含氮化合物、电子元件和电子装置的制作方法

文档序号:21448571发布日期:2020-07-10 17:40阅读:285来源:国知局
含氮化合物、电子元件和电子装置的制作方法

本申请涉及有机材料技术领域,尤其涉及一种含氮化合物、电子元件和电子装置。



背景技术:

随着电子技术的发展和材料科学的进步,用于实现电致发光或者光电转化的电子元件的应用范围越来越广泛。该类电子元件,例如有机电致发光器件或者光电转化器件,通常包括相对设置的阴极和阳极,以及设置于阴极和阳极之间的功能层。该功能层由多层有机或者无机膜层组成,且一般包括能量转化层、位于能量转化层与阳极之间的空穴传输层、位于能量转化层与阴极之间的电子传输层。

举例而言,当电子元件为有机电致发光器件时,其一般包括依次层叠设置的阳极、空穴传输层、作为能量转化层的有机发光层、电子传输层和阴极。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向有机发光层移动,阳极侧的空穴也向有机发光层移动,电子和空穴在有机发光层结合形成激子,激子处于激发态向外释放能量,进而使得有机发光层对外发光。

现有技术中,如美国专利us09/632348记载了一些新的电致发光材料。然而,依然有必要继续研发新型的材料,以进一步提高电子元件的性能。

所述背景技术部分发明的上述信息仅用于加强对本申请的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。



技术实现要素:

本申请的目的在于提供一种含氮化合物、电子元件和电子装置,用于提高电子元件的性能。

为实现上述发明目的,本申请采用如下技术方案:

根据本申请的第一个方面,提供一种含氮化合物,所述含氮化合物的结构式如式i所示:

其中,

l选自单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为1-30的杂亚芳基;

ar1和ar2相同或不同,分别独立地选自取代或未取代的碳原子数为6-31的芳基、取代或未取代的碳原子数为2-30的杂芳基;

其中,l、ar1和ar2上的取代基分别独立地选自:氘、硝基、羟基、烷基、环烷基、烯基、炔基、烷氧基、烷硫基、芳基甲硅烷。

根据本申请的第二个方面,提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的含氮化合物。

根据本申请的第三个方面,提供一种电子装置,电子装置包括上述的电子元件。

本申请的含氮化合物引入了降冰片基作为取代基,相较于支链烷基等取代基可以大幅减少由于分子旋转、振动、构象改变等引起的能量损失,使得含氮具有良好的稳定性和耐热性。不仅如此,该含氮化合物将降冰片基引入到三芳基胺的分支之间,精细调节胺与各个芳基成键键角与共轭程度,从而起到降低有机电致发光器件的工作电压、提高发光效率和提升寿命的效果,也可以起到提高光电转化器件的开路电压、提高光电转化效率、提高光电转化器件的寿命的效果,进而可以提高应用该含氮化合物的电子元件的性能。本申请的含氮化合物引入降冰片基以调节电子元件的性能,克服了引入金刚烷基所导致的制备困难、成本高昂、热稳定差的缺陷,能够降低电子元件的制备成本。

附图说明

通过参照附图详细描述其示例实施方式,本申请的上述和其它特征及优点将变得更加明显。

图1是本申请实施方式的一种有机电致发光器件的结构示意图。

图2是本申请实施方式的一种电子装置的结构示意图。

图3是本申请实施方式的一种光电转化器件的结构示意图。

图4是本申请实施方式的一种电子装置的结构示意图。

图中主要元件附图标记说明如下:

100、阳极;200、阴极;300、功能层;310、空穴注入层;320、空穴传输层;321、第一空穴传输层;322、第二空穴传输层;330、有机电致发光层;340、电子传输层;350、电子注入层;360、光电转化层;400、电子装置;500、电子装置。

具体实施方式

现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本申请将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。

本申请提供一种含氮化合物,所述含氮化合物的结构式如式i所示:

l选自单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为1-30的杂亚芳基;

ar1和ar2相同或不同,分别独立地选自取代或未取代的碳原子数为6-31的芳基、取代或未取代的碳原子数为2-30的杂芳基;

其中,l、ar1和ar2上的取代基分别独立地选自:氘、硝基、羟基、烷基、环烷基、烯基、炔基、烷氧基、烷硫基、芳基甲硅烷。

在本申请中,l、ar1和ar2的碳原子数,指的是所有碳原子数。举例而言,若l选自取代的碳原子数为12的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。例如:ar1为则其碳原子数为7;l为其碳原子数为12。

