本发明属于高分子材料领域,涉及一种水性涂层,尤其涉及一种防水汽水性涂层原液及其制备方法及一种防水汽水性涂层及其应用。
背景技术:
在日常的生活和生产中,水汽的存在会带来诸多不便和损失。在包装领域,水汽的渗透会加速产品的损坏,减短产品的寿命,造成直接的经济损失;在oled相关领域,水汽会劣化oled器件的各组分,特别会弱化其发光能力,严重降低oled器件的显示质量和使用寿命;在太阳能电池领域,水汽的侵蚀,会造成太阳能电池片的发电效率降低,缩短光伏组件的使用寿命。
现有的常用的阻水技术,包括以下几种:(1)在薄膜表面使用氧化硅、氧化铝进行沉积镀膜来提高阻隔水汽的效果,(2)在造粒时,共混如具有阻水效果的无机物填料来进行插层,在最终制备的薄膜实现阻隔水汽的木器,(3)将具有阻水效果的高分子材料制成薄膜,与需要提高阻水效果的薄膜进行复合,(4)在高分子涂层中混入片状填料来增大水汽的透过路径来提高阻隔水汽的效果。使用阻水涂层的方式是现在一种普遍被采用的方式,而如何制备一种高效的且制备方法简单的阻水涂层依旧是相关技术人员的研究难点。
技术实现要素:
针对现有技术中存在的技术问题,本发明提供一种防水汽水性涂层原液及其制备方法,以及一种防水汽水性涂层及其应用,所述涂层具有优异的耐高温和阻隔水汽的性能,以及优异的抗老化性能、环境稳定性以及耐温性能,且与涂布的基底有良好的附着力。
为达上述目的,本发明采用以下技术方案:
本发明目的之一在于提供一种防水汽水性涂层原液,其特征在于,按照质量百分比计所述水性涂层原液的组成包括:
其中,所述水性树脂的质量百分比可以使10%、11%、12%、13%、14%、15%、16%、17%、18%、19%或20%等,硅酸酯的质量百分比可以是1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%或5%等,溶剂的质量百分比可以是75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%或90%等,催化剂的质量百分比可以是0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%或1%等,但并不仅限于所列举的数值,以上各数值范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,所述水性树脂包括聚乙烯醇、乙烯-醋酸乙烯醇共聚物、聚偏氯乙烯、聚醚多元醇、聚乙二醇、聚酰胺或聚醚型聚氨酯中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:聚乙烯醇和乙烯-醋酸乙烯醇共聚物的组合、乙烯-醋酸乙烯醇共聚物和聚偏氯乙烯的组合、聚偏氯乙烯和聚醚多元醇的组合、聚醚多元醇和聚乙二醇的组合、聚乙二醇和聚酰胺的组合、聚酰胺和聚醚型聚氨酯的组合或聚乙烯醇、乙烯-醋酸乙烯醇的共聚物和聚偏氯乙烯的组合等。
优选地,所述水性树脂的数均分子量为8000~200000,如8000、9000、10000、20000、30000、50000、80000、100000、120000、150000、180000或200000等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,所述硅酸酯包括正硅酸四乙酯、四(2-乙基己基)硅酸酯或硅酸异丙酯中任意一种或至少两种的组合,所述组合典型但非限制性实例有:正硅酸四乙酯和四(2-乙基己基)硅酸酯的组合、四(2-乙基己基)硅酸酯和硅酸异丙酯的组合、硅酸异丙酯和正硅酸四乙酯的组合或正硅酸四乙酯、四(2-乙基己基)硅酸酯和硅酸异丙酯的组合等。
作为本发明优选的技术方案,所述溶剂为水和醇类溶剂的混合溶剂。
优选地,所述醇类溶剂包括乙醇、正丙醇或异丙醇中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:乙醇和正丙醇的组合、正丙醇和异丙醇的组合、异丙醇和乙醇的组合或乙醇、正丙醇和异丙醇的组合等。
作为本发明优选的技术方案,所述催化剂包括氨水、甲酸、乙酸、盐酸或氯化铵中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:甲酸和乙酸的组合、乙酸和盐酸的组合、盐酸和氯化铵的组合、氯化铵和氨水的组合或甲酸、乙酸和盐酸的组合等。
