本发明涉及一种有机电致发光化合物和一种包含所述化合物的有机电致发光装置。
背景技术:
电致发光(EL)装置是一种自发光装置,其优点在于其提供较宽的视角、较大的对比率和较快的响应时间。有机EL装置最初由Eastman Kodak通过使用芳族二胺分子和铝络合物作为形成发光层的材料所研发[《应用物理学报(Appl.Phys.Lett.)》51,913,1987]。
决定有机EL装置发光效率的最重要因素是发光材料。迄今为止,荧光材料已经广泛用作发光材料。然而,鉴于电致发光机制,由于磷光材料在理论上与荧光材料相比使发光效率增强四(4)倍,因此磷光发光材料已得到广泛研究。铱(III)络合物已广泛地被称为磷光材料,包括双(2-(2'-苯并噻吩基)-吡啶根-N,C-3')铱(乙酰基丙酮酸盐)((acac)Ir(btp)2)、三(2-苯基吡啶)铱(Ir(ppy)3)以及双(4,6-二氟苯基吡啶根-N,C2)吡啶甲酸铱(Firpic)分别作为发射红光、绿光以及蓝光的材料。
目前,4,4'-N,N'-二咔唑-联苯(CBP)是磷光材料中最广为人知的主体材料。最近,Pioneer(日本)等人研发出了一种高性能有机EL装置,其使用浴铜灵(bathocuproine,BCP)和双(2-甲基-8-喹啉)(4-苯基苯酚)铝(III)(BAlq)等作为主体材料,所述材料已知为空穴阻挡材料。
尽管这些材料提供良好发光特征,但其具有以下缺点:(1)由于其较低玻璃态化温度和不良热稳定性,因此其在高温真空沉积过程中可能发生降解。(2)有机EL装置的功率效率由[(π/电压)×电流效率]给定,并且所述功率效率与电压成反比。尽管包含磷光主体材料的有机EL装置提供的电流效率(cd/A)高于包含荧光材料的有机EL装置,但需要显著较高的驱动电压。因此,就功率效率(lm/W)来说,不存在优点。(3)此外,有机EL装置的操作寿命较短,并且仍需要改进发光效率。
韩国专利特许公开申请第10-2013-0059265号揭露一种用于有机电致发光装置的化合物,在其主链中,咔唑中的苯环与苯并噻吩或苯并呋喃稠合。然而,其未揭露一种化合物,在其主链中,咔唑中的苯环与二苯并噻吩、二苯并呋喃、茀或另一个咔唑中的苯环稠合。
技术实现要素:
技术问题
本发明的目标是提供一种有机电致发光化合物,其能够提供展示高发光效率的有机电致发光装置;以及包含所述化合物的有机电致发光装置。
问题的解决方案
本发明人发现,上述目标可以通过由下式1表示的有机电致发光化合物来实现。
其中Y1和Y2各自独立地表示NR11、CR12R13、O或S;其条件是Y1和Y2中的至少一个表示NR11;
R11表示*-L1-Ar;
*表示键结位点;
L1表示单键、被取代或未被取代的(C6-C30)亚芳基,或被取代或未被取代的5元到30元亚杂芳基;
Ar表示被取代或未被取代的(C6-C30)芳基,或被取代或未被取代的5元到30元杂芳基;
R12和R13各自独立地表示被取代或未被取代的(C1-C30)烷基、被取代或未被取代的(C6-C30)芳基,或被取代或未被取代的5元到30元杂芳基;或可以与相邻取代基连接而形成被取代或未被取代的(C3-C30)单环或多环、脂环族或芳香族环,其碳原子可以被至少一个选自氮、氧和硫的杂原子置换;
