混杂着色金属颜料的制作方法

文档序号:14827058发布日期:2018-06-30 08:53阅读:218来源:国知局
混杂着色金属颜料的制作方法

本公开总体上涉及薄膜结构体例如颜料,其包括反射体层和混杂层(杂合层,hybrid layer),该混杂层具有有机填料或无机填料的至少一种和有机着色(有色)材料。还公开了制造薄膜结构体例如颜料的方法。



背景技术:

以其最简单形式的着色金属颜料是由着色金属制造的。这些颜料中的薄片(片状粉末,flake)已经用着色的透明或半透明的低折射率材料或高折射率材料涂覆。颜色效果可来自于入射光的反射、吸收和干涉的组合。已经通过在铝薄片的表面上形成具有透明介电体和半透明金属吸收体的法布里-珀罗(Fabry-Perot)结构体而产生干涉颜料中的干涉色。

制作着色金属颜料的方法在它们的性质方面有差异。在一种方法中,薄片状铝颜料的颜色通过经由如下在其表面上形成氧化铝层而获得:用水使悬浮的铝薄片湿法氧化,其中所述颜料的颜色通过氧化物的厚度进行控制。在另一方法中,使铝薄片如下被金属氧化物层涂覆:通过很多湿化学方法之一例如有机金属酯化合物的水解、或通过经由使一种或多种所需金属氧化物的一种或多种前体和酸性催化剂经受微波辐射而形成金属氧化物层、或通过流化床CVD。还已经通过如下使颜料着色:来自硅酸四乙酯的二氧化硅与分散的着色剂一起溶胶-凝胶沉淀。真空沉积技术已经用于制作基于法布里-珀罗结构体的着色的金属颜料。例如,当间隔体层由具有高的(n>2)折射率的材料制成时,制造了具有饱和色的着色颜料。当介电层具有低的折射率(n<1.6)时,制作了色移(color-shifting)干涉颜料。



技术实现要素:

在一个方面中,公开了包括反射体层和混杂层的薄膜结构体,所述混杂层包含有机填料或无机填料的至少一种和有机着色材料,其中所述有机填料或无机填料的至少一种的浓度在约3wt.%-约30wt.%的范围内。

在另一方面中,公开了制造薄膜结构体的方法,其包括:提供具有剥离层(离型层)的基底,通过真空沉积在剥离层上沉积第一混杂层,在第一混杂层上沉积反射体层,和在反射体层上沉积第二第一混杂层,以形成薄膜结构体;其中第一和第二混杂层包括有机填料或无机填料的至少一种和有机着色材料;且其中所述有机填料和无机填料的至少一种的浓度在约3wt.%-约30wt.%的范围内。

本公开的方面例如如下。

1.薄膜结构体,其包括:

反射体层;和

混杂层,其包含有机填料和无机填料的至少一种以及有机着色材料;

其中所述有机填料和无机填料的至少一种的浓度在约3wt.%-约30wt.%的范围内。

2.如1所述的薄膜结构体,其中所述反射体层是金属的。

3.如2所述的薄膜结构体,其中金属反射体层包含金属和金属合金的至少一种。

4.如3所述的薄膜结构体,其中所述金属为铝、锌、铜、银、金、铂、钯、镍、钴、铌、铬和锡的至少一种。

5.如3所述的薄膜结构体,其中所述金属合金为黄铜、钢、不锈钢和青铜的至少一种。

6.如1所述的薄膜结构体,其中所述反射体层是小片(片,platelet)的形式。

7.如1所述的薄膜结构体,其中所述薄膜结构体为颜料。

8.如1所述的薄膜结构体,其中所述薄膜结构体具有在约5微米-约100微米范围内的平均粒度。

9.如1所述的薄膜结构体,其中所述薄膜结构体的厚度小于约10微米。

10.如1所述的薄膜结构体,其中所述混杂层的厚度在约10nm-约5000nm的范围内。

11.制造薄膜结构体的方法,其包括:

通过沉积技术沉积第一混杂层;

