本发明涉及半导体技术领域,尤其是涉及一种荧光化合物以及作为发光层材料在有机发光二极管上的应用。
背景技术:
有机电致发光(OLED:Organic Light Emission Diodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。
当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展。但是,和实际的产品应用要求相比,OLED器件的发光效率,使用寿命等性能还需要进一步提升。
OLED发光器件犹如三明治的结构,包括电极材料膜层,以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。作为电流器件,当对OLED发光器件的两端电极施加电压,并通过电场作用有机层功能材料膜层中正负电荷,正负电荷进一步在发光层中复合,即产生OLED电致发光。
对于OLED发光器件提高性能的研究包括:降低器件的驱动电压,提高器件的发光效率,提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能OLED的功能材料。
应用于OLED器件的OLED光电功能材料从用途上可划分为两大类,即电荷注入传输材料和发光材料,进一步,还可将电荷注入传输材料分为电子注入传输材料和空穴注入传输材料,还可以将发光材料分为主体发光材料和掺杂材料。为了制作高性能的OLED发光器件,要求各种有机功能材料具备良好的光电特性,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻璃化转化温度等,作为发光层的材料要求材料具有良好的荧光量子效率、材料蒸镀稳定性、适当的HOMO/LUMO能阶等。
构成OLED器件的OLED光电功能材料膜层至少包括两层以上结构,产业上应用的OLED器件结构,则包括空穴注入层、空穴传输层、发光层、电子注入层等多种膜层,也就是说应用于OLED器件的光电功能材料至少包含空穴注入材料,空穴传输材料,发光材料,电子注入材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的OLED器件搭配而言,所使用的光电功能材料具有较强的选择性,相同的材料在不同结构器件中的性能表现,也可能完全迥异。
目前,荧光材料研究方面已经取得了长足的发展,能够满足产业化的需求;但是其效率、寿命方面依然存在不足,不易达到全彩RGB的要求。因而,具有高效率、长寿命的荧光材料的研究和开发一直是产业化的热点。
因此,针对当前OLED显示照明产业的实际需求而言,荧光材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能荧光材料显得尤为重要。
技术实现要素:
针对现有技术存在的上述问题,本申请人提供了一种有机电致荧光化合物及其应用。本发明制作出的OLED器件具有良好的外量子效率、材料稳定性以及色纯度,能够满足面板制造企业的要求。
本发明的技术方案如下:
一种有机电致荧光化合物,所述化合物的结构如通式(1)所示:
通式(1)中,R1、R2分别独立地表示为三芳香胺基团或者含氮的多元杂环芳香基团;R1、R2相同或者不同;
通式(1)中,X为氧原子、硫原子、硒原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基或芳基取代的胺基中的一种;
通式(1)中,R3选取通式(2)所示结构:
a为X2、X3分别为氧原子、硫原子、硒原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基或芳基取代的胺基中的一种;a与通式(1)的CL1-CL2键、CL2-CL3键、CL3-CL4键、CL4-CL5键连接。
优选的,所述X还可以为-CnHn-,且n为0,此时通式(1)的结构如通式(3)所示:
优选的,所述R1、R2均采用通式(4)表示:
通式(4)中,R5、R6分别独立地表示取代或未取代的苯基、吡啶基、二联苯基、三联苯基、蒽基、菲基、三嗪基、嘧啶基、喹啉基、二苯并呋喃基、9,9-二甲基芴基、9,9-二苯基芴基、咔唑基、苯并咔唑基、二苯并噻吩基、丫啶基、吲哚并咔唑基、吩噁嗪基、噻噁嗪基中的一种,R5、R6相同或者不同。