R1和R3各自独立地表示氢、氘、卤素、氰基、被取代或未被取代的(C1-C30)烷基、被取代或未被取代的(C6-C30)芳基、被取代或未被取代的5元到30元杂芳基、被取代或未被取代的(C3-C30)环烷基、被取代或未被取代的3元到7元杂环烷基、被取代或未被取代的(C1-C30)烷氧基、被取代或未被取代的三(C1-C30)烷基硅烷基、被取代或未被取代的三(C6-C30)芳基硅烷基、被取代或未被取代的二(C1-C30)烷基(C6-C30)芳基硅烷基、被取代或未被取代的(C1-C30)烷基二(C6-C30)芳基硅烷基、被取代或未被取代的单或二-(C1-C30)烷基氨基、被取代或未被取代的单或二(C6-C30)芳基氨基,或被取代或未被取代的(C1-C30)烷基(C6-C30)芳基氨基;或可以与相邻取代基连接而形成被取代或未被取代的(C3-C30)单环或多环、脂环族或芳香族环,其碳原子可以被至少一个选自氮、氧和硫的杂原子置换;
R2和R4各自独立地表示氢、氘、卤素、氰基、被取代或未被取代的(C1-C30)烷基、被取代或未被取代的(C6-C30)芳基、被取代或未被取代的5元到30元杂芳基、被取代或未被取代的(C3-C30)环烷基、被取代或未被取代的3元到7元杂环烷基、被取代或未被取代的(C1-C30)烷氧基、被取代或未被取代的三(C1-C30)烷基硅烷基、被取代或未被取代的三(C6-C30)芳基硅烷基、被取代或未被取代的二(C1-C30)烷基(C6-C30)芳基硅烷基、被取代或未被取代的(C1-C30)烷基二(C6-C30)芳基硅烷基、被取代或未被取代的单或二-(C1-C30)烷基氨基、被取代或未被取代的单或二-(C6-C30)芳基氨基,或被取代或未被取代的(C1-C30)烷基(C6-C30)芳基氨基;
a和c各自独立地表示1到4的整数;在a或c是2或更大的整数的情况下,R1或R3中的每一个可以相同或不同;
b和d各自独立地表示1到2的整数;在b或d是2或更大的整数的情况下,R2和R4中的每一个可以相同或不同;且
(亚)杂芳基和杂环烷基各自独立地含有至少一个选自B、N、O、S、Si和P的杂原子。
本发明的有利效果
本发明的有机电致发光化合物可以提供展示优良发光效率(尤其电流效率)的有机电致发光装置。
具体实施方式
在下文中,将详细地描述本发明。然而,以下描述旨在解释本发明,并且不打算以任何方式限制本发明的范围。
本发明提供了由上述式1表示的有机电致发光化合物、包含所述有机电致发光化合物的有机电致发光材料,以及包含所述化合物的有机电致发光装置。
式1的有机电致发光化合物的细节如下。
本文中,“烷基”包括甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基等。“烯基”包括乙烯基、1-丙烯基、2-丙烯基、1-丁烯基、2-丁烯基、3-丁烯基、2-甲基丁-2-烯基等。“炔基”包括乙炔基、1-丙炔基、2-丙炔基、1-丁炔基、2-丁炔基、3-丁炔基、1-甲基戊-2-炔基等。“环烷基”包括环丙基、环丁基、环戊基、环己基等。“(3元到7元)杂环烷基”指示具有3到7个环主链原子且包括至少一个杂原子的环烷基,所述杂原子选自B、N、O、S、Si以及P,优选O、S以及N,且包括四氢呋喃、吡咯啶、硫杂环戊烷、四氢吡喃等。此外,“(亚)芳基”指示衍生自芳香族烃的单环或稠环基团,且包括其中两个环经由一个原子连接的螺化合物。芳基包括苯基、联苯、联三苯、萘基、联萘、苯基萘基、萘基苯基、茀基、苯基茀基、苯并茀基、二苯并茀基、菲基、苯基菲基、蒽基、茚基、联亚三苯基、芘基、并四苯基、苝基、屈基(chrysenyl)、稠四苯基(naphthacenyl)、茀蒽基、螺联茀等。