化性,氧化生成硼硅酸盐具有流动性,可以愈合产生的裂纹,阻止氧元素向内扩散,侵蚀纤维,从而提高其抗氧化性。而sibn/sibcn复合界面层可使其抗氧化性进一步提升。sibcn具有无定型结构,加热至2000℃时才会发生晶型转变,具有良好的耐高温和抗氧化性。研究表明,sibcn相比si3n4、sic具有更加优异的抗氧化性。
5.化学气相沉积工艺制备的界面层结构致密、厚度均匀可控,从次方面而言,是陶瓷纤维表面沉积界面层的最佳工艺。但是,化学气相沉积工艺制备复合界面层制备工艺流程长且复杂,需要多次调节沉积温度,高温且酸碱性环境处理时间长会造成纤维的损伤,均不利于制备高性能的陶瓷基复合材料。
6.sibn和sibcn界面层由于元素种类更复杂,通常采用三类甚至四类以上的气源。如:sicl
4-nh
3-bcl3和sicl
4-nh
3-bcl
3-ch4,反应非常复杂,且反应过程中产生hcl腐蚀性的副产物,对纤维造成损伤同时腐蚀设备,并不适用于批量化制备sibn和sibcn。
7.因此,本发明提出一种陶瓷纤维表面sibn/sibcn复合界面层的制备方法,即采用聚硼硅氮烷作为前驱体,采用化学气相沉积工艺通过控制气氛在陶瓷纤维表面制备sibn和sibcn复合界面层。该方法可以避免腐蚀性气体hcl的产生,从而减少纤维的结构缺陷和强度损伤,同时采用单一前驱体即可满足三种或四种组元界面层的制备,更容易在纤维内渗
透,增强界面层的沉积均匀性。


技术实现要素:

8.本发明提出了一种陶瓷纤维表面sibn/sibcn复合界面层的制备方法。采用聚硼硅氮烷作为前驱体,采用载气载入前驱体,然后控制反应气比例和工艺气氛,在高温低压环境,渗透进入不同结构形式得陶瓷纤维内部,并最终在纤维表面制得sibn和sibcn复合界面层。该方法可以避免高温沉积过程中纤维的结构缺陷和强度损伤,采用单一前驱体即可满足三种或四种组元界面层的制备,增加界面层的均匀性。
9.本发明的目的是通过以下技术途径来实现的:
10.一种陶瓷纤维表面sibn/sibcn复合界面层的制备方法,该方法的具体操作步骤如下:
11.步骤一:将陶瓷纤维放置于气相沉积炉中,根据不同的纤维形式,选择相应的沉积工装;
12.步骤二:设置液态聚硼硅氮烷储罐的加热温度,控制在70℃~100℃;
13.步骤三:将气相沉积炉抽真空至25pa以下,炉温升至700℃~1100℃,并保温20min~60min以使炉体达到均温状态;
14.步骤四:设置炉体压力200pa~2000pa,通入n2和h2,随后打开聚硼硅氮烷储罐的出气阀,采用加压的方式使其流入混合室,与h2混合通入沉积室,与另一气路通入的nh3发生反应,高温沉积0.5~2h后在陶瓷纤维表面形成sibn界面层;
15.步骤五:沉积结束后,依次停止通入液态聚硼硅氮烷、nh3和h2,停止工艺过程,n2继续通入30min~60min排出炉体内残留气体;
16.步骤六:设置炉体温度800℃~1200℃和压力500pa~2000pa,通入n2,随后打开液态聚硼硅氮烷储罐的出气阀,采用加压的方式使其流入混合室,与n2混合通入沉积室,沉积1~3h后在陶瓷纤维表面形成sibcn界面层;
17.步骤七:沉积结束后,依次停止通入液态聚硼硅氮烷和h2,停止工艺过程,n2继续通入30~60min排出炉体内反应气体,待炉体达微正压后停止通n2,随炉冷却至室温。
18.所述陶瓷纤维放置于气相沉积炉前采用水浴去除上浆剂。
19.所述水浴去除上浆剂是将陶瓷纤维置于高温水浴中脱浆处理,温度60℃~90℃,时间为2h~6h;
20.所述陶瓷纤维的种类为碳化硅纤维、氮化硅纤维、氮化硼纤维和氧化铝纤维。
21.所述纤维形式可以分为连续纤维束、纤维平纹布、纤维缎纹布、2.5d纤维织物和3d纤维织物。
22.所述的sibn界面层及sibcn界面层均由单一前驱体液态聚硼硅氮烷制备。
23.所述的步骤四中聚硼硅氮烷与h2的质量比为1:1~2,载气流量为1l/min~4l/min;聚硼硅氮烷与nh3的质量比为1:3~6,nh3流量为1l/min~3l/min。