在本申请中,芳基指的是衍生自芳香烃环的任选官能团或取代基。芳基可以是单环芳基或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者多个稠环芳基。即,通过碳碳键共轭连接的两个或者多个芳香基团也可以视为本申请的芳基。其中,芳基中不含有b、n、o、s或p等杂原子。举例而言,在本申请中,联苯基、三联苯基等为芳基。芳基的示例可以包括苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、苯并[9,10]菲基、芘基、二甲基芴基等,而不限于此。

在本申请中,取代的芳基,指的是芳基中的一个或者多个氢原子被其它基团所取代。例如至少一个氢原子被氘原子、羟基、硝基、氨基、支链烷基、直链烷基、环烷基、烷氧基、烷胺基或者其他基团取代。可以理解的是,取代的碳原子数为18的芳基,指的是芳基和芳基上的取代基的碳原子总数为18个。举例而言,9,9-二苯基芴基的碳原子数为25。

在本申请中,未取代的芳基,指的是的碳原子数为6-31的芳基,例如:苯基、萘基、芘基、二甲基芴基、9,9二苯基芴基、螺二芴基、蒽基、菲基、基、甘菊环基、苊基、联苯基、苯并蒽基、螺二芴基、苝基、茚基等。取代的碳原子数为6-30的芳基是指至少一个氢原子被氘原子、f、cl、i、cn、羟基、硝基、氨基等取代。

在本申请中,未取代的芳烷基,指的是碳原子数为7-31的芳烷基;例如:苯甲基等。取代的碳原子数为7-31的芳烷基是指至少一个氢原子被氘原子、f、cl、i、cn、羟基、硝基、氨基等取代。

在本申请中,“杂芳基”是指芳基上至少一个碳原子被杂原子n、o、p、s和si替换的基团。

在本申请中,未取代的杂芳基,可以指的是碳原子数为2-30的杂芳基。例如:吡啶基、吡嗪基、嘧啶基、哒嗪基、三嗪基、喹啉基、吲哚基、咔唑基、二苯并呋喃基、二苯并噻吩基、二苯并硒吩基等。取代的碳原子数为2-30的杂芳基是指至少一个氢原子被氘原子、f、cl、i、cn、羟基、硝基、氨基等取代。

在本申请中,对于芳基的解释可应用于亚芳基,对杂芳基的解释也可应用于亚杂芳基。

本申请的含氮化合具有良好的空穴传输效率,因此可以作为传输空穴的材料而应用于实现光电转换或者电光转换电子元件中,例如应用于有机电致发光器件或者光电转化器件中。举例而言,本申请的含氮化合物可以应用于有机电致发光器件的阳极与作为能量转化层的有机发光层之间,以便将阳极上的空穴传输至有机发光层。可选地,本申请的含氮化合物可以应用于有机电致发光器件的空穴注入层、空穴传输层和电子阻挡层中的任意一层或者多层。再举例而言,本申请的含氮化合物可以应用于光电转化器件的阳极与作为能量转化层的光电转化层之间,以便将光电转化层上的空穴传输至阳极。

在本申请中,优选地,所述ar1、ar2以及l上的取代基相同或不同,且分别独立地选自氘、碳原子数为1~3的烷基。

在本申请中,优选地,所述l选自如下取代基所组成的组:

其中,*表示l用于与基团连接;**表示l用于与基团连接。

在本申请中,优选地,l为单键。

在本申请中,优选地,ar1、ar2分别选自取代或为取代的碳原子数6-31的芳基、取代或未取代的碳原子数2-30的杂芳基。

更优选地,所述ar1和ar2,分别独立地选自:碳原子数为6~31的未取代的芳基、碳原子数为7~31的取代的芳基、碳原子数为4~18的未取代的杂芳基、碳原子数为6~15的取代的杂芳基。

具体地,所述ar1和ar2分别独立地选自如下取代基所组成的组:

在本申请中,所述含氮化合物可以选自如下化合物所组成的组:

可选地,所述含氮化合物的分子量低于750,以保证其具有较低的蒸镀温度和较高的热稳定性,提高其应用于量产有机电致发光器件或光电转化器件时的热稳定性。

本申请还提供一种电子元件,电子元件包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的含氮化合物。

本申请所提供的含氮化合物可以用于形成功能层中的至少一个有机膜层,以改善电子元件的电压特性、效率特性和寿命特性。

可选的,包含有本申请的含氮化合物的有机膜层位于阳极和电子元件的能量转化层之间,以便改善电子在阳极与能量转化层之间的传输。

举例而言,电子元件可以为一有机电致发光器件。如图1所示,有机电致发光器件包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的含氮化合物。

可选地,本申请所提供的含氮化合物可以用于形成功能层300中的至少一个有机膜层,以改善有机电致发光器件的寿命特性、效率特性、电化学稳定性和热稳定性并且降低驱动电压;在某些实施例中,还可以提高有机电致发光器件的量产稳定性。