“5元到30元(亚)杂芳基”指示具有5到30个环主链原子且包括至少一个(优选1到4个)选自由B、N、O、S、Si和P组成的群组的杂原子的芳基;可以是单环或与至少一个苯环缩合的稠合环;可以是部分饱和的;可以是通过使至少一个杂芳基或芳基经由单键与杂芳基连接所形成的基团;并且包括单环型杂芳基,如呋喃基、噻吩基、吡咯基、咪唑基、吡唑基、噻唑基、噻二唑基、异噻唑基、异噁唑基、噁唑基、噁二唑基、三嗪基、四嗪基、三唑基、四唑基、呋呫基、吡啶基、吡嗪基、嘧啶基、哒嗪基等;以及稠合环型杂芳基,如苯并呋喃基、苯并噻吩基、异苯并呋喃基、二苯并呋喃基、二苯并噻吩基、苯并咪唑基、苯并噻唑基、苯并异噻唑基、苯并异噁唑基、苯并噁唑基、异吲哚基、吲哚基、吲唑基、苯并噻二唑基、喹啉基、异喹啉基、萘啶基、噌啉基、喹唑啉基、喹喏啉基、咔唑基、啡噁嗪基、啡啶基、苯并间二氧杂环戊烯基、二氢吖啶基等。此外,“卤素”包括F、Cl、Br以及I。
本文中,表述“被取代或未被取代”中的“被取代”意味着某一官能团中的氢原子被另一个原子或基团(即取代基)置换。在本发明中,L1、L1a、L1b、L4、M、Ar、Ara、Arb、R1至R4、R12、R13、R31到R37、R41到R43、R100到R109、R111到R127以及R201到R211中用于被取代的烷基、被取代的(亚)芳基、被取代的(亚)杂芳基、被取代的环烷基、被取代的杂环烷基、被取代的烷氧基、被取代的三烷基硅烷基、被取代的三芳基硅烷基、被取代的二烷基芳基硅烷基、被取代的烷基二芳基硅烷基、被取代的单或二-烷基氨基、被取代的单或二-芳基氨基、被取代的烷基芳基氨基以及被取代的单环或多环、脂环族或芳香族环的取代基各自独立地可以是选自由以下各者组成的群组的的至少一个:氘、卤素、氰基、羧基、硝基、羟基、(C1-C30)烷基、卤基(C1-C30)烷基、(C2-C30)烯基、(C2-C30)炔基、(C1-C30)烷氧基、(C1-C30)烷硫基、(C3-C30)环烷基、(C3-C30)环烯基、3元到7元杂环烷基、(C6-C30)芳氧基、(C6-C30)芳硫基、未被取代或被(C6-C30)芳基取代的3元到30元杂芳基、未被取代或被3元到30元杂芳基取代的(C6-C30)芳基、三(C1-C30)烷基硅烷基、三(C6-C30)芳基硅烷基、二(C1-C30)烷基(C6-C30)芳基硅烷基、(C1-C30)烷基二(C6-C30)芳基硅烷基、氨基、单或二-(C1-C30)烷基胺基、单或二-(C6-C30)芳基氨基、(C1-C30)烷基(C6-C30)芳基氨基、(C1-C30)烷基羰基、(C1-C30)烷氧基羰基、(C6-C30)芳基羰基、二(C6-C30)芳基硼羰基、二(C1-C30)烷基硼羰基、(C1-C30)烷基(C6-C30)芳基硼羰基、(C6-C30)芳基(C1-C30)烷基以及(C1-C30)烷基(C6-C30)芳基。
在式1中,优选地,Y1和Y2中的至少一个可以表示NR11,其中L1表示单键或被取代或未被取代的(C6-C21)亚芳基且Ar表示被取代或未被取代的5元到30元杂芳基。L1可以具体地是单键、被取代或未被取代的亚苯基、被取代或未被取代的亚联苯基,或被取代或未被取代的亚萘基。在Ar是被取代或未被取代的杂芳基的情况下,Ar可以具体地是被取代或未被取代的吡啶基、被取代或未被取代的嘧啶基、被取代或未被取代的三嗪基、被取代或未被取代的吡嗪基、被取代或未被取代的喹啉基、被取代或未被取代的异喹啉基、被取代或未被取代的喹唑啉基、被取代或未被取代的喹喏啉基、被取代或未被取代的萘啶基、被取代或未被取代的咔唑基、被取代或未被取代的二苯并噻吩基,或被取代或未被取代的二苯并呋喃基。
