防火超疏水涂层、超疏水材料及其制备方法与流程

文档序号:20784901发布日期:2020-05-19 21:36阅读:482来源:国知局
防火超疏水涂层、超疏水材料及其制备方法与流程

本发明属于多功能涂层材料领域,尤其涉及一种防火疏水材料及其制备方法。



背景技术:

高强耐久超疏水涂层,具有防水、防腐、防冰、防尘、自清洁等特性,在电子器件、油水分离、食品包装、装潢装饰等领域表面具有广泛应用。上述大部分应用领域对防火性能具有较高要求。因此,超疏水涂层应设计防火功能,以满足实际需求。

目前,构建防火超疏水涂层的常用方法是将具有防火阻燃性的纳米粒子作为骨架物质引入疏水结构,借助纳米粒子的不燃性或阻燃性,提高超疏水表面的防火性能。超疏水结构分布了大量的孔隙,孔隙捕捉空气形成“空气垫”,避免基底材料被水润湿。据文献报道,当水滴与超疏水表面接触时,其与固体表面接触面积低于10%(与空气的接触面积高达90%),反应了疏水结构所含纳米粒子量较少,孔隙较多。阻燃纳米粒子的低载量极大程度限制了其阻燃性能的改善效果。因此,防火超疏水涂层构建新策略亟待解探索与开发。



技术实现要素:

本发明所要解决的技术问题是克服以上背景技术中提到的不足和缺陷,提供一种防火性能与疏水性能均优异的防火超疏水涂层、超疏水材料及其制备方法。为解决上述技术问题,本发明提出的技术方案为:

一种防火超疏水涂层,包括超疏水分级结构树脂和镶嵌于超疏水分级结构树脂中的阻热隔气层,所述阻热隔气层为高度取向一致的致密片状蒙脱土层。上述取向一致是指片状蒙脱土层的排列方向一致。

上述防火超疏水涂层中,优选的,所述超疏水分级结构树脂包括树脂基体及填充于所述树脂基体中的纳米粒子,所述纳米粒子为二氧化硅、二氧化钛、氢氧化锌、氢氧化铝、氢氧化镁、氢氧化铁、碳基颗粒和羟基磷灰石纳米线中的一种或多种。纳米粒子主要有两种作用,一种是作为不燃纳米粒子协助阻燃,另一种是作为构建分级超疏水树脂的主要粒子,即提供了纳米级粗糙度。

作为一个总的技术构思,本发明还提供一种防火超疏水材料,包括基底材料及位于基底材料表面的防火超疏水涂层。上述基底材料为常见易燃基底,包括但不限于海绵、木材、纸张、织物、棉花等。

作为一个总的技术构思,本发明还提供一种防火超疏水材料的制备方法,包括以下步骤:

(1)将蒙脱土和聚乙烯醇加入水溶液中,超声处理得到分散均一的混合溶液;

(2)将基底材料浸泡于上述混合溶液中后取出,悬挂干燥,重复多次浸泡-干燥步骤得到具有阻热隔气层的基底材料;

(3)将树脂、固化剂溶于低沸点溶剂中,再加入纳米粒子,搅拌均匀得到反应液;

(4)将步骤(2)中得到的具有阻热隔气层的基底材料预先吸入低沸点溶剂(如乙醇、环己烷等,在乙醇溶液中浸泡1-60s),再将上述具有阻热隔气层的基底材料浸泡于步骤(3)中得到的反应液中,真空加热干燥,即得到防火超疏水材料。

上述制备方法中,真空干燥时,基底材料内部低沸点溶剂受热转换为气体,使得基底材料内部气压大于其外部气压,气体释放并对蒙脱土层具有冲击力,在冲击力作用下,蒙脱土向上移动,反应液流入蒙脱土与基底材料之间的空间,干燥后即得到超疏水分级树脂镶嵌阻热隔气层的防火超疏水材料。并且,由于树脂的高粘附力,防火疏水涂层与基底材料之间具有高强的界面结合力。

上述制备方法中,优选的,所述水溶液中蒙脱土的浓度为0.5-1.2%g/g,所述水溶液中聚乙烯醇的浓度为0.3-1%g/g。

上述制备方法中,优选的,所述水溶液中还加入戊二醛与盐酸,并控制戊二醛的浓度为2.5-5%g/g,所述盐酸的浓度为0.2-0.5%g/g。上述戊二醛作为交联剂,盐酸为促进交联的催化剂。