可选地,功能层300包括空穴传输层320,空穴传输层320包含本申请所提供的含氮化合物。其中,空穴传输层320既可以为本申请所提供的含氮化合物组成,也可以由本申请所提供的含氮化合物和其他材料共同组成。

可选地,空穴传输层320包括第一空穴传输层321和第二空穴传输层322,且第一空穴传输层321设于第二空穴传输层322靠近阳极100的表面;第一空穴传输层321或第二空穴传输层322包含本申请所提供的含氮化合物。其中,既可以第一空穴传输层321或第二空穴传输层322中的一层包含本申请所提供的含氮化合物,也可以第一空穴传输层321和第二空穴传输层322均含有本申请所提供的含氮化合物。可以理解的是,第一空穴传输层321或第二空穴传输层322还可以含有其他材料,也可以不含有其他材料。可以理解的是,在本申请的另一种实施方式中,第二空穴传输层322可以作为有机电致发光器件的电子阻挡层。

在本申请的一种实施方式中,如图1所示,有机电致发光器件可以包括依次层叠设置的阳极100、第一空穴传输层321、第二空穴传输层322、作为能量转化层的有机发光层330、电子传输层340和阴极200。本申请提供的含氮化合物可以应用于有机电致发光器件的第一空穴传输层321或第二空穴传输层322,可以有效改善有机电致发光器件的空穴特性。其中,空穴特性是指在阳极100中形成的空穴容易地被注入有机电致发光层330、并且根据homo水平的传导特性而在有机电致发光层330中传输。

可选地,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,workfunction)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ito)和氧化铟锌(izo);组合的金属和氧化物如zno:al或sno2:sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](pedt)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indiumtinoxide)(ito)作为阳极的透明电极。

可选地,有机发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。可选地,有机发光层330由主体材料和客体材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。

有机发光层330的主体材料可以为金属螯合化类咢辛化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的主体材料可以为cbp。在本申请的另一种实施方式中,有机发光层330的主体材料可以为α,β-adn。

有机发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的客体材料可以为ir(piq)2(acac)。在本申请的另一种实施方式中,有机发光层330的客体材料可以为bd-1。

电子传输层340可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自苯并咪唑衍生物、恶二唑衍生物、喹喔啉衍生物或者其他电子传输材料,本申请对此不做特殊的限定。举例而言,在本申请的一种实施方式中,电子传输层340可以由dbimibphen和liq组成。

可选地,阴极200包括以下阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括:金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如lif/al、liq/al、lio2/al、lif/ca、lif/al和baf2/ca,但不限于此。优选包括包含铝的金属电极作为阴极。

可选地,如图1所示,在阳极100和第一空穴传输层321之间还可以设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,空穴注入层310可以由m-mtdata组成。

可选地,如图1所示,在阴极200和电子传输层340之间还可以设置有电子注入层350,以增强向电子传输层340注入电子的能力。电子注入层350可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在本申请的一种实施方式中,电子注入层350可以包括liq。

再举例而言,电子元件可以为一种光电转化器件。如图3所示,该光电转化器件可以包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的含氮化合物。

可选地,本申请所提供的含氮化合物可以用于形成功能层300中的至少一个有机膜层,以改善光电转化器件性能,尤其是提高光电转化器件的寿命、提高光电转化器件的开路电压或者提高量产的光电转化器件的性能均一稳定。

可选地,所述功能层300包括空穴传输层320,所述空穴传输层320包含本申请的含氮化合物。其中,空穴传输层320既可以为本申请所提供的含氮化合物组成,也可以由本申请所提供的含氮化合物和其他材料共同组成。

可选地,空穴传输层320还可以包括无机掺杂材料,以提高空穴传输层320的空穴传输性能。

可选地,如图3所示,光电转化器件可以包括依次层叠设置的阳极100、空穴传输层320、作为能量转化层的光电转化层360、电子传输层340和阴极200。

可选地,光电转化器件可以为太阳能电池,尤其是可以为有机薄膜太阳能电池。举例而言,在本申请的一种实施方式中,太阳能电池可以包括依次层叠设置的阳极100、空穴传输层320、光电转化层360、电子传输层340和阴极200,其中,空穴传输层320包含有本申请的含氮化合物。

本申请实施方式还提供一种电子装置,该电子装置包括上述电子元件实施方式所描述的任意一种电子元件。由于该电子装置具有上述电子元件实施方式所描述的任意一种电子元件,因此具有相同的有益效果,本申请在此不再赘述。

举例而言,如图2所示,本申请提供一种电子装置400,该电子装置200包括上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件。该电子装置400可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。由于该电子装置400具有上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件,因此具有相同的有益效果,本申请在此不再赘述。