在第一混杂层上沉积反射体层;和

在反射体层上沉积第二混杂层以形成薄膜结构体;

其中第一和第二混杂层包括有机填料和无机填料的至少一种以及有机着色材料;

其中所述有机填料和无机填料的至少一种的浓度在约3wt.%-约30wt.%的范围内。

12.如11所述的方法,进一步包括提供具有剥离层的基底;以及进一步包括将所述薄膜结构体浸入在溶剂中以使所述剥离层溶解。

13.如12所述的方法,进一步包括在浸入之后,将所述薄膜结构体分级。

14.如13所述的方法,其中经分级的薄膜结构体具有在约5微米-约100微米范围内的平均粒度。

15.如11所述的方法,其中所述薄膜结构体的厚度小于约10微米。

16.如11所述的方法,其中所述薄膜结构体呈现出改善的在第一和第二混杂层各自与反射体层之间的粘附

17.如11所述的方法,其中有机填料和无机填料的至少一种包括如下的至少一种:氟化镁、一氧化硅、二氧化硅、氧化铝、氟化铝、二氧化钛、氮化铝、氮化硼、碳化硼、氧化钨、氟化铈、氟化镧、氟化钕、氟化钐、氟化钡、氟化钙、氟化锂、碳化钨、碳化钛、氮化钛、氮化硅、硫化锌、玻璃薄片、类金刚石碳、及其组合。

18.如11所述的方法,其中所述有机着色材料包括如下的至少一种:二萘嵌苯、芘酮(perinone)、喹吖啶酮、喹吖啶酮醌、蒽嘧啶、蒽醌、蒽嵌蒽二醌、苯并咪唑酮、二偶氮缩合物、偶氮、偶氮甲碱、喹酞酮(quinophthalone)、靛蒽醌、酞菁、三芳基碳二嗪、氨基蒽醌、异吲哚啉、二酮吡咯并吡咯、硫靛、噻嗪靛、异吲哚啉、异二氢吲哚酮、皮蒽酮、异蒽酮紫颜料、和其混合物。

19.如11所述的方法,其中所述第一混杂层具有与所述第二混杂层相同的组成。

20.如11所述的方法,其中所述第一混杂层具有与所述第二混杂层不同的组成。

各种实施方式的另外的特征和优点将部分地在以下描述中阐述并且将部分地由所述描述而明晰,或者可通过各种实施方式的实践而获悉。借助在本文中的描述中具体指出的要素和组合将实现和获得各种实施方式的目的和其它优点。

附图说明

根据详细描述和附图可更充分地理解在其多个方面和实施方式中的本公开,在附图中:

图1为根据本公开的一个实例的薄膜结构体的横截面视图;

图2A为根据本公开的一个实例的在从具有剥离层的基底剥离之前的薄膜结构体的横截面视图;

图2B为根据本公开的一个实例的在从基底剥离之前的薄膜结构体的横截面视图;

图3为根据本公开的一个实施例的薄膜结构体的反射率图;

图4为根据本公开的一个实施例的薄膜结构体的L*a*b*色空间;

图5为根据本公开的另一实施例的薄膜结构体的反射率图;和

图6为根据本公开的另一实施例的薄膜结构体的L*a*b*色空间。

在整个本说明书和附图中,相同的参考数字标明相同的要素(元件)。

具体实施方式

应理解,前面的概述和以下的详述两者仅是示例性和解释性的,且旨在提供本教导的各种实施方式的解释。

参考图1和2,在其宽泛和变化的实施方式中,本文中公开包括反射体层1和混杂层2a、2b的薄膜结构体5。混杂层2a、2b可包含有机填料或无机填料的至少一种以及有机着色材料。

薄膜结构体5的总厚度可小于10微米,例如小于约5微米。在一个方面中,薄膜结构体5的总厚度可在约0.01微米-约10微米、例如约100nm-约5000nm、例如约100nm-约4000nm的范围内。

