高导热、耐真空、耐高温防腐涂层的制作方法

文档序号:12582868阅读:433来源:国知局

本发明涉及一种高导热、耐真空、耐高温防腐涂层,属于高分子特种工程塑料技术领域。



背景技术:

聚醚酮酮(PEKK)作为一种高性能热塑性工程塑料,具有出色的耐热性、刚性、机械性能和耐磨性能,被广泛应用在国防军工、航空航天、电子信息、汽车制造、石油化工、医疗卫生、家用电器、汽车制造等领域。目前,将聚醚酮酮作为涂料来使用时同样具有很多优异性能,如与基材的粘结力强、耐磨、耐刮擦、硬度高、耐化学性优、不粘接性好、耐热性高等,非常适合应用于不粘性、耐高温、防腐及复合材料等方面。

然而,由于聚醚酮酮不溶于除浓硫酸外的水和有机溶剂,不能将其作为涂料的常规解决方案来使用,因此,聚醚酮酮必须采用以下方式来涂敷到制品表面:粉末静电喷涂、添加表面活性剂的有机溶剂分散液或水分散液涂装,并通过烘烤工艺处理,使之形成适用的涂层膜。尤其在耐高温防腐涂层方面,长期以来主要是采用氟碳树脂涂料,如聚四氟乙烯均聚物(PTFE)、四氟乙烯-全氟烷氧基乙烯基醚共聚物(PFA)、四氟乙烯和六氟丙烯共聚物(FEP或F46)。当使用PTFE、FEP、PFA或类似的氟树脂涂料直接涂装金属基板时,会出现粘附缺陷,用氟树脂直接涂覆金属基板是非常困难的,因为氟树脂的不粘附特性使其与基材难以粘接。因此,开发氟树脂涂料时,需要开发出相对应的底涂层涂料,用于氟树脂涂层与基材的粘接层。然而,使用底涂层涂料的氟树脂覆膜时同样存在很多问题:当多次受到热量、潮湿、腐蚀或类似的侵蚀时,涂层会逐渐失效,面涂层与底涂层之间、中间层和底涂层之间、底涂层内部或底涂层和基材之间都会出现剥离现象。同时,氟碳涂层还在耐磨性不佳、硬度不高、耐高温性能差等缺点。在化学工业应用领域中,很多涂层均亟需要具有良好导热性这一重要性能,这是目前各种涂料不易解决的重大难题。



技术实现要素:

本发明的目的是提供一种高导热、耐高温、耐真空防腐涂层,解决了化学工业反应设备防腐和导热性能难以兼具的难题,具有结合力强劲,表面光滑,耐真空,导热性能好,并且能够防止因热量、水分、化学腐蚀等侵蚀使涂层从基材剥离,从而提高耐腐蚀性、耐蒸汽和耐久性等性能。

本发明所述的高导热、耐高温、耐真空防腐涂层,包括底涂层和面涂层,底涂层为粘结层,由以下质量百分数的原料涂覆而成:

其余为去离子水;

面涂层为防腐层,由以下质量百分数的原料涂覆而成:

其中:

所述PEKK超细粉是以经亲电聚合法合成得到的聚醚酮酮粗粉为原材料,经封端和高温热氧交联处理,再通过低温气流粉碎工艺而制得的超细粉,为低结晶型聚醚酮酮树脂,牌号为561,粒度为400~600目,特性粘度约为0.61~0.68dL/g,D50值约为5-10μm,D90值约为10-20μm;

所述助溶剂为乙醇、乙二醇、丙三醇、乙二醇乙醚、乙二醇单丙醚中的任意一种或多种,优选乙醇和乙二醇乙醚复合,其配比为1:1;

所述增粘胶体为纤维素醚类或聚乙烯醇类增粘剂的水溶液,粘度约为100-1000cps,根据涂覆制件的形状,优选的粘度为200-500cps;增粘剂优选粘度为4000~15000cps的羟丙基甲基纤维素;

所述颜填料为金刚石微粉、钛白粉、氧化铝、亲水性二氧化硅、碳纳米管中的任意一种或多种,粒度为600~1200目;其中,亲水性二氧化硅的原始粒径0.3μm以下,平均粒径12nm,BET比表面积200m2/g,优选赢创德固赛的AEROSIL 200;金刚石微粉的粒径约为10μm;优选颜填料为亲水性二氧化硅和金刚石微粉复合,其配比为1:4,其加入量为0.1-1%,优选0.5%;