再举例而言,如图4所示,本申请提供一种电子装置500,该电子装置500包括上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件。该电子装置500可以为太阳能发电设备、光检测器、指纹识别设备、光模块、ccd相机或则其他类型的电子装置。由于该电子装置500具有上述光电转化器件实施方式所描述的任意一种光电转化器件,因此具有相同的有益效果,本申请在此不再赘述。

以下,通过实施例对本申请进一步详细说明。但是,下述实施例仅是本申请的例示,而并非限定本申请。

化合物合成实施例

合成中间体a

将0.95g(10mmol)的降冰片烯、2.41g(10mmol)的4-氯碘苯、0.23g(1mmol)的醋酸钯及10ml的乙腈加入50ml烧瓶中,用氮气置换烧瓶中的空气,室温(20℃)下搅拌10min后加入4.8ml的哌啶和2ml的甲酸并于80℃下搅拌24h,将所得的反应溶液冷却至室温,通过50ml的水淬灭反应并用50ml的乙醚从其中萃取反应溶液三次,用4g硫酸镁干燥所得的有机层并通过过滤除去硫酸镁,从有机相中蒸去溶剂,得到粗品,用6ml二氯甲烷重新溶解后加入15ml正庚烷进行柱色谱分离提纯,最终得到1.04g中间体a,收率50%。通过lc-ms确认所得化合物的结构。质谱:m/z=207.09[m+h]+

合成中间体b

将1.41g(15mmol)的降冰片烯、5.37g(15mmol)的4-溴-4'-碘联苯、0.34g(0.15mmol)的醋酸钯及15ml的二甲基亚砜加入50ml烧瓶中,用氮气置换烧瓶中的空气,室温(20℃)下搅拌10min后加入12.3ml的哌啶和5ml的甲酸并于80℃下搅拌24h,将所得的反应溶液冷却至室温,通过80ml的水淬灭反应并用80ml的乙醚从其中萃取反应溶液三次,用4g硫酸镁干燥所得的有机层并通过过滤除去硫酸镁,从有机相中蒸去溶剂,得到粗品,用5ml乙酸乙酯重新溶解后加入20ml正庚烷进行柱色谱分离提纯,最终得到1.8g中间体b,收率37%。通过lc-ms确认所得化合物的结构。质谱:m/z=327.07[m+h]+

化合物1的合成

将1.83g(15mmol)的苯硼酸、4.78g(15.3mmol)的4,4'-二溴联苯、0.35g(0.3mmol)的四(三苯基膦)钯、0.10g(0.3mmol)的四丁基溴化铵、4.15g(30mmol)的碳酸钾、15ml甲苯/4ml乙醇/4ml水的混合溶剂加入50ml烧瓶中,反应体系于氮气氛围下搅拌加热至75℃回流12h,将反应溶液冷却至室温,通过50ml水洗并用50ml乙酸乙酯萃取三次反应溶液,所得有机层用4g硫酸镁干燥,通过低真空蒸走溶剂,用4ml二氯甲烷溶解后通过硅胶柱层析法(正庚烷作为洗脱液)提纯产物,得到2.71中间体1-1,收率58%。

将3.10g(10mmol)中间体1-1、1.73g(10.2mmol)的4-氨基联苯、0.18g(0.2mmol)的三(二亚苄基丙酮)二钯、0.08g(0.2mmol)的2-双环己基膦-2',6'-二甲氧基联苯、1.93g(20mmol)的叔丁醇钠和30ml甲苯加入100ml烧瓶中,向反应体系通入氮气并加热至110℃回流反应6h,把反应溶液冷却至室温,用60ml水淬灭反应,并用60ml的乙酸乙酯萃取三次反应液,所得有机相用4g硫酸镁干燥,通过低真空蒸走溶剂,用二氯甲烷和正庚烷混合溶剂重结晶法提纯产物,得到2.62g中间体1-2,收率65%。

将3.98g(10mmol)中间体1-2、2.07g(10mmol)的中间体a、0.18g(0.2mmol)的三(二亚苄基丙酮)二钯、0.08g(0.2mmol)的2-双环己基膦-2',6'-二甲氧基联苯、1.93g(20mmol)的叔丁醇钠和20ml甲苯加入50ml烧瓶中,在氮气氛下加热至110℃回流反应24h,把反应溶液冷却至室温,用60ml水淬灭反应并用60ml的乙酸乙酯萃取反应溶液三次,所得有机相用4g硫酸镁干燥,通过低真空蒸走溶剂,将产物溶于8ml二氯甲烷中,通过硅胶柱层析法(用二氯甲烷和正庚烷比例为1:4的混合溶剂作为洗脱液)分离提纯,得到化合物1(2.5g,收率44%)。通过lc-ms确认所得化合物的结构。质谱:m/z=568.29[m+h]+

化合物1核磁数据:1hnmr(400mhz,cdcl3)7.69-7.59(m,8h),7.51-7.32(m,10h),7.12-7.09(m,2h),6.93-6.87(m,6h),2.98(m,1h),2.18(m,2h),1.77-1.52(m,6h),1.38-1.19(m,2h)ppm.