优选地,Y1和Y2之一可以NR11a NR11a且另一个可以表示NR11b、CR12R13、O或S;R11a可以表示*-L1a-Ara;R11b可以表示*-L1b-Arb;L1a和L1b可以各自独立地表示单键或被取代或未被取代的(C6-C21)亚芳基;Ara可以表示被取代或未被取代的5元到30元杂芳基;Arb可以表示被取代或未被取代的(C6-C30)芳基;且R12和R13可以如上述式1中所定义。具体地说,L1a和L1b可以各自独立地表示单键、被取代或未被取代的亚苯基、被取代或未被取代的亚联苯基,或被取代或未被取代的亚萘基。优选地,Ara可以表示被取代或未被取代的5元到21元含氮杂芳基。具体地说,Ara可以表示被取代或未被取代的吡啶基、被取代或未被取代的嘧啶基、被取代或未被取代的三嗪基、被取代或未被取代的吡嗪基、被取代或未被取代的喹啉基、被取代或未被取代的异喹啉基、被取代或未被取代的喹唑啉基、被取代或未被取代的喹喏啉基、被取代或未被取代的萘啶基、被取代或未被取代的咔唑基、被取代或未被取代的二苯并噻吩基,或被取代或未被取代的二苯并呋喃基。具体地说,Arb可以表示被取代或未被取代的苯基、被取代或未被取代的联苯,或被取代或未被取代的萘基。
更具体地说,Ar和Ara可以各自独立地选自下式2-1到2-7。
其中R21到R27各自独立地表示氢、氘、卤素、氰基、(C1-C30)烷基、(C3-C30)环烷基、未被取代或被卤素取代的(C6-C30)芳基、氰基、(C1-C30)烷基、5元到18元杂芳基、二(C1-C30)烷基(C6-C30)芳基硅烷基、(C1-C30)烷基二(C6-C30)芳基硅烷基或三(C6-C30)芳基硅烷基;未被取代或被卤素、氰基、(C1-C30)烷基、(C6-C18)芳基、二(C1-C30)烷基(C6-C30)芳基硅烷基、(C1-C30)烷基二(C6-C30)芳基硅烷基或三(C6-C30)芳基硅烷基、二(C1-C30)烷基(C6-C30)芳基硅烷基、(C1-C30)烷基二(C6-C30)芳基硅烷基或三(C6-C30)芳基硅烷基取代的5元到30元杂芳基;
f表示1到4的整数;g表示1到3的整数;h表示1到2的整数;i表示1到6的整数;j、k和m各自独立地表示1到5的整数;其中f、g、h、i、j、k或m是2或更大的整数,R21、R22、R23、R24、R25、R26或R27中的每一个可以相同或不同;且
杂芳基含有至少一个选自N、O和S的杂原子。
优选地,R12和R13可以各自独立地表示被取代或未被取代的(C1-C10)烷基、被取代或未被取代的(C6-C21)芳基,或被取代或未被取代的5元到21元杂芳基,或可以与相邻取代基连接而形成被取代或未被取代的(C3-C30)单环或多环芳族环。更优选地,R12和R13可以各自独立地表示被取代或未被取代的(C1-C10)烷基或被取代或未被取代的(C6-C18)芳基,或可以与CR12R13中的C形成被取代或未被取代的多环芳族环。具体地说,R12和R13可以各自独立地表示未被取代的(C1-C10)烷基或未被取代的苯基,或可以与CR12R13中的C形成茀。
根据本发明的一个实施例,Y1和Y2之一是NR11a且另一个是NR11b、CR12R13、O或S;R11a表示*-L1a-Ara;R11b表示*-L1b-Arb;L1a和L1b各自独立地表示单键或被取代或未被取代的(C6-C21)亚芳基;Ara表示被取代或未被取代的5元到30元杂芳基;Arb表示被取代或未被取代的(C6-C30)芳基;且R12和R13各自独立地表示被取代或未被取代的(C1-C10)烷基、被取代或未被取代的(C6-C21)芳基,或被取代或未被取代的5元到21元杂芳基,或可以与相邻取代基连接而形成被取代或未被取代的(C3-C30)单环或多环芳族环。