优选的,所述通式(4)中,R5、R6分别独立地表示为:
中的任一种。
优选的,所述R1、R2均采用通式(5)表示:
通式(5)中,X1为氧原子、硫原子、硒原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基或芳基取代的胺基中的一种。
优选的,所述R1、R2均采用通式(6)或通式(7)表示:
其中,R6、R7分别独立的选取氢或通式(8)所示结构:
b为X2、X3分别为氧原子、硫原子、硒原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基或芳基取代的胺基中的一种;a与CL1-CL2键、CL2-CL3键、CL3-CL4键、CL4-CL5键、CL‘1-CL’2键、CL‘2-CL’3键、CL‘3-CL’4键或CL‘4-CL’5键连接。
优选的,所述化合物的具体结构为:
中的任一种。
一种所述化合物的有机电致发光器件,所述的化合物作为发光层主体材料或则掺杂材料应用于有机电致发光二极管。
本发明有益的技术效果在于:
本发明所述化合物可应用于OLED发光器件制作,并且可以获得良好的器件表现,所述化合物作为OLED发光器件的发光层主体材料或者掺杂材料使用时,器件的发光效率,功率效率和外量子效率均得到很大改善;器件色纯度得到明显改善,器件寿命得到提升;本发明所述化合物在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。
本发明以二苯并庚烯上的C-C键与芴联接所形成的结构为核心,并且通过芳香胺上不同的取代基对化合物进行修饰,分子结构具有较强的空间立体作用,有效降低分子间的聚集效应,抑制材料的结晶程度,该类材料运用于有机发光二极管中,可以有效提高器件效率和寿命。
附图说明
图1为使用本发明化合物的OLED器件的结构图。
图2为本发明实施例13所用关键材料的化学结构式。
具体实施方式
为了更加清楚的了解本发明的技术手段和实用目的,通过列举实施例和比较例,同时辅以图片加以说明。
实施例1(化合物01)
现提供该化合物的具体合成路线:
250ml的四口瓶,氮气保护下,加入5.90克(0.01M)中间体A,4.23克(0.025M)二苯胺,1.20克(0.012M)叔丁醇钠,0.1克醋酸钯,0.05克CXA【正丁基二(1-金刚烷基)膦】,200ml甲苯,加热回流18小时,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,用甲苯:乙醇=2.5:1(体积比)混合溶剂打浆,重结晶后得到5.59克白色固体,纯度(HPLC)为98.0%,收率71.6%。
元素分析结构(分子式C58H40N2O):理论值C,89.20;H,5.16;N,3.59;O,2.05;
测试值:C,89.14;H,5.08;N,3.68;O,2.10。
实施例2(化合物05)
现提供该化合物的具体合成路线:
250ml的四口瓶,氮气保护下,加入6.16克(0.01M)中间体B,4.23克(0.025M)二苯胺,1.20克(0.012M)叔丁醇钠,0.1克醋酸钯,0.05克CXA【正丁基二(1-金刚烷基)膦】,200ml甲苯,加热回流24小时,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,用甲苯:乙醇=2.5:1(体积比)混合溶剂打浆,重结晶后得到5.85克白色固体,纯度(HPLC)为98.42%,收率72.46%。
元素分析结构(分子式C61H46N2):理论值C,90.78;H,5.75;N,3.47;
测试值:C,90.92;H,5.78;N,3.30。
实施例3(化合物07)
现提供该化合物的具体合成路线:
250ml的四口瓶,氮气保护下,加入5.90克(0.01M)中间体A,7.53克(0.025M)中间体a,1.20克(0.012M)叔丁醇钠,0.1克醋酸钯,0.05克CXA【正丁基二(1-金刚烷基)膦】,200ml甲苯,加热回流25小时,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,用甲苯:乙醇=2.5:1(体积比)混合溶剂打浆,重结晶后得到克白色固体7.76克,纯度(HPLC)为97.5%,收率74.26%。