化合物2的合成

将2.73g(10mmol)的3-溴-9,9’-二甲基芴、1.69g(10mmol)的4-氨基联苯、0.18g(0.2mmol)的三(二亚苄基丙酮)二钯、0.08g(0.2mmol)的2-双环己基膦-2',6'-二甲氧基联苯、1.92g(20mmol)的叔丁醇钠和30ml甲苯加入100ml烧瓶中,于氮气氛保护下加热至回流温度(110℃)反应10h,将反应体系冷却至室温,向反应烧瓶中加入30ml水淬灭,用50ml乙酸乙酯萃取反应液三次,有机相用4g硫酸镁干燥,过滤后蒸出溶剂,粗品用甲苯重结晶二次,得到2.81g中间体2-1,收率78%。

将3.62g(10mmol)中间体2-1、2.07g(10mmol)的中间体a、0.18g(0.2mmol)的三(二亚苄基丙酮)二钯、0.08g(0.2mmol)的2-双环己基膦-2',6'-二甲氧基联苯、1.92g(20mmol)的叔丁醇钠和20ml甲苯加入50ml烧瓶中,在氮气氛下加热至110℃回流反应16h,将反应液冷却至室温,向其中加入50ml水和50ml甲苯萃取三次,用6g硫酸镁干燥有机相,将有机相通过硅胶柱,过柱液在低真空下蒸出溶剂,粗品用甲苯重结晶三次,得到化合物2(2.02g,收率38%)。通过lc-ms确认所得化合物的结构。质谱:m/z=532.29[m+h]+

化合物2核磁数据:1hnmr(400mhz,cdcl3)7.76(d,1h),7.63(d,2h),7.51-7.34(m,7h),7.15-7.09(m,2h),7.02-6.98(m,2h),6.94-6.89(m,4h),6.83(d,2h),2.98(m,1h),2.18(m,2h),1.77-1.52(m,12h),1.38-1.19(m,2h)ppm.

化合物3的合成

参照化合物2的合成方法,将3-溴-9,9’-二甲基芴替换为3-溴-9,9'-螺二芴,合成出化合物3(2.17g,收率33%),通过lc-ms确认所得化合物的结构。质谱:m/z=654.31[m+h]+

化合物4的合成

将3.22g(10mmol)的3-溴-9-苯基咔唑、1.69g(10mmol)的4-氨基联苯、0.18g(0.2mmol)的三(二亚苄基丙酮)二钯、0.08g(0.2mmol)的2-双环己基膦-2',6'-二甲氧基联苯、1.92g(20mmol)的叔丁醇钠和30ml甲苯加入100ml烧瓶中,在氮气保护下加热反应液至回流温度反应4h,将反应液冷却至室温,通过30ml水淬灭反应和50ml的甲苯萃取反应液三次,有机相用4g硫酸镁干燥,在低真空下蒸出溶剂,用甲苯和正庚烷的混合溶液作为洗脱液通过柱色谱分离提纯,得到3.3g中间体4-1,收率80%。

将4.10g(10mmol)中间体4-1、2.06g(10mmol)的中间体a、0.18g(0.2mmol)的三(二亚苄基丙酮)二钯、0.08g(0.2mmol)的2-双环己基膦-2',6'-二甲氧基联苯、1.92g(20mmol)的叔丁醇钠和40ml甲苯加入100ml烧瓶中,氮气保护下加热至回流反应16h,将反应液冷却至室温,用50ml水淬灭反应并用50ml的甲苯萃取反应液三次,有机相用8g硫酸镁干燥,有机相通过短硅胶柱,过柱液在低真空下蒸出溶剂,用甲苯重结晶粗品二后次,得到化合物4(2.3g,收率40%)。通过lc-ms确认所得化合物的结构。质谱:m/z=581.29[m+h]+

化合物5的合成

将2.63g(10mmol)的2-溴二苯并噻吩、2.09g(10mmol)的3-氨基-9,9’-二甲基芴、0.18g(0.2mmol)的三(二亚苄基丙酮)二钯、0.08g(0.2mmol)的2-双环己基膦-2',6'-二甲氧基联苯、1.92g(20mmol)的叔丁醇钠和30ml甲苯加入50ml烧瓶中,于氮气氛下加热至回流反应,10h后反应完毕,将反应液冷却至室温,加入50ml水淬灭后用50ml乙酸乙酯萃取反应液三次,有机相过柱(比例为1:5的二氯甲烷和正庚烷作为洗脱液),得到1.93g中间体5-1,收率49%。