更具体来说,本发明的有机电致发光化合物包括(但不限于)以下:
本发明的有机电致发光化合物可以通过所属领域的技术人员已知的合成方法来制备。举例来说,它可根据以下反应方案1至4中的任一个制备。
[反应方案1]
[反应方案2]
[反应方案3]
[反应方案4]
其中R1到R4、R12、R13、L1、Ar、a、b、c和d如上述式1中所定义,且Hal表示卤素。
本发明提供了包含式1的有机电致发光化合物的有机电致发光材料,以及包含所述材料的有机电致发光装置。
材料可以由本发明的有机电致发光化合物组成。另外,所述材料可以进一步包含有机电致发光材料已经包含的常规化合物。
本发明的有机电致发光装置可以包含第一电极、第二电极以及至少一个安置于第一和第二电极之间的有机层。有机层可以包含至少一种式1有机电致发光化合物。
第一和第二电极之一可以是阳极,且另一个可以是阴极。所述有机层可包含发光层,并且可以进一步包含至少一个选自空穴注入层、空穴传输层、电子传输层、电子注入层、夹层、空穴阻挡层、电子缓冲层以及电子阻挡层的层。
本发明的有机电致发光化合物可以包含在发光层中。当用于发光层中时,可以包含本发明的有机电致发光化合物作为主体材料。优选地,发光层可以进一步包含至少一种或多种掺杂剂,并且必要时,除本发明的式1化合物以外,还包含第二主体材料。第二主体材料可以选自任何已知的磷光主体。本发明的式1有机电致发光化合物与第二主体材料之间的重量比在1:99到99:1的范围内。
考虑到发光效率,选自由式11到式15的化合物组成的群组的材料优选作为第二主体材料。
H-(Cz-L4)t-M(11)
H-(Cz)u-L4-M(12)
其中Cz表示以下结构:
A表示-O-或-S-;R31到R34各自独立地表示氢、氘、卤素、被取代或未被取代的(C1-C30)烷基、被取代或未被取代的(C6-C30)芳基、被取代或未被取代的5元到30元杂芳基或-SiR35R36R37;R35到R37各自独立地表示被取代或未被取代的(C1-C30)烷基或被取代或未被取代的(C6-C30)芳基;L4表示单键、被取代或未被取代的(C6-C30)亚芳基或被取代或未被取代的5元到30元亚杂芳基;M表示被取代或未被取代的(C6-C30)芳基或被取代或未被取代的5元到30元杂芳基;Y3和Y4各自独立地表示-O-、-S-、-N(R41)-或-C(R42)(R43)-,且Y3和Y4不同时存在;R41到R43各自独立地表示被取代或未被取代的(C1-C30)烷基、被取代或未被取代的(C6-C30)芳基或被取代或未被取代的5元到30元杂芳基;R42和R43可以相同或不同;t和u各自独立地表示1到3的整数;v、w、x和z各自独立地表示0到4的整数;且在t、u、v、w、x或y是2或更大的整数的情况下,(Cz-L4)、(Cz)、R31、R32、R33或R34中的每一个可以相同或不同。
具体地说,第二主体材料包括(但不限于)以下各物。
(其中TPS表示三苯基硅烷基。)
掺杂剂优选至少一种磷光掺杂剂。用于本发明有机电致发光装置的磷光掺杂剂材料不受限制,但可以优选地选自铱(Ir)、锇(Os)、铜(Cu)或铂(Pt)的金属化络合化合物,更优选地选自铱(Ir)、锇(Os)、铜(Cu)或铂(Pt)的邻位金属化络合化合物,并且甚至更优选地是邻位金属化铱络合化合物。
磷光掺杂剂可以优选地选自由下式101到103表示的化合物组成的群组。
其中L选自以下结构:
R100表示氢、被取代或未被取代的(C1-C30)烷基,或被取代或未被取代的(C3-C30)环烷基;R101到R109和R111到R123各自独立地表示氢、氘、卤素、未被取代或被卤素取代的(C1-C30)烷基、被取代或未被取代的(C3-C30)环烷基、被取代或未被取代的(C6-C30)芳基、氰基,或被取代或未被取代的(C1-C30)烷氧基;R106到R109可以与相邻取代基连接而形成被取代或未被取代的稠合环,例如未被取代或被烷基取代的茀、未被取代或被烷基取代的二苯并噻吩,或未被取代或被烷基取代的二苯并呋喃;R120到R123可以与相邻取代基连接而形成被取代或未被取代的稠合环,例如未被取代或被烷基或芳基取代的喹啉;R124到R127各自独立地表示氢、氘、卤素、被取代或未被取代的(C1-C30)烷基,或被取代或未被取代的(C6-C30)芳基;R124到R127可以与相邻取代基连接而形成被取代或未被取代的稠合环,例如未被取代或被烷基取代的茀、未被取代或被烷基取代的二苯并噻吩,或未被取代或被烷基取代的二苯并呋喃;R201到R211各自独立地表示氢、氘、卤素、未被取代或被卤素取代的(C1-C30)烷基、被取代或未被取代的(C3-C30)环烷基,或被取代或未被取代的(C6-C30)芳基;R208到R211可以与相邻取代基连接而形成被取代或未被取代的稠合环,例如未被取代或被烷基取代的茀、未被取代或被烷基取代的二苯并噻吩,或未被取代或被烷基取代的二苯并呋喃;r和s各自独立地表示1到3的整数;其中r或s是2或更大的整数,每一个R100可以相同或不同;且e表示1到3的整数。
具体地说,磷掺杂材料包括(但不限于)以下各物。
根据本发明的其它方面,提供用于制备有机电致发光装置的混合物或组合物。所述混合物或组合物包含本发明化合物。所述混合物或组合物可以用于制备有机电致发光装置的发光层。所述混合物或组合物可以用于制备磷光或荧光发射层。本发明化合物当包含在所述混合物或组合物中时,可以作为主体材料包含在内。当本发明化合物作为主体材料包含在内时,所述混合物或组合物可以进一步包含第二主体材料。本发明化合物与第二主体材料之间的重量比在1:99到99:1的范围内。
本发明的有机电致发光装置可以包含第一电极、第二电极,以及至少一个安置于第一和第二电极之间的有机层,其中有机层可以包含本发明有机电致发光装置的材料。
除式1的有机电致发光化合物之外,本发明的有机电致发光装置还可以进一步包含至少一种选自由芳基胺类化合物和苯乙烯基芳基胺类化合物组成的群组的化合物。
在本发明的有机电致发光装置中,除式1化合物之外,有机层还可以进一步包含至少一种选自由以下组成的群组的金属:周期表的第1族金属、第2族金属、第4周期过渡金属、第5周期过渡金属、镧系元素以及d-过渡元素的有机金属,或至少一种包含所述金属的络合物化合物。所述有机层可以进一步包含发光层和电荷产生层。
另外,本发明的有机电致发光装置可以通过进一步包含至少一个发光层而发射白光,除本发明化合物以外,所述发光层还包含所属领域中已知的蓝光电致发光化合物、红光电致发光化合物或绿光电致发光化合物。必要时,本发明的有机电致发光装置可以进一步包含黄色或橙色光发射层。
在本发明的有机电致发光装置中,优选地,可以将至少一个层(在下文中为“表面层”)放置于一个或两个电极的内表面上,所述层选自硫族化物层、金属卤化物层以及金属氧化物层。具体来说,优选地可以将硅或铝的硫族化物(包括氧化物)层放置于电致发光中间层的阳极表面上,且优选地将金属卤化物层或金属氧化物层放置于电致发光中间层的阴极表面上。这类表面层为有机电致发光装置提供操作稳定性。优选地,硫族化物包括SiOX(1≤X≤2)、AlOX(1≤X≤1.5)、SiON、SiAlON等;金属卤化物包括LiF、MgF2、CaF2、稀土金属氟化物等;且金属氧化物包括Cs2O、Li2O、MgO、SrO、BaO、CaO等。