本发明目的之二在于提供一种上述防水汽水性涂层原液的制备方法,所述制备方法包括以下步骤:
(1)将水性树脂、硅酸酯和溶剂混合,得到混合液;
(2)向步骤(1)得到的混合液中加入催化剂,并在搅拌下反应,得到所述水性涂层原液。
本发明通过将水性树脂、硅酸酯以及溶剂混合均匀,再加入催化剂催化硅酸酯水解缩合,从而将微球填料的生成步骤和树脂的溶解分散步骤结合在了一起,省略了将填料充填到树脂溶液去制备阻隔性涂层的传统步骤,在水性树脂中直接生聚硅酸酯微球填料提高了填料在树脂中的分散性,使填料和水性树脂在最终的涂层形态中紧密结合,从而达到提高水性涂层的阻隔水汽的能力和耐高温的性能。
作为本发明优选的技术方案,步骤(2)所述搅拌的速度为300~600rpm,如300rpm、350rpm、400rpm、450rpm、500rpm、550rpm或600rpm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述反应的时间为1~6h,如1h、1.5h、2h、2.5h、3h、3.5h、4h、4.5h、5h、5.5h或6h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本发明目的之三在于提供一种防水汽水性涂层,所述水性涂层为将上述水性涂层原液涂布于基材表面,挥干溶剂后得到的涂层。
所述将上述水性涂层原液涂布于基材表面的方法包括刮涂、喷涂、浸涂或旋涂中的任意方一种。
所述挥干溶剂的方法可以是让溶剂自然挥发,也可将涂布有原液的基材放入烘箱中烘干溶剂,烘干温度为80℃,烘干时间为5~20min。
作为本发明优选的技术方案,所述基材包括pet、pp、pbt、pe、pen或pvc中的任意一种。
本发明目的之四在于提供一种上述将防水汽水性涂层的应用,所述涂层应用于产品包装、oled的保护或太阳能电池的保护。
与现有技术方案相比,本发明至少具有以下有益效果:
(1)本发明提供一种防水汽水性涂层,所述涂层具有优异的耐高温和阻隔水汽的性能,碳化温度高可达440℃,水汽透过量在0.4~1.6g/m2·天;
(2)本发明提供一种防水汽水性涂层,所述涂层具有优异的抗老化性能、环境稳定性以及耐温性,在pct、高温高湿以及温度变化试验后,水汽透过量下降在5~25%之间;
(3)本发明提供一种防水汽水性涂层,所述涂层的原料环境友好,绿色环保。
附图说明
图1是本发明提供的防水汽水性涂层的显微镜图像。
具体实施方式
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
实施例1
一种防水汽水性涂层原液的制备方法,所述制备方法包括以下步骤:
(1)将13.9g聚乙烯醇、1g正硅酸四乙酯、5g乙醇以及80g水混合,得到混合液;
(2)向步骤(1)得到的混合液中加入0.1g氨水,并在300rpm搅拌下反应6h,得到所述水性涂层原液。
将得到的水性涂层原液刮涂涂布在厚度为125μm的pet膜上,室温下挥干溶剂,得到耐高温阻隔水汽的水性涂层。
实施例2
一种防水汽水性涂层原液的制备方法,所述制备方法包括以下步骤:
(1)将20g聚乙烯-醋酸乙烯醇共聚物、5g正硅酸四乙酯、9g乙醇以及65g水混合,得到混合液;
(2)向步骤(1)得到的混合液中加入1g甲酸,并在600rpm搅拌下反应1h,得到所述水性涂层原液。
将得到的水性涂层原液刮涂涂布在厚度为125μm的pet膜上,室温下挥干溶剂,得到耐高温阻隔水汽的水性涂层。
实施例3
一种防水汽水性涂层原液的制备方法,所述制备方法包括以下步骤:
(1)将10g聚偏氯乙烯、3.5g四(2-乙基己基)硅酸酯、10g正丙醇以及76g水混合,得到混合液;
(2)向步骤(1)得到的混合液中加入0.5g氯化铵,并在500rpm搅拌下反应2h,得到所述水性涂层原液。
将得到的水性涂层原液刮涂涂布在厚度为125μm的pbt膜上,室温下挥干溶剂,得到耐高温阻隔水汽的水性涂层。
实施例4
一种防水汽水性涂层原液的制备方法,所述制备方法包括以下步骤:
(1)将14g聚醚多元醇、4.6g硅酸异丙酯、8g异丙醇以及73g水混合,得到混合液;
(2)向步骤(1)得到的混合液中加入0.4g乙酸,并在500rpm搅拌下反应2h,得到所述水性涂层原液。