对于图1-2中所示的各实例,反射体层1的材料可包括可使得反射体层1不透明的任何材料。在一个方面中,所述材料可为金属和/或金属合金。在一个实例中,反射体层1的材料可包括具有反射特性的任何材料。反射性材料的实例可为铝,其具有良好的反射特性、是不昂贵的、且易于形成为薄层或作为薄层沉积。然而,也可使用其它反射性材料代替铝。例如,作为反射性材料,可使用铝、锌、钢、铜、银、金、铂、钯、镍、钴、铌、铬、锡、和这些或其它金属的组合或合金,例如青铜、黄铜和不锈钢。在一个方面中,反射体层1的材料可为白色或浅色金属。其它可用的反射性材料包括但不限于过渡和镧系金属及其组合。

反射体层1的厚度可在约40nm-约150nm的范围内,尽管该范围不应该被视为限制性的。例如,对于材料例如铝,可选择40nm的下限使得铝具有约0.5的在约550nm波长下的最小光学密度。其它反射体材料可证明更高或更低的最小厚度是必要的以获得足够的光学密度或实现期望的效果。约150nm的上限取决于期望的效果和使用的材料也可更高或更低。

可将反射体层1微结构化以提供光的衍射性质。在一个方面中,反射体层1可由任何材料且以任何厚度制成,只要反射体层1是不透明的。

在一个方面中,反射体层1的厚度可在如下范围内:约10nm-约160nm,例如约15nm-约150nm、约20nm-约140nm、约25nm-约130nm、约30nm-约120nm、约40nm-约110nm、或约50nm-约100nm,例如约60nm-约90nm或约70nm-约80nm。

在薄膜结构体5中使用的混杂层2可包含有机着色材料以及有机填料或无机填料的至少一种。混杂层2可为大于一个层,例如第一混杂层2a、第二混杂层2b、第三混杂层2c(在图中未示出)等。在一个方面中,混杂层2可存在于反射体层1的相对侧(面)上。在另一方面中,大于一个混杂层2可存在于反射体层1的各侧上。例如,反射体层1的一侧可包括最高至三(3)个混杂层2a、2b、2c,且反射体层1的第二侧可包括最高至三(3)个混杂层,其可与反射体层1的第一侧上的混杂层相同、或者其可为不同的混杂层例如混杂层2D、2E、2F。

薄膜结构体5中存在的各混杂层2可彼此相同或不同。在一个方面中,第一混杂层2a可为与第二混杂层2b相同的组成。在另一方面中,第一混杂层2a可具有和第二混杂层2b相同的厚度。替代地,各混杂层2可为不同的。第一混杂层2a可为与第二混杂层2b不同的组成。第一混杂层2a可具有和第二混杂层2b不同的厚度。各层可变化,例如相同的组成、不同的厚度,或者不同的组成和相同的厚度。

可选择混杂层2的组成以实现一定的颜色或色调。具体地,通过选择各混杂层2中存在的不同的有机着色材料,于是组合的层可实现一定的颜色或色调。例如,第一混杂层2a可包含为黄色的有机着色材料。存在于第一混杂层2a之上的第二混杂层2b可包含为蓝色的有机着色材料。因此,所实现的得到的颜色或色调可为绿色。不同混杂层中有机着色材料的类似组合可导致其它颜色组合,例如红色混杂层2b上的黄色混杂层2a可导致整体上橙色的颜色或色调。

替代地,薄膜结构体5在反射体层1的各侧上可具有单个混杂层2,例如绿色混杂层或橙色混杂层。薄膜结构体5可包括在反射体层1的第一侧上的红色混杂层2a和在反射体层1的第二侧上的蓝色混杂层2b。

混杂层2可具有约10nm-约5000nm、例如约20nm-约4500nm、例如约30nm-约4000nm的厚度。在一个方面中,混杂层2小于约300nm,使得不散射光。

有机着色材料可以相对于混杂层2的总重量的小于约100重量%的量存在于混杂层2中。预期,如果在混杂层2中存在100重量%的有机着色材料,则混杂层2可从反射体层1脱层(delaminate)。