元素分析结构(分子式C76H56N2O3):理论值C,87.33;H,5.40;N,2.68;O,4.59;
测试值:C,87.50;H,5.27;N,2.71;O,4.52。
实施例4(化合物16)
现提供该化合物的具体合成路线:
250ml的四口瓶,氮气保护下,加入6.32克(0.01M)中间体C,5.23克(0.025M)中间体b,1.20克(0.012M)叔丁醇钠,0.1克醋酸钯,0.05克CXA【正丁基二(1-金刚烷基)膦】,200ml甲苯,加热回流24小时,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,用甲苯:乙醇=2.5:1(体积比)混合溶剂打浆,重结晶后得到克白色固体6.37克,纯度(HPLC)为97.87%,收率70.56%。
元素分析结构(分子式C67H54N2O):理论值C,89.10;H,6.03;N,3.10;O,1.77;
测试值:C,88.95;H,6.10;N,2.97;O,1.98。
实施例5(化合物23)
现提供该化合物的具体合成路线:
250ml的四口瓶,氮气保护下,加入6.06克(0.01M)中间体D,7.53克(0.025M)中间体a,1.20克(0.012M)叔丁醇钠,0.1克醋酸钯,0.05克CXA【正丁基二(1-金刚烷基)膦】,200ml甲苯,加热回流26小时,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,用甲苯:乙醇=2.5:1(体积比)混合溶剂打浆,重结晶后得到克白色固体7.87克,纯度(HPLC)为97.60%,收率75.20%。
元素分析结构(分子式C75H54N2O4):理论值C,86.02;H,5.20;N,2.67;O,6.11;
测试值:C,85.95;H,5.18;N,2.73;O,6.14。
实施例6(化合物24)
现提供该化合物的具体合成路线:
250ml的四口瓶,氮气保护下,加入6.06克(0.01M)中间体D,5.23克(0.025M)中间体b,1.20克(0.012M)叔丁醇钠,0.1克醋酸钯,0.05克CXA【正丁基二(1-金刚烷基)膦】,200ml甲苯,加热回流23小时,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,用甲苯:乙醇=2.5:1(体积比)混合溶剂打浆,重结晶后得到6.28克白色固体,纯度(HPLC)为97.75%,收率72.80%。
元素分析结构(分子式C63H46N2O2):理论值C,87.67;H,5.37;N,3.25;O,3.71;
测试值:C,87.52;H,5.48;N,3.17;O,3.83。
实施例7(化合物25)
现提供该化合物的具体合成路线:
250ml的四口瓶,氮气保护下,加入6.81克(0.01M)中间体F,7.53克(0.025M)中间体a,1.20克(0.012M)叔丁醇钠,0.1克醋酸钯,0.05克CXA【正丁基二(1-金刚烷基)膦】,200ml甲苯,加热回流30小时,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,用甲苯:乙醇=2.5:1(体积比)混合溶剂打浆,重结晶后得到6.28克白色固体克,纯度(HPLC)为98.46%,收率73.20%。
元素分析结构(分子式C63H43N3O):理论值C,88.19;H,5.05;N,4.90;O,1.86;
测试值:C,88.09;H,5.08;N,4.83;O,2.00。
实施例8(化合物27)
现提供该化合物的具体合成路线:
250ml的四口瓶,氮气保护下,加入6.56克(0.01M)中间体G,7.53克(0.025M)中间体a,1.20克(0.012M)叔丁醇钠,0.1克醋酸钯,0.05克CXA【正丁基二(1-金刚烷基)膦】,200ml甲苯,加热回流27小时,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,用甲苯:乙醇=2.5:1(体积比)混合溶剂打浆,重结晶后得到克8.11克白色固体克,纯度(HPLC)为97.05%,收率73.80%。