所述表面活性剂为阴离子型高分子量羧酸铵盐类表面活性剂或聚醚改性硅氧烷类表面活性剂,优选AFCONA5071;

所述消泡剂为有机硅类消泡剂,优选AFCONA2524、BYK-021或BYK-094;

所述流平剂为水性硅基流平剂,优选AFCONA3580、AFCONA3585;

所述金刚石微粉的粒径为8~12μm;

所述亲水性二氧化硅的平均粒径12nm,BET比表面积为200m2/g,优选赢创德固赛的AEROSIL 200。

所述底涂层的厚度为5~50μm;面涂层的厚度为50~1000μm,优选100~500μm;总的涂层厚度约为100~1000μm。

所述涂层的涂覆工艺采用空气喷涂涂覆底涂层和静电喷涂工艺涂覆面涂层相结合的工艺方法。其中,底涂层为粘结层,采用分散液静电喷涂工艺成型,采取常温干燥、中温烘干、烘烤成型的三级成型工艺,即可单层涂覆又可多层涂覆,所形成的底涂层既具有非常优异的基材附着力;面涂层为外层防腐涂层,采用改性的PFA粉末涂料通过静电喷涂工艺涂覆,然后烘烤成型。涂覆成型方法包括以下步骤:

(1)基材前处理:

采用机械或化学表面处理方式对工件进行全面清理,处理后的表面粗糙度(Ra值)为干膜厚度(DFT)的20~25%,然后用溶剂(乙醇、丙酮等常用有机溶剂)清洗一遍,吹干表面,将处理好的工件合理放置待喷;其中,所述工件材质为铝、铜、碳钢、不锈钢等金属材料或玻璃、陶瓷等无机材料,工件的表面处理方式为机械打磨、喷砂、抛丸或者化学除锈、除油、溶剂清洗等常规表面处理手段,工件表面粗糙度根据所需膜厚控制在2-50μm之间;

(2)将底涂层中配比量的去离子水、助溶剂、表面活性剂、流平剂、消泡剂、亲水性二氧化硅加入到搅拌桶内进行搅拌混合,然后加入PEKK超细粉和金刚石微粉,搅拌均匀后加入增粘胶体来调制粘度,经搅拌脱泡或真空脱泡后,得到水性涂料,备用;其中,搅拌器采用低剪切的推进式搅拌桨,搅拌转速控制在100~200r/min;

喷涂前,采用100目滤网对水性涂料进行过滤,然后将其加入到喷壶中,连接压缩空气,调节空气量和进料量旋钮,通过喷枪将水性涂料均匀喷涂到工件上,喷涂完成后,目测漆膜是否有杂质、针孔、气泡等缺陷,如有缺陷,重新清理,再重复上述步骤,重新喷涂,直至得到合格漆膜;

将上述合格工件在室温下放置约5-10分钟,待工件晾干后清洁工件未喷涂区域粉末,然后将其移入80-120℃的烘箱中烘干5-10分钟,再将烘干喷涂工件移入设定温度为340-380℃的高温烘箱中烘烤成膜,当工件基材温度达到设定温度后,烘烤5-30分钟,待涂层呈光亮漆膜时即可;

(3)将面涂层中配比量的原料混合均匀,得到粉末涂料,备用;

调整静电喷枪的工艺参数:进气口压力为0.5~0.7MPa,工作电压为20~60KV,优选30~40KV,工作电流为20~50μA,供粉气的压力为0.1~0.3MPa,优选0.3MPa,雾化气的压力为0.05~0.15MPa,前冲气的压力为0.1~0.2MPa,将步骤(2)中得到合格漆膜的工件转移至外侧喷涂室,对工件进行粉末静电喷涂,根据工件的使用工况喷涂2-10遍即可;

(4)由于PFA喷涂时厚喷容易产生小气泡,注意喷涂时采取少量多次的薄喷工艺,每次喷涂表面上粉后侧面观察不光亮即可,重复步骤(3)中静电喷涂和烘烤成膜工艺即可,根据工件使用工况喷涂2-10遍;

将成品工件从高温烘箱中取出,自然冷却至室温,检测成膜厚度及涂层品质,包装入库。

其中:

步骤(2)中的喷枪采用高流量低气压喷枪,如ANEST公司的W77-21S,喷嘴口径为0.8-1.8mm,喷涂空气压力为0.2-0.34MPa,优选0.25-0.3MPa,喷涂距离为200-300mm,涂料喷出量为95-300mL/min,喷幅为100-265mm,喷枪运行轨迹与喷涂表面平行。

步骤(3)中的静电喷枪采用供粉桶式静电粉末喷枪组合,如RAMSEIER公司的PH123(Mk2)B-V静电喷枪,PH50型粉桶,KVM5型粉泵,MG123(Mk2)V先进静电粉末手动喷枪,GCU123B-V喷枪控制单元,进气口压力约为0.5-0.7MPa,工作电压约为20-60KV,工作电流约为20-50μA,供粉气的压力约为0.1-0.3MPa,雾化气的压力约为0.05-0.15MPa,前冲气的压力约为0.1-0.2MPa,喷涂操作时枪头与工件的距离保持在15-20cm左右,枪身尽量与工件表面保持垂直,喷枪运行轨迹与工件表面平行。

步骤(3)中进行多层喷涂时,电压逐级降低,例如第一层防腐层60KV,第二层50KV,以此类推,但不应低于20KV。

本发明的有益效果如下:

本发明的高导热、耐高温、耐真空防腐涂层非常适合应用于需要传热的耐高温防腐涂层领域,热别是薄壁器件的高导热耐高温防腐,可广泛应用于化学工业中的反应釜、热交换器、腐蚀性物质容器、管道、泵、阀门、反应塔、槽罐等高导热耐高温防腐领域,具有涂层结合力强劲、表面光滑、耐真空、导热性能好的特点,并且能够防止因热量、水分、化学腐蚀等侵蚀使涂层从基材剥离,从而提高耐腐蚀性、耐蒸汽和耐久性等性能,长期使用温度240℃以上,同时,PFA涂层具有最高等级的防化学腐蚀性能和耐高温性能。

具体实施方式

以下结合实施例对本发明做进一步描述。

实施例

对铝试片进行喷砂、机械细砂纸打磨,并用乙醇等溶剂清洗铝试片,吹干表面,将处理好的工件挂起放置待喷;将预配的水性底涂料倒入搅拌桶,采用水或增粘胶体调节底涂料的粘度,利用旋转粘度计测试粘度(3号转子,20转/分钟),然后低速搅拌约10分钟,过100目滤布后抽真空脱泡3-5分钟,气泡基本脱除,装桶备用;将面涂层的配比量的原料用高速混合机混合搅拌约10min,过100目振动筛后装袋备用;连接压缩空气,调节空气量和进料量旋钮以达到最佳雾化效果;将底涂层所用涂料均匀喷涂到工件上,喷涂完成后,目测漆膜是否有杂质、针孔、气泡等缺陷,如有缺陷,重新清理,再重复上述步骤,重新喷涂,直至得到合格漆膜,然后将上述合格工件在室温下放置约5~10分钟,待工件晾干后清洁工件未喷涂区域粉末,然后将其移入80~120℃的烘箱中烘干5~10分钟,再将烘干喷涂工件移入设定温度为340~380℃的高温烘箱中烘烤成膜,当工件基材温度达到设定温度后,烘烤5~10min,待涂层呈光亮漆膜时即可;调整静电喷枪,调整进气口压力约为0.5~0.7MPa,工作电压约为20~60KV,工作电流约为20~50μA,供粉气的压力约为0.1~0.3MPa,雾化气的压力约为0.05~0.15MPa,前冲气的压力约为0.1~0.2MPa,将上述工件转移至外侧喷涂室,对工件进行粉末静电喷涂,由于PFA喷涂时厚喷容易产生小气泡,注意喷涂时采取少量多次的薄喷工艺,每次喷涂表面上粉后侧面观察不光亮即可,根据工件使用工况喷涂2-10遍即可,然后将烘干喷涂工件移入设定温度为340~380℃的高温烘箱中烘烤成膜,当工件基材温度达到设定温度后,烘烤5~30min,待涂层呈光亮漆膜时即可。待自然冷却至室温后,将成品工件从高温烘箱中取出,检测成膜厚度及涂层品质,包装入库。对成膜厚度及各项性能进行检测,检测结果见表2。

