本发明涉及纳米技术,高分子技术,具体的说是一种聚合物中空纳米微球和制备方法及其应用。
背景技术:
:近年来,由于材料尺寸、结构顺序和组成的变化会带来独特的光学、电学、机械、化学等性质,人们开展了大量的具有特殊功能的材料的研究。例如,随着纳米材料技术的不断发展,要求作为“结构单元”的粒子的组成和结构日益复杂化,于是人们对制备核壳复合粒子产生了浓厚的研究兴趣。这主要是核壳复合粒子的组成和结构能够在纳米尺度上进行设计和剪裁,因而具有许多不同于单组分胶体粒子的独特的光、电、磁、催化等物理、化学性质。中空纳米微球是一类内核为空气或其他气体的特殊结构的核壳粒子,与其他块体材料相比具有较大的比表面积、较小的密度以及特殊的力学、光、电等物理性质及应用价值,因而引起了科研工作者极大的兴趣,成为材料研究领域引人注目的方向之一。制备空心微球的方法包含以下几种方法:(1)层层组装法,其特征是以可被溶解、分解或氧化的材料为模板,带电物质通过交替的静电作用在模板粒子表面实现多层吸附沉淀,当吸附沉淀到所需层数后,将模板粒子去除,即可得到纳米级或微米级中空结构的微胶囊。(2)沉积和表面反应法,利用内核与壳层间的化学或静电亲和作用来形成包覆层,再经焙烧或有机溶剂溶解等方法除去模板,得到相应的空心球。(3)喷雾干燥法,通过溶液或溶胶雾化成小液滴并经瞬时的高温加热分解得到空心微球。喷雾干燥加热时间较短,只能得到具有空心结构的球形颗粒,要得到所需要晶型的空心球还要将其进一步锻烧处理。(4)微封装法,即为通常所说的油/水/油的乳液聚合法,它利用了3种不同的溶液,一是含表面活性剂的水溶液,即w1相;二是溶解有聚合物或单体的有机溶剂,即o相;三是含表面活性剂的水溶液相。将w1相加入到o相中,形成w1/o乳液,再将w1/o乳液加入到w2中,即w2相,形成w1/o/w2,经过2次乳化以后得到的w1/o/w2乳液中,有大量封装着水滴的有机溶液小液滴,经过单体聚合反应,再经过固化除去有机溶剂,过滤、真空干燥脱除封装水即得到聚合物空心球。(5)自组装/相分离法,主要利用水和油溶剂的相分离为趋动力,在水油界面上使单体发生聚合,再去掉粒子内部的溶剂即可获得具有中空结构的粒子。聚合物空心微球的报道不少,但是纳米中空微球的报道就较少。本发明提供一种可规模化制备的中空纳米微球及其制备技术和它应用的领域。技术实现要素:本发明的目的在于提供一种可用简单的方法制备的聚合物中空纳米微球及制备方法和应用。其制备包括两种方案。方案一包括以下步骤:1)将一定量的油溶性单体、油溶性交联剂溶于油相溶剂中;2)将一定量的水溶性单体、水溶性交联剂溶于水中;再将氧化——还原引发体系中的水溶性还原剂溶于水中;3)将步骤1)中配置的油相溶液、步骤2)中配置的水溶液和助剂混合,形成油包水型微乳液;4)将氧化——还原引发体系中的油溶性氧化剂溶于步骤3)中配置的微乳液中,水溶性还原剂和油溶性氧化剂在油水界面处相遇产生自由基,并引发单体和交联剂在界面处聚合,反应一段时间后,脱除油相溶剂、助剂和水,得到中空纳米微球。方案二包括以下步骤:1)将一定量的油溶性单体、油溶性交联剂溶于油相溶剂中;再将氧化——还原引发体系中的油溶性氧化剂溶于油相溶剂中;2)将一定量的水溶性单体、水溶性交联剂溶于水中;3)将步骤1)中配置的油相溶液、步骤2)中配置的水溶液和助剂混合,形成水包油型微乳液;4)将氧化——还原引发体系中的水溶性还原剂溶于步骤3)中配置的微乳液中,水溶性还原剂和油溶性氧化剂在油水界面处相遇产生自由基,并引发单体和交联剂在界面处聚合,反应一段时间后,脱除溶剂、助剂和水,得到中空纳米微球。所述油溶性单体和交联剂可选择油溶性丙烯酸酯类、油溶性甲基丙烯酸酯类、油溶性乙烯基类,油溶性乙烯基醚类。水溶性单体和交联剂可选择水溶性丙烯酸酯类、水溶性甲基丙烯酸酯类、水溶性乙烯基类,水溶性乙烯基醚类。油溶性和水溶性的单体和交联剂的含量均为微乳液的0~20wt%,单体和交联剂的总含量为微乳液1~20wt%。