元素分析结构(分子式C81H66N2O2):理论值C,88.49;H,6.05;N,2.55;O,2.91;
测试值:C,88.09;H,5.08;N,4.83;O,2.00。
实施例9(化合物29)
现提供该化合物的具体合成路线:
250ml的四口瓶,氮气保护下,加入6.46克(0.01M)中间体H,4.23克(0.025M)二苯胺,1.20克(0.012M)叔丁醇钠,0.1克醋酸钯,0.05克CXA【正丁基二(1-金刚烷基)膦】,200ml甲苯,加热回流29小时,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,用甲苯:乙醇=2.5:1(体积比)混合溶剂打浆,重结晶后得到5.73克白色固体,纯度(HPLC)为97.58%,收率69.6%。
元素分析结构(分子式C59H44N2OSi):理论值C,85.89;H,5.38;N,3.40;O,1.94;Si,3.40;
测试值:C,85.78;H,5.43;N,3.25;O,2.01;Si,3.53。
实施例10(化合物36)
现提供该化合物的具体合成路线:
250ml的四口瓶,氮气保护下,加入6.04克(0.01M)中间体I,7.47克(0.025M)中间体c,1.20克(0.012M)叔丁醇钠,0.1克醋酸钯,0.05克CXA【正丁基二(1-金刚烷基)膦】,200ml甲苯,加热回流20小时,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,用甲苯:乙醇=2.5:1(体积比)混合溶剂打浆,重结晶后得到7.20克白色固体,纯度(HPLC)为98.27%,收率69.05%。
元素分析结构(分子式C75H50N2O4):理论值C,88.49;H,6.05;N,2.55;O,2.91;
测试值:C,88.63;H,6.14;N,2.31;O,2.92。
实施例11(化合物39)
现提供该化合物的具体合成路线:
250ml的四口瓶,氮气保护下,加入6.32克(0.01M)中间体J,6.83克(0.025M)中间体d,1.20克(0.012M)叔丁醇钠,0.1克醋酸钯,0.05克CXA【正丁基二(1-金刚烷基)膦】,200ml甲苯,加热回流28小时,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,用甲苯:乙醇=2.5:1(体积比)混合溶剂打浆,重结晶后得到7.06克白色固体,纯度(HPLC)为98.02%,收率69.45%。
元素分析结构(分子式C72H44N2O5):理论值C,85.02;H,4.36;N,2.75;O,7.86;
测试值:C,85.12;H,4.28;N,2.80;O,7.80。
实施例12(化合物42)
现提供该化合物的具体合成路线:
250ml的四口瓶,氮气保护下,加入6.06克(0.01M)中间体H,7.88克(0.025M)中间体e,1.20克(0.012M)叔丁醇钠,0.1克醋酸钯,0.05克CXA【正丁基二(1-金刚烷基)膦】,200ml甲苯,加热回流30小时,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,用甲苯:乙醇=2.5:1(体积比)混合溶剂打浆,重结晶后得到7.68克白色固体,纯度(HPLC)为98.12%,收率71.45%。
元素分析结构(分子式C75H50N2O6):理论值C,83.78;H,4.69;N,2.61;O,8.93;
测试值:C,83.56;H,4.85;N,2.75;O,8.84。
以下通过实施例13和比较例1~12详细说明本发明合成的化合物在OLED器件上的应用效果。所述比较1~12与实施例13相比,所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是对器件中所使用的部分材料进行了一些调整,比较例使用了本发明实施例合成的化合物。器件结构如表1所示。
实施例13
如图1所示,透明基底层1采用透明材料,如玻璃。对ITO阳极层2(膜厚为150nm)进行洗涤,即依次进行碱洗涤、纯水洗涤、干燥后再进行紫外线-臭氧洗涤以清除透明ITO表面的有机残留物。