实施例1-8的涂层所用原料质量百分数配比见表1。

表1涂层的原料质量百分数配比

涂层性能测试方法:

1、涂层厚度测试

参考标准《GBT 13452.2-2008色漆和清漆漆膜厚度的测定》,具体测试方法如下:①查看样板基材将金属涂层测厚仪按基材调到“Fe”或“NFe”并在相应的校准板上归零;②在锅内层平底处取5个不同的点分别测试膜厚,记录数据;③去掉一个最大值和一个最小值,最后取范围值分析数据。

2、百格法测试涂层附着力:

参考标准《GBT 9286色漆和清漆漆膜的划痕实验》,具体测试方法如下:①用壁纸刀和百格板在测试样本表面划10*10个(100个)1mm*1mm的小网格,每一条划线都应深及涂层底层;②用毛刷将涂层表面碎屑清理干净;③用3M600号胶带牢固粘结被测试小网格,并用橡皮擦用力擦拭胶带,以加大胶带与被测试区域的接触面积及力度;④用手抓住胶带一端,在垂直方向上迅速扯下胶带,同一位置进行两次实验;⑤去掉一个最大值和一个最小值,最后取范围值,分析数据。

附着力评价标准:

0级:切割边缘完全平滑,无一格脱落;

1级:在切口交叉处有少许涂层脱落,但交叉切割面积受影响不能明显大于5%;

2级:在切口交叉处和/或沿切口边缘有涂层脱落,受影响的交叉切割面积明显大于5%,但不能明显大于15%;

3级:涂层沿切口边缘部分或全部以大碎片脱落,和/或在格子不同部位上部分或全部剥落,受影响的交叉切割面积明显大于15%,但不能明显大于35%;

4级:涂层沿切口边缘大碎片剥落,和/或一些方格部分或全部出现剥落,受影响的交叉切割面积明显大于35%,但不能明显大于65%;

5级:剥离的程度超过4级。

3、耐高温腐蚀性能测试:

参考标准《ASTM C868用于保护性衬里化学防腐性能测试的标准方法》,具体测试方法如下:①将样板及对比板用带植物油的软布擦拭,然后用55℃~65℃含洗洁剂的温水洗净擦干;②分别将擦洗干净的样板对比板放置于腐蚀测试容器两侧并夹紧,向烧瓶中注入10%的混酸溶液,用油浴锅加热,用温度计测量测试溶剂的温度,温度控制在180℃~200℃区间内,挥发性溶剂需要冷凝回流;③时刻注意样板表面温度变化,在腐蚀过程中应向容器中适时添加水,注入量为液面超过烧瓶内壁二分之一的位置;④清洗附着在容器表面的盐,并立即目测检查涂层是否有缺陷,记录出现缺陷时腐蚀时间,作为涂层耐腐蚀结果,并记录是否存在其它缺陷;⑤重复在同一位置操作,做数据比较。

表2检测结果

在喷涂、烘烤成膜后,实施例1的底漆膜光亮,无针孔及起泡现象,面涂层成膜光滑;实施例2的烘烤温度相比1号要高约10℃,但是流平不佳,部分漆膜粗糙呈橘皮状,而且有针孔,面涂层成型后表面仍有稍许橘皮;实施例3,烘烤温度380℃时,成膜性不佳,部分漆膜呈网状,并且针孔较多,面涂层成型后,由于温度偏高,面涂层起泡,气泡与烘烤温度有关;实施例4号成膜型好,而且呈现半透明状,漆膜光亮,面涂层成膜良好,而且漆膜光滑柔韧;实施例5的部分漆膜内部多微小气泡,面涂层成型后膜层平滑;实施例6漆膜表面多小孔,面涂层表面不光滑,有针孔产生;实施例7漆膜光亮,面涂层成膜良好,但容易起小气泡;实施例8少部分漆膜成膜不佳,表面多小孔,面涂层成膜后良好,光泽度稍差。

综上所述,选用不同系列和特性黏度的PEEK的涂层性能和工艺实用性差别明显,选用牌号为561的低结晶型PEEK树脂会使涂层的附着力性能更加优越,且其成型温度和PFA涂层相近,烘烤成型相对容易,不易产生气泡等质量温度,在外防腐涂层中添加适量PPS有助于控制上述问题。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1