将3.92g(10mmol)的中间体5-1、2.07g(10mmol)的中间体a、0.18g(0.2mmol)的三(二亚苄基丙酮)二钯、0.08g(0.2mmol)的2-双环己基膦-2',6'-二甲氧基联苯、1.92g(20mmol)的叔丁醇钠和40ml甲苯加入100ml烧瓶中,氮气保护下加热至回流温度反应24h,将反应液冷却至室温,用50ml水淬灭反应并用50ml的甲苯萃取反应液三次,有机相用4g硫酸镁干燥,有机相过柱(比例为1:5的二氯甲烷和正庚烷作为洗脱液),得到化合物5(2.64g,收率47%)。通过lc-ms确认所得化合物的结构。质谱:m/z=562.25[m+h]+

化合物6的合成

参照化合物1的合成方法,将中间体a替换为中间体b,合成出化合物6(2.56g),收率40%。通过lc-ms确认所得化合物的结构。质谱:m/z=644.32[m+h]+

化合物7的合成

参照化合物2的合成方法,将中间体a替换为中间体b,合成出化合物7(3.06g,收率50%)。通过lc-ms确认所得化合物的结构。质谱:m/z=608.32[m+h]+

化合物8的合成

参照化合物4的合成方法,将中间体a替换为中间体b,合成出化合物8(2.41g,收率37%)。通过lc-ms确认所得化合物的结构。m/z=657.32[m+h]+

化合物9的合成

参照化合物5的合成方法,将中间体a替换为中间体b,合成出化合物9(2.94g,收率46%)。通过lc-ms和1hnmr确认所得化合物的结构。质谱:m/z=638.28[m+h]+

化合物10的合成

将3.1g(10mmol)中间体1-1、1.84g(10mmol)的2-氨基二苯并呋喃、0.18g(0.2mmol)的三(二亚苄基丙酮)二钯、0.08g(0.2mmol)的2-双环己基膦-2',6'-二甲氧基联苯、1.92g(20mmol)的叔丁醇钠和30ml甲苯加入50ml烧瓶中,在氮气保护下加热至回流温度反应4h,将反应液冷却至室温,通过50ml水淬灭并用50ml的乙酸乙酯萃取三次,有机相用4g硫酸镁干燥,通过柱色谱层析法(1:3的二氯甲烷和正庚烷作为洗脱液)分离提纯,得到2.6g中间体10-1,收率63%。

将4.12g(10mmol)的中间体10-1、3.28g(10mmol)的中间体b、0.18g(0.2mmol)的三(二亚苄基丙酮)二钯、0.08g(0.2mmol)的2-双环己基膦-2',6'-二甲氧基联苯、1.92g(20mmol)的叔丁醇钠和40ml甲苯加入100ml烧瓶中,通入氮气作为保护气体,将反应体系加热至回流反应24h,冷却至室温,通过50ml水淬灭反应和50ml甲苯萃取反应溶液三次,用4g硫酸镁干燥有机相,将有机相通过短硅胶柱,所得洗脱液在低真空下蒸出溶剂,用二氯甲烷重结晶,得到化合物10(2.28g,收率35%)。通过lc-ms确认所得化合物的结构。质谱:m/z=658.30[m+h]+

有机电致发光器件制备及评估实施例

蓝色有机电致发光器件的制备

实施例1:

通过以下过程制备阳极:将ito厚度为的ito基板(康宁制造)切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极搭接区、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及o2:n2等离子进行表面处理,以增加阳极(实验基板)的功函数的和清除浮渣。

在实验基板(阳极)上真空蒸镀m-mtdata(4,4',4”-三(n-3-甲基苯基-n-苯基氨基)三苯胺)以形成厚度为的空穴注入层(hil),并且在空穴注入层上真空蒸镀化合物1,以形成厚度为的第一空穴传输层(htl1)。

在第一空穴传输层上蒸镀tcta(4,4',4”-三(咔唑-9-基)三苯胺),形成厚度为的第二空穴传输层(htl2)。

α,β-adn作为主体,同时掺杂bd-1,主体和掺杂剂按以30:3的膜厚比形成了厚度为的有机电致发光层(eml)。

dbimibphen(4,7-diphenyl-2,9-bis(4-(1-phenyl-1h-benzo[d]imidazol-2-yl)phenyl)-1,10-phenanthroline)和liq(8-羟基喹啉-锂)以1:1的重量比进行混合并蒸镀形成了厚的电子传输层(etl),将liq蒸镀在电子传输层上以形成厚度为的电子注入层(eil),然后将镁(mg)和银(ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为的阴极。