有机着色材料可包括任何着色材料,例如有机颜料。非限制性的有机颜料包括,例如二萘嵌苯、芘酮、喹吖啶酮、喹吖啶酮醌、蒽嘧啶、蒽醌、蒽嵌蒽二醌、苯并咪唑酮、二偶氮缩合物、偶氮、偶氮甲碱、喹酞酮、靛蒽醌、酞菁、三芳基碳二嗪、氨基蒽醌、异吲哚啉、二酮吡咯并吡咯、硫靛、噻嗪靛、异吲哚啉、异二氢吲哚酮、皮蒽酮、异蒽酮紫、或其混合物。

用作有机着色材料的有机颜料的另外的非限制性实例包括,例如,C.I.颜料红123(C.I.No.71145),C.I.颜料红149(C.I.No.71137),C.I.颜料红178(C.I.No.71155),C.I.颜料红179(C.I.No.71130),C.I.颜料红190(C.I.71 140),C.I.颜料红224(C.I.No.71127),C.I.颜料紫29(C.I.No.71129),C.I.颜料橙43(C.I.No.71105),C.I.颜料红194(C.I.No.71100),C.I.颜料紫19(C.I.No.73900),C.I.颜料红122(C.I.No.73915),C.I.颜料红192,C.I.颜料红202(C.I.No.73907),C.I.颜料红207,C.I.颜料红209(C.I.No.73905),C.I.颜料红206(C.I.No.73900/73920),C.I.颜料橙48(C.I.No.73900/73 920),C.I.颜料橙49(C.I.No.73900/73920),C.I.颜料橙42,C.I.颜料黄147,C.I.颜料红168(C.I.No.59300),C.I.颜料黄120(C.I.No.11783),C.I.颜料黄151(C.I.No.13980),C.I.颜料棕25(C.I.No.12510),C.I.颜料紫32(C.I.No.12517),C.I.颜料橙64;C.I.颜料棕23(C.I.No.20060),C.I.颜料红166(C.I.No.20730),C.I.颜料红170(C.I.No.12475),C.I.颜料橙38(C.I.No.12367),C.I.颜料红188(C.I.No.12467),C.I.颜料红187(C.I.No.12486),C.I.颜料橙34(C.I.No.21 115),C.I.颜料橙13(C.I.No.21 110),C.I.颜料红9(C.I.No.12 460),C.I.颜料红2(C.I.No.12 310),C.I.颜料红112(C.I.No.12 370),C.I.颜料红7(C.I.No.12 420),C.I.颜料红210(C.I.No.12 477),C.I.颜料红12(C.I.No.12 385),C.I.颜料蓝60(C.I.No.69 800),C.I.颜料绿7(C.I.No.74 260),C.I.颜料绿36(C.I.No.74 265);C.I.颜料蓝15:1、15:2、15:3、15:4、15:6和15(C.I.No.74 160);C.I.颜料蓝56(C.I.No.42 800),C.I.颜料蓝61(C.I.No.42 765:1),C.I.颜料紫23(C.I.No.51 319),C.I.颜料紫37(C.I.No.51 345),C.I.颜料红177(C.I.No.65 300),C.I.颜料红254(C.I.No.56 110),C.I.颜料红255(C.I.No.56 1050),C.I.颜料红264,C.I.颜料红270,C.I.颜料红272(C.I.No.56 1150),C.I.颜料红71,C.I.颜料橙73,C.I.颜料红88(C.I.No.73 312),C.I.颜料黄175(C.I.No.11 784),C.I.颜料黄154(C.I.No.11 781),C.I.颜料黄83(C.I.No.21 108),C.I.颜料黄180(C.I.No.21 290),C.I.颜料黄181(C.I.No.11 777),C.I.颜料黄74(C.I.No.11 741),C.I.颜料黄213,C.I.颜料橙36(C.I.No.11 780),C.I.颜料橙62(C.I.No.11 775),C.I.颜料橙72,C.I.颜料红48:2/3/4(C.I.No.15 865:2/3/4),C.I.颜料红53:1(C.I.No.15 585:1),C.I.颜料红208(C.I.No.12 514),C.I.颜料红185(C.I.No.12 516),C.I.颜料红247(C.I.No.15 915)。