将得到的水性涂层原液刮涂涂布在厚度为125μm的pp膜上,室温下挥干溶剂,得到耐高温阻隔水汽的水性涂层。
实施例5
一种防水汽水性涂层原液的制备方法,所述制备方法包括以下步骤:
(1)将11g聚醚型聚氨酯、4.2g正硅酸四乙酯、6g乙醇以及78g水混合,得到混合液;
(2)向步骤(1)得到的混合液中加入0.8g盐酸,并在500rpm搅拌下反应2h,得到所述水性涂层原液。
将得到的水性涂层原液刮涂涂布在厚度为125μm的pet膜上,室温下挥干溶剂,得到耐高温阻隔水汽的水性涂层。
对比例1
一种上述防水汽水性涂层原液的制备方法,所述制备方法除了不加入4.2g正硅酸四乙酯外其他条件均与实施例5相同。
将得到的防水汽水性涂层原液刮涂涂布在厚度为125μm的pet膜上,室温下挥干溶剂,得到水性涂层。
对比例2
一种防水汽水性涂层原液的制备方法,所述制备方法包括以下步骤:
(1)将4.2g正硅酸四乙酯、6g乙醇以及78g水混合,在加入0.8g盐酸,并在500rpm搅拌下反应2h,得到混合液;
(2)将11g聚醚型聚氨酯与步骤(1)得到的混合液混合,得到防水汽水性涂层原液。
将得到的水性涂层原液刮涂涂布在厚度为125μm的pet膜上,室温下挥干溶剂,得到水性涂层。
对比例3
一种防水汽水性涂层原液为将11g聚醚型聚氨酯、4.2gpmma微球、6g乙醇以及78g水混合得到。
将得到的水性涂层原液刮涂涂布在厚度为125μm的pet膜上,室温下挥干溶剂,得到水性涂层。
水性涂层的阻隔水汽的能力,通过水蒸气透过量实验来确定。其中,水蒸气透过量越低,说明水汽阻隔能力越强;水蒸气透过量越高,说明水汽阻隔能力越弱。测试水蒸气透过量所使用的的仪器为美国mocon透湿仪。水性涂层耐高温性能通过测试水性涂层的碳化温度来测试。其中,碳化温度越高,水性涂层的耐高温能力越强;碳化温度越低,水性涂层的耐高温能力越弱。测试耐高温能力的方式,是将涂层涂布在玻璃上,放入马弗炉中进行加热,确定碳化温度。
使用于太阳能电池中的技术指标,通过加速老化实验,恒温恒湿实验和高低温实验来进行检测。加速老化实验使用中国台湾弘禹的pct高压加速老化试验机,在121℃,0.2mpa下进行48h。恒温恒湿实验使用espec的恒温恒湿箱,在85℃,85%rh下,放置2000h。高低温实验使用espec的高低温交变湿热试验箱,在-40℃到80℃间进行实验,以3h为一个循环,总计循环200次。
按照上述方法对实施例1-5以及对比例1-3制备得到涂层的耐高温性能和水汽阻隔能力进行测试,结果如表1所示。
表1
对本发明提供的水性涂层在oled中的使用,通过老化实验,对比透明度的变化进行对比,加速老化实验使用中国台湾弘禹的pct高压加速老化试验机,在121℃,0.2mpa下进行48h。薄膜样品的透明度使用721紫外分光光度计进行测量,实施例1-5以及对比例1-3的测试结果如表2所示。
表2
对于本发明提供的水性涂层在食品包装中的使用,采用95℃蒸煮30min的方式进行检测,实施例1-5以及对比例1-3的测试结果如表3所示。
表3
实施例和对比例中使用的pet、pbt以及pp基材的原始性能数据如表4所示。
表4
从表1-3的测试结果可以看出,实施例1-5得到的水性涂层具有优异的防水汽性能,wvtr为0.4~1.6g/m2·天,且在pct试验后,wvtr下降10~20%,抗老化性能优异;在在85℃、85%rh下放置2000h,wvtr下降6~25%,在高温高湿条件下稳定性优异;在-40℃到80℃间进行实验,以3h为一个循环,总计循环200次,wvtr下降10~25%,耐温性能优异。且涂层具有良好的透过性,透过率为93~91%,且在pct试验后,透过率仅下降1~2%,适用于oled。在95℃蒸煮30min后,wvtr下降10~25%,适用于食品包装。
而对比例1,未使用硅酸酯,致使涂层添加前后基板的wvtr几乎没有变化。对比例2先制备微球填料,再与水性树脂混合,测试结果表明基板的wvtr下降,但其效果差于实施例1-5,且其抗老化、耐温性能以及耐高温新能均相比于实施例1-5也有所下降。对比例3将填料替换为pmma微球,wvtr几乎没有变化。
申请人声明,本发明通过上述实施例来说明本发明的详细结构特征,但本发明并不局限于上述详细结构特征,即不意味着本发明必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。