在本发明的有机电致发光装置中,电子传输化合物和还原性掺杂剂的混合区或空穴传输化合物和氧化性掺杂剂的混合区可以放置在一对电极的至少一个表面上。在这种情况下,电子传输化合物被还原为阴离子,并且因此注入电子并将其从混合区传输到电致发光介质中变得更加容易。此外,空穴传输化合物被氧化为阳离子,并且因此注入空穴并且将其从混合区传输到电致发光介质变得更加容易。优选地,氧化性掺杂剂包括各种路易斯酸(Lewis acid)和受体化合物;并且还原性掺杂剂包括碱金属、碱金属化合物、碱土金属、稀土金属以及其混合物。还原性掺杂剂层可用作电荷产生层以制造具有两个或更多个发光层并且发射白光的电致发光装置。
为了形成本发明有机电致发光装置的每一层,可以使用干式成膜方法,如真空蒸发、溅射、等离子体和离子电镀方法;或湿式成膜方法,如旋涂、浸涂和流涂方法。
当使用湿式成膜方法时,薄膜可通过将形成每一层的材料溶解或扩散到任何适合的溶剂中来形成,所述溶剂如乙醇、氯仿、四氢呋喃、二噁烷等。溶剂可以是形成每一层的材料可溶解或扩散于其中并且成膜能力不存在问题的任何溶剂。
下文中,将参照以下实例详细解释本发明的有机电致发光化合物、化合物制备方法以及装置的发光特性。
实例1:化合物H-12的制备
化合物1-1的制备
将1,5-二溴萘(65g,209.8mmol)、4,4,4',4',5,5,5',5'-八甲基-2,2'-联(1,3,2-二氧杂硼杂环戊烷)(53g,209.5mmol)、乙酸钾(KOAc)(65g,618mmol)和四(三苯基膦)钯[Pd(PPh3)4](15g,20.9mmol)溶解于四氢呋喃(THF)(500mL)之后,使混合物在120℃下回流5小时。完成反应之后,用乙酸乙酯萃取混合物。所得有机层用硫酸镁干燥以除去剩余水分,并且进行柱色谱法,获得化合物1-1(57g,产率81%)。
化合物1-2的制备
将化合物1-1(56g,167.8mmol)、1-溴-2-硝基苯(34g,167.8mmol)、Pd(PPh3)4(10g,8.3mmol)和2M Na2CO3(250mL)溶解于甲苯(500mL)和乙醇(250mL)中之后,使混合物在120℃下回流5小时。完成反应之后,用乙酸乙酯萃取混合物。所得有机层用硫酸镁干燥以除去剩余水分,并且进行柱色谱法,获得化合物1-2(50g,产率:88%)。
化合物1-3的制备
将化合物1-2(17.7g,54mmol)和三苯膦(28.5g,108mmol)溶解于二氯苯(DCB)(300mL)中,在回流下搅拌混合物24小时。完成反应之后,将混合物冷却到室温且在真空下蒸馏。向蒸馏所得物中添加甲醇(MeOH)。在减压下过滤所得固体,且进行柱色谱法,获得化合物1-3(10g,产率:75%)。
化合物1-4的制备
将化合物1-3(2.7g,11.0mmol)、2-氯-4-苯基喹唑啉(3.1g,13.2mmol)和氢化钠(0.53g,22.0mmol)引入250mL反应烧瓶中之后,在室温下搅拌混合物5小时。完成反应之后,向其中添加MeOH和H2O。对所得固体进行柱色谱,获得化合物1-4(4g,产率:77%)。
化合物1-5的制备