24.所述的步骤六中聚硼硅氮烷与n2的质量比为1:3~5,n2流量为2l/min~6l/min。
25.本发明技术方案的优点和特点如下:
26.1.本发明采用加热水浴除纤维表面上浆剂,相比于空气中氧化去除,能采用较低的反应温度,从而降低纤维表面氧化反应程度,减少纤维中氧的引入。
27.2.本发明沉积sibn作为内层界面层,能够提高界面层的抗氧化性,同时仍然能保持较好的结晶性,进而提高复合材料的使用温度。
28.3.本发明的制备工艺可以针对不同的纤维种类和纤维形式,sibn/sibcn可以沉积到陶瓷纤维的表面,由数百甚至上千根纤维单丝组成的纤维束内均沉积有界面层,结构均匀、致密,具有良好的渗透性。
29.4.本发明中首次提出使用液态聚硼硅氮烷(psbn)作为前驱体,分别制备sibn和sibcn界面层,采用化学气相沉积工艺制备,反应气体仅有nh3,相对于目前常用的以bcl3-nh3-sicl4-ch4为前驱体反应沉积的工艺过程有较大简化,仅需通过控制稀释气体比例以及反应气体的流量即可实现不同元素比例复合界面层的制备。
30.5.本发明制备的sibn和sibcn界面层是一种多元混合的复杂结构,三种或四种元素交织形成的陶瓷界面层;界面层具有优异的高温稳定性,使碳化硅纤维的抗氧化能力大幅度提高。
具体实施方式
31.以下将结合具体实例对一种多层粉体复合材料的制备方法作进一步地详述:
32.一种陶瓷纤维表面sibn/sibcn复合界面层的制备方法,该方法的具体操作步骤如下:
33.步骤一:采用水浴去除上浆剂,将陶瓷纤维置于高温水浴中脱浆处理,温度60℃~90℃,时间为2h~6h;所述陶瓷纤维的种类为碳化硅纤维、氮化硅纤维、氮化硼纤维和氧化铝纤维。
34.步骤二:将陶瓷纤维放置于气相沉积炉中,根据不同的纤维形式,选择相应的沉积工装;所述纤维形式可以分为连续纤维束、纤维平纹布、纤维缎纹布、2.5d纤维织物和3d纤维织物。
35.步骤三:设置液态聚硼硅氮烷储罐的加热温度,控制在70℃~100℃;
36.步骤四:将气相沉积炉抽真空至25pa以下,炉温升至700℃~1100℃,并保温20min~60min以使炉体达到均温状态;
37.步骤五:设置炉体压力200pa~2000pa,通入n2和h2,随后打开聚硼硅氮烷储罐的出气阀,采用加压的方式使其流入混合室,与h2混合通入沉积室,与另一气路通入的nh3发生反应,高温沉积0.5~2h后在陶瓷纤维表面形成sibn界面层;聚硼硅氮烷与h2的质量比为1:1~2,载气流量为1l/min~4l/min;聚硼硅氮烷与nh3的质量比为1:3~6,nh3流量为1l/min~3l/min。
38.步骤六:沉积结束后,依次停止通入液态聚硼硅氮烷、nh3和h2,停止工艺过程,n2继续通入30min~60min排出炉体内残留气体;
39.步骤七:设置炉体温度800℃~1200℃和压力500pa~2000pa,通入n2,随后打开液态聚硼硅氮烷储罐的出气阀,采用加压的方式使其流入混合室,与n2混合通入沉积室,沉积1~3h后在陶瓷纤维表面形成sibcn界面层;聚硼硅氮烷与n2的质量比为1:3~5,n2流量为2l/min~6l/min。
40.步骤八:沉积结束后,依次停止通入液态聚硼硅氮烷和h2,停止工艺过程,n2继续通入30~60min排出炉体内反应气体,待炉体达微正压后停止通n2,随炉冷却至室温。
41.所述的sibn界面层及sibcn界面层均由单一前驱体液态聚硼硅氮烷制备。
42.实施例1
43.步骤一:将sic纤维置于高温水浴中脱浆处理,温度80℃,时间为3h;
44.步骤二:将水浴脱浆后的陶瓷纤维放置于气相沉积炉中,采用石墨工装夹持纤维布;
45.步骤三:设置液态聚硼硅氮烷储罐的加热温度,控制在80℃;
46.步骤四:将气相沉积炉抽真空至25pa以下,炉温升至800℃,并保温20min使炉体达到均温状态;