上述制备方法中,优选的,所述基底材料在混合溶液中的浸泡时间为10-60s,浸泡-干燥步骤的重复次数为3-8次,并在每次重复时更换悬挂的方向。多次重复浸泡-干燥步骤,并更换悬挂的方向可以得到取向一致、高密度的蒙脱土阻热隔气层。

上述制备方法中,优选的,所述树脂在低沸点溶剂中的浓度为1.6-3%g/ml,所述纳米粒子在低沸点溶剂中的浓度为1-3%g/ml。上述树脂浓度控制超疏水分级结构树脂的厚度。超疏水分级结构树脂的分级结构受低沸点溶剂液态转为气态释放时驱动所得,若厚度大,影响分级结构的构建(不能获得超疏水分级结构);若厚度太小,会影响所获涂层的稳定性,如不能锚固阻热隔气层,基底附着力差等。纳米粒子是协助环氧树脂获得微纳米级结构的物质,其量决定了纳米粒子的在3维空间的分布,所形成的形貌,最终影响纳米级结构的构建。

上述制备方法中,优选的,所述反应液中还加入低表面能修饰剂,所述低表面能修饰剂为硅烷偶联剂,所述低表面能修饰剂在反应液中的浓度为0.8-3%g/ml。低表面能修饰剂的作用为接枝疏水基团到纳米粒子与树脂的表面,降低其表面能。

上述制备方法中,优选的,所述真空加热干燥的温度为70-120℃。上述加热温度过低影响低沸点溶剂由液体转为气体并释放过程,进而影响分级结构构建。上述加热温度过高影响基底本身性质,如温度过高影响木材颜色变化,影响滤纸灯韧性等。此外,温度高低影响低沸点溶剂由液体变气体的过程及其释放的快慢,进而影响树脂分级结构构建。

与现有技术相比,本发明的优点在于:

1、本发明提供了一种构建防火超疏水涂层的新策略。在超疏水分级结构中引入阻热隔气层,该防火疏水涂层能有效抑制氧气、热量向基底材料扩撒,从而提高阻燃性能。不同于现有方法,本发明通过阻热隔气层与具有超疏水分级结构树脂的协同增效作用,提高材料的防火性。

2、本发明中的防火超疏水材料的阻燃性能提高显著。以海绵为例,超疏水分级树脂镶嵌阻热隔气层的海绵具有自熄现象,而传统构建方法,即仅用含有阻燃纳米填充物的超疏水分级树脂涂层修饰的海绵,一定程度提高了阻燃性,但并没有自熄现象。

3、本发明中,超疏水分级结构树脂的作用是提高基底本身的防水性能。当超疏水分级结构树脂长期处于高水压条件,如长期浸泡在水里时候,“空气垫”易被破坏,水容易通过孔隙润湿基底。而阻热隔气层由于其致密的结构具有隔离水分作用。本发明中,超疏水分级结构树脂与阻热隔气层协同作用,可以明显提高基底材料的防水效果。

4、本发明获得的防火疏水材料具有高强界面结合力与化学稳定性。目前防火疏水材料鲜有关注功能层与基底的界面结合等性能,而这些性能极大影响其实际应用。本发明创新性以商业树脂(胶粘剂)为主要骨架物质构建超疏水表面,所获超疏水分级结构树脂对阻热隔气层及基底材料具有强大的锚固力,显著提高了防火超疏水材料的稳定性能。以海绵为例,被挤压1200次,仍保持超疏水。所获防火超疏水海绵还展示出极强的化学稳定性,可承受在各类腐蚀性液体、生活常液体、极端温度等苛刻条件破坏。

5、本发明获得的防火疏水材料具有极高的实际应用价值,可在海绵、滤纸、木材、海绵、棉花等各类基底应用。以海绵在油水分离领域的应用为例,本发明获得的防火超疏水海绵可对腐蚀性油水混合液、沸腾/冰的油水混合液、动静态的油水混合液进行高效、重复油水分离,且分离方式弹性(可通过吸附、泵抽离等方式)。上述应用在现有防火超疏水双功能海绵领域鲜有报道。

6、本发明的制备方法简单、高效,不涉及高成本、环境不友好原料,且制备过程与制备条件弹性,多种纳米材料、商业树脂等可供选择。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明的防火超疏水材料的结构示意图。