混杂层2可包括有机填料或无机填料的至少一种。所述至少一种有机填料或无机填料可以相对于混杂层2的总重量的约3wt.%-约30wt.%、例如约3wt.%-约30wt.%范围内的量存在于混杂层2中。所述至少一种有机填料或无机填料的量可沿梯度变化以实现向薄膜结构体提供期望颜色的各浓度颜色的着色。在一个方面中,有机填料或无机填料的所述至少一种可例如沿着混杂层2的长度以变化的量或浓度存在于混杂层2中。例如,浓度可沿着混杂层的长度逐渐减少使得混杂层的第一端可具有较高浓度的例如有机填料,且混杂层的第二端可具有较低浓度的例如有机填料。另外,混杂层的第一端可具有低浓度的例如无机填料,且混杂层的第二端可具有高浓度的例如无机填料。如果有机填料或无机填料是一个在另一个的下游沉积的,则该方面可出现。

在另一方面中,所述至少一种有机填料或无机填料可均匀地分散在混杂层2中。例如,可将所述至少一种有机填料或无机填料与有机着色材料预混合,且因此共沉积。

在又一方面中,所述至少一种有机填料或无机填料可以改善粘附的量存在于混杂层2中。例如,可在已经沉积呈现出良好粘附的填料之后沉积呈现出差的粘附特性的填料。通过该方式,可使用具有良好粘附的填料进一步提高具有差的粘附的填料的粘附。

在混杂层2中使用的有机填料或无机填料可由任何材料制成。合适材料的非限制性实例包括氟化镁、一氧化硅、二氧化硅、氧化铝、氟化铝、二氧化钛、氮化铝、氮化硼、碳化硼、氧化钨、氟化铈、氟化镧、氟化钕、氟化钐、氟化钡、氟化钙、氟化锂、碳化钨、碳化钛、氮化钛、氮化硅、硫化锌、玻璃薄片、类金刚石碳、及其组合。

有机填料或无机填料可由具有在约1.3-约2.3范围内的折射率的材料制成。在一个方面中,有机填料或无机填料可为具有小于约1.65的低折射率的材料。在另一方面中,有机填料或无机填料可为具有大于约2.2的高折射率的材料。

制造薄膜结构体5的方法可包括提供具有剥离层3的基底4。基底4可由任何材料制成。例如,可使用1密耳聚酯作为基底4;然而,可使用其它有机幅(网,web)和其它厚度。有机幅可包括聚对苯二甲酸乙二醇酯、聚乙烯、取向的聚丙烯、聚碳酸酯、聚乙烯醇缩丁醛、聚己二烯和聚酰亚胺。替代地,可使用不需要透明性的幅。基底4的厚度可在约0.5密耳-约5密耳的范围内。

所述方法可包括将第一混杂层2a沉积到基底4上,如图2B中所示的。基底4可包括剥离层3,如图2A中所示的。在一个方面中,有机着色材料可与有机填料或无机填料的至少一种共沉积以沉积第一混杂层。真空沉积可为任何已知的真空沉积技术,例如物理气相沉积、化学气相沉积、流化床化学气相沉积等。然后,可使用不会包封反射体层1的任何沉积技术将反射体层1沉积在第一混杂层2a上。例如,可通过真空沉积将反射体层1沉积。然后,可将第二混杂层2b沉积到反射体层1上以形成薄膜结构体5。可使用真空沉积技术将第二混杂层2b沉积。