在上述阴极上蒸镀厚度为的cp-1,形成有机覆盖层(cpl),从而完成有机电致发光器件的制造。

其中,m-mtdata、tcta、α,β-adn、bd-1、dbimibphen和liq的结构式如下:

实施例2~5

除了在形成第一空穴传输层(htl1)时各自使用表1中所示的化合物以外,利用与实施例1相同的方法制作有机电致发光器件。

即实施例2采用化合物2制作有机电致发光器件,实施例3采用化合物3制作有机电致发光器件,实施例4采用化合物4制作有机电致发光器件,实施例5采用化合物5制作有机电致发光器件,有机电致发光器件性能见表1。

比较例1~比较例3

在比较例1~比较例3中,除了使用了npb(n,n'-二苯基-n,n'-(1-萘基)-1,1'-联苯-4,4'-二胺)、化合物a(结构如下所示)、化合物b(结构如下所示)作为第一空穴传输层替代化合物1之外,用与实施例1相同的方法制造有机电致发光器件。

即比较例1采用npb制造有机电致发光器件,比较例2采用化合物a制造有机电致发光器件,比较例3采用化合物b制造有机电致发光器件,器件性能见表1。

其中,npb、化合物a、化合物b的结构如下:

对实施例1~5与比较例1~3制备的有机电致发光器件的性能进行测试,测试结果请参见表1:

表1实施例1~5与比较例1~3的有机电致发光器件性能

其中,在表1中,工作电压、发光效率、外量子效率、色坐标是在恒定电流密度10ma/cm2下进行测试,t95器件寿命在恒定电流密度15ma/cm2下进行测试。

根据表1可知,相较于对比例1~3制备的有机电致发光器件,实施例1~5制备的有机电致发光器件的工作电压降低了11%17%-26.8%、发光效率至少提高了12.3%、寿命至少提高了26.9%。

因此,将本申请的含氮化合物用于有机电致发光器件的第一空穴传输层可以显著降低有机电致发光器件的工作电压、提高发光效率并延长有机电致发光器件的寿命。

热处理实验

将实施例1、实施例3、实施例5和比较例1、比较例2所制备的有机电致发光器件,在110℃的环境中放置1小时以进行热处理,取出后测定热处理后的有机电致发光器件的性能。测试结果展示在表2中:

表2热处理后的有机电致发光器件的性能

对比表1(未进行热处理的有机电致发光器件的性能数据)与表2(热处理后的有机电致发光器件的性能数据)可知,将本申请的化合物1、化合物3、化合物5用于有机电致发光器件的第一空穴传输层时,热处理之后的器件的电压、效率、寿命与热处理前的器件性能相比较没有出现降低的趋势。但是将有机电致发光器件的第一空穴传输层换做化合物a、化合物b时,热处理之后的器件性能出现变化。其中化合物a的器件效率和寿命均出现明显的降低,化合物b的器件电压与热处理之前相比升高0.2v,效率与寿命也明显降低。

红色有机电致发光器件

实施例6

通过以下过程制备阳极:将ito厚度为的ito基板(康宁制造)切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极搭接区、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及o2:n2等离子进行表面处理,以增加阳极(实验基板)的功函数的和清除浮渣。

在实验基板(阳极)上真空蒸镀m-mtdata以形成厚度为的厚度为的空穴注入层(hil),并且在空穴注入层蒸镀npb,形成厚度为的第一空穴传输层(htl1)。

在第一空穴传输层上真空蒸镀化合物6,形成厚度为的第二空穴传输层(htl2)。

在第二空穴传输层上蒸镀4,4'-n,n'-dicarbazole-biphenyl(简称为”cbp”)作为主体,同时掺杂ir(piq)2(acac),主体和掺杂剂按以35:5的膜厚比形成了厚度为的有机电致发光层(eml)。

将dbimibphen和liq以1:1的重量比进行混合并蒸镀形成了厚的电子传输层(etl),将liq蒸镀在电子传输层上以形成厚度为的电子注入层(eil),然后将镁(mg)和银(ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为的阴极。

在上述阴极上蒸镀厚度为的cp-1,形成有机覆盖层(cpl),从而完成有机电致发光器件的制造。

其中,cbp和ir(piq)2(acac)的结构式如下:

实施例7~10

除了在形成第二空穴传输层(htl2)时各自使用表3中所示的化合物以外,利用与实施例6相同的方法制作有机电致发光器件。

即实施例7采用化合物7制作有机电致发光器件,实施例8采用化合物8制作有机电致发光器件,实施例9采用化合物9制作有机电致发光器件,实施例10采用化合物10制作有机电致发光器件。