所述氧化——还原引发剂体系可选用以下一对:过氧化苯甲酰——四乙烯五胺、过氧化十二酰——五亚乙基六胺、异丙苯过氧化氢——氯化亚铁、过氧化叔戊酸二异丙酯——乙二胺、过氧化氢——二甲基氨苯。所述的油包水微乳液包括以下体系:正己烷/水/异丙醇,甲苯/水/乙醇,油酸/水/正丙醇,呋喃甲醛/水/甲醇,呋喃甲醛/水/乙醇,呋喃甲醛/水/二甲基甲酰胺,油酸/氨水/汽油/乙醇/水,油酸/氨水/汽油/正丙醇/水,油酸/氨水/汽油/正丁醇/水,油酸/氨水/汽油/正戊醇/水,油酸/氨水/汽油/正己醇/水油酸/氨水/汽油/正庚醇/水。所述的水包油微乳液包括以下体系:方案二中所述的水包油微乳液包括以下体系:甲苯/水/乙醇,油酸/水/正丙醇,呋喃甲醛/水/甲醇,呋喃甲醛/水/乙醇,呋喃甲醛/水/二甲基甲酰胺。将中空纳米微球分散在溶液中,涂敷在支撑体上,溶剂蒸发后直接成膜;也可将得到的中空纳米微球作为分散相与其他聚合物共混,再用于制备气体分离膜和渗透汽化膜。本发明具有如下优点:在微乳体系中反应生成中空纳米微球,且主要是利用的氧化还原引发剂在油水界面反应产生自由基,反应快速;反应结束后,直接脱除油相溶剂、助剂和水便可得到纳米微球。该种方法简单,步骤少,耗时少,适合规模化生产。用聚合物微球作为分散相,分散相和基质间的相容性较好。附图说明图1实施例1中用双季戊四醇六丙烯酸酯和丙烯酸四氢呋喃酯制备的中空纳米微球的扫描电镜照片图2实施例1中用双季戊四醇六丙烯酸酯和丙烯酸四氢呋喃酯制备的中空纳米微球的透射电镜照片具体实施方式实施例1配置5wt%双季戊四醇六丙烯酸酯的甲苯溶液,10wt%四乙烯五胺水溶液;水溶液、甲苯溶液与乙醇按质量比0.1∶0.6∶0.4配置成微乳液;取一定量的油溶相单体(微乳液中甲苯质量的5wt%)溶于微乳液中,加入少量过氧化苯甲酰(微乳液中甲苯质量的0.5%),反应3h后,脱溶剂、助剂和水,干燥得到微球。粒径如表1所示。表1油相单体外径(nm)内径(nm)丙烯酸四氢呋喃酯210170苯乙烯2031352-乙烯基-2-甲基-5-(1-甲基乙烯基)四氢呋喃188131实施例2配置含2.5wt%油溶性交联剂、5wt%四氢呋喃丙烯酸酯及0.5wt%过氧化苯甲酰的甲苯溶液,配置3wt%聚乙二醇丙烯酸酯的水溶液,将水溶液、甲苯溶液、与乙醇按质量比0.7∶0.1∶0.2配置成微乳液;加入四乙烯五胺(微乳液中水质量的0.5wt%),反应3h后,脱油相溶剂、助剂和水,干燥得到微球,粒径如表2所示。表2油溶性交联剂外径(nm)内径(nm)乙氧化季戊四醇四丙烯酸酯211145二-三羟甲基丙烷四丙烯酸酯177158季戊四醇三丙烯酸酯198133三-(2-羟乙基)异氰脲酸三丙烯酸酯169151丙氧基化甘油三丙烯酸酯176124三-(2-羟乙基)异氰酸酯三丙烯酸酯202147三羟甲基丙烷三丙烯酸酯193133乙氧基化三羟甲基丙烷三丙烯酸酯178140丙氧基化三羟甲基丙烷三丙烯酸酯145102实施例3配置5wt%聚乙二醇二丙烯酸酯、5wt%聚乙二醇丙烯酸酯和0.5wt%四乙烯五胺水溶液,与甲苯和乙醇按质量比0.1∶0.7∶0.3配置成微乳液;加入3wt%二乙烯基醚和0.3wt%过氧化苯甲酰(按甲苯质量计算)反应4h后,脱油相溶剂、助剂和水,干燥得到微球。微球外径200nm,内径170nm。将微球分散于乙醇中,将分散液置于平面皿内,在高温下(高于玻璃化转变温度)蒸发除去溶剂,得到聚合物微球膜,其渗透性能比聚合物致密膜的本征值提高3倍,分离系数提高2.5倍。将1wt%微球和10wt%聚砜共混溶于n,n-二甲基乙酰胺中形成溶液,将溶液浇铸在玻璃板上,溶剂蒸发完全后,得到致密膜。测试后发现,共混有中空微球的聚砜膜渗透系数比纯聚砜膜增大2倍,分离系数增大1.5倍。以上实例并不表明本专利的有限的应用范围。任何对该领域熟悉的专业人士都能够非常容易地根据专利所阐述的内容应用于其他任何可能的体系。当前第1页12