将化合物1-4(8g,17.1mmol)、2-氯苯胺(2.6g,20.5mmol)和乙酸钯[Pd(OAc)](0.2g,0.86mmol)、叔丁醇钠(NaOtBu)(5g,51.3mmol)和P(t-Bu)3(5.1g,20.5mmol)溶解于甲苯(100mL)中之后,使混合物在回流下搅拌24小时。完成反应之后,将混合物冷却到室温且在真空下蒸馏。向蒸馏所得物中添加MeOH。在减压下过滤所得固体,且进行柱色谱法,获得化合物1-5(8g,产率:88%)。
化合物1-6的制备
将化合物1-5(8g,15mmol)、三环己基四氟硼酸鏻(0.6g,1.5mmol)、Cs2CO3(15g,45mmol)和Pd(OAc)(0.2g,0.75mmol)溶解于二甲基乙酰胺(DMA)(50mL)中之后,在回流下搅拌混合物4小时。完成反应之后,将混合物冷却到室温。向混合物中添加MeOH。在减压下过滤所得固体,且进行柱色谱法,获得化合物1-6(8g,产率:65%)。
化合物H-12的制备
将化合物1-6(2.3g,4.5mmol)、碘苯(1.4g,6.75mmol)、K3PO4(3g,13.5mmol)、CuI(0.5g,2.3mmol)和乙二胺(EDA)(0.3mL,4.5mmol)溶解于甲苯(50mL)中之后,在回流下搅拌混合物4小时。完成反应之后,将混合物冷却到室温。向混合物中添加MeOH。在减压下过滤所得固体,且进行柱色谱法,获得化合物H-12(2g,产率:75%)。
[物理特性]熔点:309℃,UV 391nm(甲苯中),PL 527nm(甲苯中),MS/EIMS 586.08
[装置实例1]使用本发明有机电致发光化合物的OLED
OLED是使用本发明的有机电致发光化合物如下制造。依序用丙酮、乙醇和蒸馏水对OLED(Geomatec)玻璃基板上的透明电极氧化铟锡(ITO)薄膜(10Ω/sq)进行超声波洗涤,并且然后储存于异丙醇中。然后将ITO基板安装在真空气相沉积设备的基板固持器上。将HI-1引入所述真空气相沉积设备的单元中,且然后将所述设备的腔室中的压力控制在10-6托。此后,向所述单元施加电流以蒸发上述引入的材料,由此在ITO基板上形成厚度为80nm的第一空穴注入层。然后,将HI-2引入所述真空气相沉积设备的另一单元中,且通过向所述单元施加电流而蒸发,从而在第一空穴注入层上形成厚度为5nm的第二空穴注入层。将HT-1引入真空气相沉积设备的一个单元中,且通过向所述单元施加电流而蒸发,从而在第二空穴注入层上形成厚度为10nm的第一空穴传输层。将HT-2引入真空气相沉积设备的另一单元中,且通过向所述单元施加电流而蒸发,从而在第一空穴传输层上形成厚度为60nm的第二空穴传输层。此后,将化合物H-12引入真空气相沉积设备的一个单元中作为主体,并且将化合物D-96引入另一个单元中作为掺杂剂。使两种材料以不同速率蒸发,以便掺杂剂以3wt%的掺杂量(按主体和掺杂剂的总量计)沉积以在空穴传输层上形成厚度为40nm的发光层。将ET-1和EI-1分别引入真空气相沉积设备的两个单元中,且以1:1比率蒸发,在发光层上形成厚度为30nm的电子传输层。EI-1沉积为厚度2nm的电子注入层之后,然后通过另一真空气相沉积设备在电子注入层上沉积厚度为80nm的Al阴极,从而制成OLED。
所制成的OLED展示红光发射和1,000尼特(nit)下10.4cd/A的效率。
[比较实例1]使用常规有机电致发光化合物的OLED
OLED是按与装置实例1相同的方式制成,但其中使用以下比较化合物-1作为发光层的主体材料且使用ET-2而非ET-1作为电子传输层。所制成的OLED展示红光发射和1,000尼特下8.8cd/A的效率。
如上述装置实例中所证明,本发明有机电致发光化合物的发光效率(确切地说,电流效率)优于常规有机电致发光化合物。