图2为实施例1中得到的防火超疏水海绵微观结构与润湿性的变化。其中图a是未处理海绵的扫描电镜照片(sem)图,图b-d是蒙脱土阻热隔气层修饰的海绵的sem图,图e-f是超疏水分级结构树脂镶嵌阻热隔气层的sem图。图片里面的插图与分别对应相应处理后的海绵表面接触角。图g是水滴在防火超疏水海绵表面呈球形。

图3为实施例1中得到的防火超疏水海绵的各类超疏水稳定性测试。图a-c是所得防火超疏水海绵机械稳定性能测试(具体为重复挤压海绵并测量其接触角变化),图d是所得防火超疏水海绵对腐蚀性液体的超疏水角度,图e-f是所得防火超疏水海绵的化学稳定性测试(具体为测量所得海绵在不同腐蚀性液体中浸泡1h后的接触角),图片g-f为未处理海绵与所得防火超疏水海绵在冰水与沸水的浮沉状态,图h为所得防火超疏水海绵对不同温度水的接触角。

图4为实施例1中得到的防火超疏水海绵的防火性能测试。图a-c依次是未处理海绵、超疏水分级结构树脂镶嵌蒙阻热隔气层修饰的海绵、阻热隔气层修饰的海绵燃烧测试。

图5为实施例1中得到的防火超疏水海绵不同油水分离方式的分离效率测试。

图6为实施例1中得到的防火超疏水海绵在腐蚀性、高温等苛刻条件的油水分离测试。

具体实施方式

为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。

除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。

除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。

实施例1:

如图1所示,本实施例中的一种防火超疏水涂层,包括超疏水分级结构树脂和镶嵌于超疏水分级结构树脂中的阻热隔气层,超疏水分级结构树脂包括树脂基体及填充于所述树脂基体中的纳米粒子二氧化硅,阻热隔气层为具有高度取向一致的致密片状蒙脱土层。

本实施例还提供一种防火超疏水材料(防火超疏水海绵),包括基底材料海绵及位于海绵表面的防火超疏水涂层。上述防火超疏水材料的制备方法,包括以下步骤:

(1)将2.1g蒙脱土加入到100g超纯水中,超声20min形成均一的水溶液。将0.9g聚乙烯醇在加热条件下溶解到97g超纯水中。混合上述两液体并搅拌、超声各30min,获得分散均一的混合溶液。在此期间,依次加入5.4g戊二醛与0.528g盐酸。

(2)将尺寸为15cm×15cm×20cm的海绵浸泡在混合溶液中10s。接着取出,并悬挂式立于60℃干燥箱中干燥。重复浸泡、干燥过程4次,每次重复干燥时候,180度调换悬挂的方向,得到具有阻热隔气层的海绵。

(3)将1.5g环氧树脂与0.75g固化剂加入到50ml乙醇,磁力搅拌后获得均一溶液。再加入1.0g二氧化硅与0.75g全氟辛基三乙氧基硅烷,搅拌1.5h后获得反应液。

(4)将具有阻热隔气层的海绵预先在乙醇溶液中浸泡3s,再将上述具有阻热隔气层的海绵浸泡于装有5ml反应液的容器中,80℃真空干燥1.5h,即得到防火超疏水海绵。

本实施例中得到的防火超疏水海绵的接触角与微观形貌变化如图2所示,机械稳定性与化学稳定性如图3所示,阻燃性能测试如图4所示,在油水分离应用展示如图5-6所示。

由图2a-f可知,致密且排列取向一致的阻热隔气层镶嵌在具有微纳米结构的超疏水分级结构树脂内部;其右上角插图及图2g表明此镶嵌结构获得超疏水性。

由图3a-c可知,在高于1200次数的防火超疏水海绵压缩-恢复试验中,其表面接触角仍高于152°,同时滚动角保持在3°,展现出良好的机械稳定性;图3d-f表明所获防火超疏水海绵对腐蚀性液体、生活常见液体等均有超疏水性,且在这些液体中动态搅拌1h后并不影响其性能,展示了良好的化学稳定性。此外,如图3g-h所示,防火超疏水海绵的超疏水性能不受温度的影响。

由图4可知,阻热隔气层与超疏水树脂镶嵌阻热隔气层修饰的海绵均可提高自身防火性能,但后者具有明显的自熄性,表明阻热隔气层的引入可有效提高海绵阻燃效果。

由图5-6可知,防火超疏水海绵可通过吸附、泵抽离方式进行高效率、可反复的油水分离,且可在强酸强碱等腐蚀环境及高强度震动的条件下应用。其反复可使用性得益于其超疏水涂层的机械稳定性,其多元的应用环境是由于其超疏水层具有化学稳定性、高低温稳定性及防火性。