47.步骤五:设置气相沉积炉体压力500pa,通入n2和h2,随后打开聚硼硅氮烷储罐的出气阀,采用加压的方式使其流入气相沉积炉混合室,与h2混合通入气相沉积炉沉积室,与另一气路通入的nh3发生反应,高温沉积1h后在陶瓷纤维表面形成sibn界面层,其中聚硼硅氮烷与h2的质量比为1:1,h2流量为2l/min;聚硼硅氮烷与nh3的质量比为1:3,nh3流量为1l/min;
48.步骤六:沉积结束后,依次停止通入液态聚硼硅氮烷、nh3和h2,停止工艺过程,n2继续通入30min排出炉体内残留气体;
49.步骤七:设置气相沉积炉体温度1000℃和压力1000pa,通入n2和h2,随后打开液态聚硼硅氮烷储罐的出气阀,采用加压的方式使其流入气相沉积炉混合室,与h2混合通入气相沉积炉沉积室,沉积1h后在陶瓷纤维表面形成sibcn界面层,其中聚硼硅氮烷与n2的质量比为1:3,n2流量为2l/min;
50.步骤八:沉积结束后,依次停止通入液态聚硼硅氮烷和h2,终止运行温度程序,n2继续通入30min排出炉体内反应气体,待炉体达微正压后停止通n2,随炉冷却至室温。
51.实施例2
52.步骤一:将si3n4纤维置于高温水浴中脱浆处理,温度80℃,时间为3h;
53.步骤二:将水浴脱浆后的si3n4纤维束放置于气相沉积炉中,连续纤维束采用石墨框缠框的方式;
54.步骤三:设置液态聚硼硅氮烷储罐的加热温度,控制在90℃;
55.步骤四:将气相沉积炉抽真空至25pa以下,炉温升至900℃,并保温30min使炉体达到均温状态;
56.步骤五:设置炉体压力200pa,通入n2和h2,随后打开聚硼硅氮烷储罐的出气阀,采用加压的方式使其流入混合室,与h2混合通入沉积室,与另一气路通入的nh3发生反应,高温沉积0.5h后在陶瓷纤维表面形成sibn界面层,其中聚硼硅氮烷与h2的质量比为1:2,h2流量为2l/min;聚硼硅氮烷与nh3的质量比为1:3,nh3流量为3l/min;
57.步骤六:沉积结束后,依次停止通入液态聚硼硅氮烷、nh3和h2,停止工艺过程,n2继续通入30min排出炉体内残留气体;
58.步骤七:设置炉体温度900℃和压力1000pa,通入n2和h2,随后打开液态聚硼硅氮烷储罐的出气阀,采用加压的方式使其流入混合室,与h2混合通入沉积室,沉积1h后在陶瓷纤维表面形成sibcn界面层,其中聚硼硅氮烷与n2的质量比为1:3,n2流量为6l/min;
59.步骤八:沉积结束后,停止通入液态聚硼硅氮烷和h2,终止运行温度程序,n2继续通入30min排出炉体内反应气体,待炉体达微正压后停止通n2,随炉冷却至室温。
60.实施例3
61.步骤一:将al2o3纤维置于高温水浴中脱浆处理,温度80℃,时间为5h;
62.步骤二:将水浴脱浆后的陶瓷纤维放置于气相沉积炉中,采用石墨工装夹持纤维布;
63.步骤三:设置液态聚硼硅氮烷储罐的加热温度,控制在100℃;
64.步骤四:将气相沉积炉抽真空至25pa以下,炉温升至1000℃,并保温20min使炉体达到均温状态;
65.步骤五:设置炉体压力1000pa,通入n2和h2,随后打开聚硼硅氮烷储罐的出气阀,采用加压的方式使其流入混合室,与h2混合通入沉积室,与另一气路通入的nh3发生反应,高温沉积1h后在陶瓷纤维表面形成sibn界面层,其中聚硼硅氮烷与h2的质量比为1:2,h2流量为4l/min;聚硼硅氮烷与nh3的质量比为1:6,nh3流量为3l/min;;
66.步骤六:沉积结束后,依次停止通入液态聚硼硅氮烷、nh3和h2,停止工艺过程,n2继续通入30min排出炉体内残留气体;
67.步骤七:设置炉体温度1100℃和压力500pa,通入n2和h2,随后打开液态聚硼硅氮烷储罐的出气阀,采用加压的方式使其流入混合室,与h2混合通入沉积室,沉积2h后在陶瓷纤维表面形成sibcn界面层,其中聚硼硅氮烷与n2的质量比为1:5,n2流量为5l/min;
68.步骤八:沉积结束后,停止通入液态聚硼硅氮烷和h2,终止运行温度程序,n2继续通入60min排出炉体内反应气体,待炉体达微正压后停止通n2,随炉冷却至室温。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1