在进行了上述洗涤之后的ITO阳极层2上,利用真空蒸镀装置,蒸镀HAT-CN,其膜厚为10nm,这层有机材料作为空穴注入层3使用。紧接着蒸镀60nm厚度的TCTA(4,4',4”-三(咔唑-9-基)三苯胺)作为空穴传输层4。
上述空穴传输材料蒸镀结束后,制作OLED发光器件的发光层5,其结构包括OLED发光层5所使用材料CBP【4,4'-二(9-咔唑)联苯】作为主体材料,MQAB【4,4’-双(2,2-二苯乙烯基)】联苯作为掺杂材料,掺杂比例为5%重量比,发光层膜厚为25nm。
在上述发光层5之后,继续真空蒸镀电子传输层材料为Alq3(8-羟基喹啉铝)。该材料的真空蒸镀膜厚为30nm,此层为电子传输层6。
在电子传输层6上,通过真空蒸镀装置,制作膜厚为1nm的氟化锂(LiF)层,此层为电子注入层7。
在电子注入层7上,通过真空蒸镀装置,制作膜厚为80nm的铝(Al)层,此层为阴极反射电极层8使用。各层材料结构如图2所示。
如上所述地完成OLED发光器件后,用公知的驱动电路将阳极和阴极连接起来,测量器件的发光效率,发光颜色,外部量子效率以及器件寿命(LT90:亮度衰减到初始亮度的90%)。测试结果见表2。
比较例1
本比较例与实施例13不同之处在于:OLED发光器件的发光层5中的MQAB改变为实施例1制备得到的材料。所制作的OLED发光器件的测试结果见表2。
比较例2
本比较例与实施例13同之处在于:OLED发光器件的发光层5中的MQAB改变为实施例2制备得到的材料。所制作的OLED发光器件的测试结果见表2。
比较例3
本比较例与实施例13不同之处在于:OLED发光器件的发光层5中的MQAB改变为实施例3制备得到的材料。所制作的OLED发光器件的测试结果见表2。
比较例4
本比较例与实施例13不同之处在于:OLED发光器件的发光层5中的MQAB改变为实施例4制备得到的材料。所制作的OLED发光器件的测试结果见表2。
比较例5
本比较例与实施例13不同之处在于:OLED发光器件的发光层5中的MQAB改变为实施例5制备得到的材料。所制作的OLED发光器件的测试结果见表2。
比较例6
本比较例与实施例13不同之处在于:OLED发光器件的发光层5中的CPB改变为实施例6制备得到的材料。所制作的OLED发光器件的测试结果见表2。
比较例7
本比较例与实施例13不同之处在于:OLED发光器件的发光层5中的MQAB改变为实施例7制备得到的材料。所制作的OLED发光器件的测试结果见表2。
比较例8
本比较例与实施例13不同之处在于:OLED发光器件的发光层5中的MQAB改变为实施例8制备得到的材料。所制作的OLED发光器件的测试结果见表2。
比较例9
本比较例与实施例13不同之处在于:OLED发光器件的发光层5中的MQAB改变为实施例9制备得到的材料。所制作的OLED发光器件的测试结果见表2。
比较例10
本比较例与实施例13不同之处在于:OLED发光器件的发光层5中的CPB改变为实施例10制备得到的材料。所制作的OLED发光器件的测试结果见表2。
比较例11
本比较例与实施例13不同之处在于:OLED发光器件的发光层5中的CPB改变为实施例11制备得到的材料。所制作的OLED发光器件的测试结果见表2。
比较例12
本比较例与实施例13不同之处在于:OLED发光器件的发光层5中的CPB改变为实施例12制备得到的材料。所制作的OLED发光器件的测试结果见表2。
表1
表2
注:以上数据都是以实施例13作为标准器件,实施例13所得器件在发光亮度为1000cd/m2时,发光效率为3.6cd/A,外部量子效率为3.0%;驱动寿命(发光亮度为初始亮度的90%)为30小时
由表2的结果可以看出,本发明所述化合物可应用于OLED发光器件制作,并且可以获得良好的器件表现。器件的发光效率、外量子效率均得到很大改善;同时器件寿命提升非常明显。所述化合物在OLED发光器件中具有良好的应用效果,并具有良好的产业化前景。
虽然已通过实施例和优选实施方式公开了本发明,但应理解,本发明不限于所公开的实施方式。相反,本领域技术人员应明白,其意在涵盖各种变型和类似的安排。因此,所附权利要求的范围应与最宽的解释相一致以涵盖所有这样的变型和类似的安排。