比较例4~比较例5

在所述比较例4~5中,除了使用了化合物a以及化合物b作为空穴传输层替代化合物6之外,用与实施例6相同的方法制造有机电致发光器件。

比较例6

除了未形成第二空穴传输层外,采用与上述实施例6相同的方法制备有机电致发光器件。

即比较例4采用化合物a制造有机电致发光器件,比较例5采用化合物b制造有机电致发光器件,比较例6未设置第二空穴传输层。

表3实施例6~10与比较例4~6的有机电致发光器件性能

在表3中,发光效率、色坐标、工作电压和外量子效率是在恒定电流密度10ma/cm2下进行测试,t95器件寿命在恒定电流密度30ma/cm2下进行测试。

根据表3可知,相较于对比例4~6,实施例6~10在工作电压提高了10%-25%、发光效率至少提高了24.2%、外量子效率至少提高了12.8%、寿命至少提高了34.3%。

因此,将本申请的化合物用于有机电致发光器件的第二空穴传输层可以显著降低有机电致发光器件的工作电压、提高发光效率并延长有机电致发光器件的寿命。

综上所述,本申请的含氮化合物用于制备有机电致发光器件时,可以有效的降低电致发光器件的驱动电压、提升外量子效率并延长有机电致发光器件的寿命。

热处理实验

将实施例6、实施例7、实施例10、比较例4和比较例5所制备的有机电致发光器件在110℃下放置1小时,以进行热处理。将热处理后的有机电致发光器件进行形成测试,测试结果展示于表4中:

表4热处理后的有机电致发光器件的性能测试结果

对比表3(未进行热处理的有机电致发光器件的性能数据)与表4(热处理后的有机电致发光器件的性能数据)可知,将本申请发明的化合物6、化合物7、化合物10用于有机电致发光器件的第二空穴传输层时,热处理后的器件电压、效率、寿命与热处理前的器件性能相比较没有出现降低的趋势。但是将有机电致发光器件的第二空穴传输层换做化合物a、化合物b时,热处理之后的器件性能出现非常明显的降低。其中化合物a的器件效率降低了和寿命均出现明显的降低,化合物b的器件电压与热处理之前相比升高0.16v,效率与寿命也出现明显降低。

化合物的热稳定性

化合物在用于量产制备器件时,需要在蒸镀条件下长时间受热。若化合物在受热条件下分子结构的热稳定性差,则在长时间受热条件下化合物的纯度会下降,导致量产前中后期制备的器件性能差异较大。

本申请通过如下方法评估本申请的含氮化合物在量产蒸镀时长时间受热下分子结构的稳定性:

在高真空环境(<10-6pa),以及每秒的蒸镀速度对应的温度下,对化合物1~10和化合物a、化合物b分别进行200小时耐热实验(保温处理)。通过耐热实验前后的纯度下降值判断本申请的含氮化合物在量产条件下的稳定性。

含氮化合物耐热实验的温度和纯度下降值结果展示在表5中:

表5含氮化合物的试验温度和纯度下降值

从表5可知,本申请的含氮化合物的纯度下降值均小于0.5%。化合物a和化合物b,纯度下降值均超过1%。因此,本申请的含氮化合物的热稳定性,远优于化合物a和化合物b。

当化合物料纯度下降值超过1%时,会导致器件的效率和寿命发生明显降低;因此,该类热不稳定的化合物在实际量产使用中,会导致量产前中后期制备的器件性能存在较大差异。本申请中,化合物1~10的分子量均较小,从而有比较低的蒸镀温度,耐热实验证实其纯度下降值均小于0.5%,因此本申请的含氮化合物均具有优秀的量产热稳定性。

在本申请中,将降冰片基引入到三芳基胺的分支之间,精细调节胺与各个芳基成键键角与共轭程度,从而起到降低有机电致发光器件的工作电压、提高发光效率和提升寿命的效果。本申请之所以选择降冰片的2号位与三芳基胺连接,是因为2号位阻小,易于合成。因此,使用本申请化合物制作的有机电致发光器件,具有驱动电压低、发光效率高以及使用寿命长的特性。

不仅如此,本申请的含氮化合物采用降冰片基作为取代基团,其相对于采用金刚烷基等的化合物更容易被合成且合成时的原料成本更低,提高了空穴传输层材料的易得性,更有利于实现大规模应用,能够缓解空穴传输层材料制备困难而对oled等行业规模的制约。更重要的是,本申请的含氮化合物采用降冰片基作为取代基团,其相对于采用金刚烷基的化合物,更容易控制其分子量,避免分子量过大而导致的蒸镀温度过高,可以使得含氮化合物具有更低的蒸镀温度进而实现更佳的量产热稳定性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1