然后,可将整个结构体即基底4的剥离层3上的薄膜结构体5浸入到溶剂例如有机溶剂中。有机溶剂可为任何含碳化合物的溶剂,例如酰胺、砜、环丁烯砜、硒砜和饱和醇。非限制性有机溶剂包括二氯甲烷,乙酸乙酯,二甲亚砜,四氢呋喃,二甲基甲酰胺,乙醇,环丁砜(四氢噻吩-1,1-二氧化物),3-甲基环丁砜,正丙基砜,正丁基砜,环丁烯砜(2,5-二氢噻吩-1,1-二氧化物),3-甲基环丁烯砜,酰胺例如1-(2-羟乙基)-2-吡咯烷酮(HEP)、二甲基哌啶酮(DMPD)、N-甲基吡咯烷酮(NMP)和二甲基乙酰胺(DMAc),二甲基甲酰胺(DMF),丙醇,丁醇,己醇,乙二醇,丙二醇,甘油,和六氟异丙醇。有机溶剂可有效地溶解剥离层,从而将薄膜结构体5从基底4分离。

可将剥离的薄膜结构体5过滤,并且使用标准分级技术例如机械研磨(例如通过球磨法等)进行分级。可将薄膜结构体5进行分级以实现范围如下的平均粒度:约5-约100微米、例如约7-约50微米、另外实例的约9-约40微米和作为另外实例的约10-约20微米。

薄膜结构体可具有另外的层,例如保护层、钝化层、介电层。

薄膜结构体5可为颜料。颜料还可包含液体介质。

薄膜结构体5可与光探测和雷达(LIDAR)技术一起使用。

实施例

实施例1–将氟化镁和3,6-双(4-氯苯基)-2,5-二氢吡咯并[3,4-c]吡咯-1,4-二酮(颜料红254,CAS编号84632-65-5)在真空中同时蒸发并作为第一混杂层2b沉积到聚酯基底4的剥离层3上直至第一混杂层2b的厚度达到约300nm,如图2中所示的。此刻停止所述过程,并将反射体层(铜)1的80nm厚的层沉积在第一混杂层2b之上。将第二混杂层2a沉积在反射体层(铜)1之上。聚酯基底4涂覆有溶剂-敏感的剥离层3。第一混杂层2b涂覆在剥离层3的顶侧上。反射体层1沉积在剥离层3的顶上,且继之以第二混杂层2a。在真空沉积完成之后,将整个结构体浸入在有机溶剂中。使剥离层3溶解,且将三层薄膜结构体5过滤和机械研磨直至小片的平均尺寸在约10-约20微米的范围内。薄膜结构体5的总厚度为670nm。混杂层2a、2b中氟化镁(MgF2)的浓度为约26.5wt.%。薄膜结构体5的反射率在图3中说明。所述颜料的颜色为红色。所述颜料的色值在图4中以L*a*b*色空间进行说明。

实施例2–将喹吖啶酮紫(颜料紫19,CAS编号:1047-16-1)与MgF2作为混杂层2a、2b共沉积在与图2中的结构体类似的以铝作为反射体层1的结构体中。薄膜结构体5的总厚度为721nm且MgF2浓度为16wt.%。薄膜结构体5的反射率在图5中说明。所述颜料的颜色为紫色。所述颜料的色值在图6中以L*a*b*色空间进行说明。

根据前述描述,本领域技术人员可意识到本教导可以多种形式实施。因此,尽管已经结合具体的实施方式和其实施例对这些教导进行了描述,但是本教导的真正范围不应被如此限制。在不偏离本文中的教导的范围的情况下,可做出多个改变和变化。

该范围公开应该被宽泛地解释。意图是,本公开披露了用于实现本文中披露的装置、活动和机械行为的等同物、手段、系统和方法。对于所披露的各装置、制品、方法、手段、机械元件或机构,意图是,本公开还在其公开中涵盖且教导用于实践本文中披露的很多方面、机构和装置的等同物、手段、系统和方法。另外,本公开涉及涂覆(涂层)及其很多方面、特征和要素。这样的装置在其使用和操作中可为动态的,本公开意图涵盖使用所述装置和/或制造制品的等同物、手段、系统和方法及其与本文中披露的操作和功能的描述和精神相符的很多方面。同样地,本申请的权利要求应该被宽泛地解释。

本文中的发明在它们的很多实施方式中的描述在本质上仅是示例性的,且因此不偏离发明构思的变型意图落在本发明的范围内。这样的变型不应视为偏离本发明的精神和范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1