总的来说,本实施例中的防火超疏水海绵阻燃性能优异,超疏水性能稳定,在油水分离等领域具有重大应用前景。

实施例2:

如图1所示,本实施例中的一种防火超疏水涂层,包括超疏水分级结构树脂和镶嵌于超疏水分级结构树脂中的阻热隔气层,超疏水分级结构树脂包括树脂基体及填充于所述树脂基体中的纳米粒子氢氧化铝,阻热隔气层为具有高度取向一致的致密片状蒙脱土层。

本实施例还提供一种防火超疏水材料(防火超疏水滤纸),包括基底材料滤纸及位于滤纸表面的防火超疏水涂层。上述防火超疏水材料的制备方法,包括以下步骤:

(1)将2.0g蒙脱土加入到100g超纯水中,超声20min形成均一的水溶液。将1.0g聚乙烯醇在加热条件下溶解到97g超纯水中。混合上述两液体并搅拌、超声各30min,获得分散均一的混合溶液。在此期间,依次加入5.4g戊二醛与0.528g盐酸。

(2)将尺寸为15cm×15cm的滤纸浸泡在混合溶液中10s。接着取出,并悬挂式立于60℃干燥箱中干燥。重复浸泡、干燥过程4次,每次重复干燥时候,180度调换悬挂的方向,得到具有阻热隔气层的滤纸。

(3)将1.0g环氧树脂与0.5g固化剂加入到50ml乙醇,磁力搅拌后获得均一溶液。再加入1.0g氢氧化铝与0.5g全氟辛基三乙氧基硅烷,搅拌1.5h后获得反应液。

(4)将具有阻热隔气层的滤纸预先在乙醇溶液中浸泡1s,再将上述具有阻热隔气层的滤纸浸泡于装有2ml反应液的容器中,70℃真空干燥0.5h,即得到防火超疏水滤纸。

本实施例中所获防火超疏水滤纸的接触角为155°,且在3.6kpa的压力下用1000目的砂纸摩擦500cm后依然保持其超疏水性。着火点所用时间推迟了25%,燃烧结束后仍有固定形状,可被镊子加持,而未处理滤纸燃烧后全部为灰烬。

实施例3:

如图1所示,本实施例中的一种防火超疏水涂层,包括超疏水分级结构树脂和镶嵌于超疏水分级结构树脂中的阻热隔气层,超疏水分级结构树脂包括树脂基体及填充于所述树脂基体中的纳米粒子二氧化硅,阻热隔气层为具有高度取向一致的致密片状蒙脱土层。

本实施例还提供一种防火超疏水材料(防火超疏水木材),包括基底材料木材及位于木材表面的防火超疏水涂层。上述防火超疏水材料的制备方法,包括以下步骤:

(1)将2.2g蒙脱土加入到100g超纯水中,超声20min形成均一的水溶液。将0.8g聚乙烯醇在加热条件下溶解到97g超纯水中。混合上述两液体并搅拌、超声各30min,获得分散均一的混合溶液。在此期间,依次加入5.2g戊二醛与0.51g盐酸。

(2)将尺寸为15cm×15cm×5cm(弦向×径向×纵向)的木材浸泡在混合溶液中20s。接着取出,并悬挂式立于60℃干燥箱中干燥。重复浸泡、干燥过程5次,每次重复干燥时候,180度调换悬挂的方向,得到具有阻热隔气层的木材。

(3)将1.2g环氧树脂与0.6g固化剂加入到50ml乙醇,磁力搅拌后获得均一溶液。再加入1.0g二氧化硅与1.0g十七氟癸基三乙氧基硅烷,搅拌1.5h后获得反应液。

(4)将具有阻热隔气层的木材预先在乙醇溶液中浸泡20s,再将上述具有阻热隔气层的木材浸泡于装有4ml反应液的称量瓶中,100℃真空干燥1.0h,即得到防火超疏水木材。

本实施例中所获防火超疏水木材接触角153°,5kpa压力下在800目砂纸被打磨500cm后保持超疏水性能。其着火点时间延长30%以上,燃少试验后保持原有形状与结构,具有机械支撑力,而未处理木材燃烧试验后全部变为灰烬。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1