本发明涉及一种用于控制车辆发动机的工作的装置和方法,更具体地,涉及一种用于控制混合动力车辆的发动机的工作的装置和方法。
背景技术:
混合动力车辆(例如,混合动力电动车辆)指的是一种通过有效地结合两种或多种不同的动力源来进行驱动的车辆。通常,混合动力车辆在低速时使用具有相对良好的低速转矩特性的电动机作为主要动力源,并且在高速时使用具有相对良好的高速转矩特性的发动机作为主要动力源。因此,在低速时使用化石燃料的发动机停止运行,并且电动机用作主要动力来源,使得混合动力车辆能够改善燃料消耗和减少废气。
此外,车辆发动机的工作点是根据驾驶者的操控的要求转矩、车速和档位来进行确定。对于混合动力车辆,发动机的工作点是基于系统最佳工作线(OOL:optimal operating line)来进行确定,其中该系统最佳工作线(OOL)被选择以最小化燃料消耗。系统最佳工作线基于在每个部件(例如,发动机、电动机、变速器或电池)的代表性温度下的效率而进行设定。换句话说,基于在发动机的完全预热状态下的效率、在电动机的完全预热状态下的效率、在变速器的完全预热状态下的效率以及在电池的最佳温度下的充电和放电效率,来选择混合动力车辆的系统最佳工作线。
另一方面,当车辆行驶在实际路面上时,各部件的效率可能由于车辆间的差异、车辆的行驶距离和周围环境如室外温度(例如,周围的环境条件)而变化。现有技术的系统最佳工作线并不反映各部件(例如,发动机、电动机、变速器或电池)的效率变化,因此基于系统最佳工作线所确定的发动机的工作点可能被确定在不正确的区域,而不是在燃料消耗处于最低的区域,从而降低燃料消耗。
在本节公开的上述信息仅用于对本发明的背景做进一步的理解,因此它可以包含不构成对于该国本领域普通技术人员已知的现有技术的信息。
技术实现要素:
本发明提供用于控制车辆发动机的工作的装置和方法,其在选择发动机的工作点时,反映部件的效率变化,以改善燃料的消耗。
本发明的示例性实施例提供一种发动机工作控制装置,其可包括:冷却剂温度传感器,其配置成检测穿过发动机的冷却剂管路的冷却剂的温度;第一映射图和第二映射图,其中相应的发动机工作点可以被映射到车速、档位、驾驶者要求转矩和车辆的电场负载量;工作点获取单元,其配置成基于冷却剂温度和预定的阈值之间的比较利用第一映射图和第二映射图中的任一图来确定候选工作点;工作点确定单元,其配置成使用候选工作点来确定发动机的最佳工作点。
本发明的另一示例性实施例提供一种发动机工作控制方法,其可包括:检测穿过发动机的冷却剂管路的冷却剂的温度;基于冷却剂的温度利用第一映射图和第二映射图中的任一映射图来获得第一候选工作点,其中相应的发动机工作点可以被映射到车速、档位、驾驶者要求转矩和车辆的电场负载量,以及使用第一候选工作点来确定发动机的最佳工作点。
根据本发明的示例性实施例,当发动机的工作点被确定时,发动机的工作点可基于发动机的可变效率的因素来进行校正,以确定发动机的工作点在燃料消耗处于最低的区域,从而改善燃料消耗。
附图说明
本公开的上述和其他目的、特征和优点将会通过下文结合附图的详细描述而变得显而易见。
图1是根据本发明的示例性实施例的执行驱动模式控制方法的混合动力车辆的图;
图2是示意性的示出根据本发明的示例性实施例的发动机工作控制装置的图;以及
图3是示出根据本发明的示例性实施例的发动机工作控制装置的发动机工作方法的流程图。
具体实施方式
应该理解的是,本文中使用的术语“车辆”、“车辆的”或其他类似术语包括一般的机动车辆,比如包含多功能运动车(SUV)、公共汽车、卡车、各种商业车辆的客运汽车、包括各种轮船和舰船的船只、飞机等,还包括混合动力车、电动车、插电式混合动力电动车、氢动力车和其它替代燃料车辆(例如,燃料是从非石油资源中提炼出来的)。如本文所述,混合动力车是具有两种或多种动力源的车辆,例如同时具有汽油动力和电动力的车辆。
尽管示例性实施方式被描述为使用多个单元来执行示例性进程,可以理解的是,该示例性进程也可以由一个或多个模块执行。此外,应该理解的是,术语控制器/控制单元指的是包括存储器和处理器的硬件设备。存储器被配置成存储该模块,以及处理器专门配置成执行该模块以实现其在下面进一步描述的一个或多个进程。
此外,本发明的控制逻辑可被实施为计算机可读介质上的非暂时性计算机可读介质,该计算机可读介质包含由处理器、控制器/控制单元等执行的可执行程序指令。计算机可读介质的例子包括但不限于ROM、RAM、光盘(CD)-ROM、磁带、软盘、闪存盘、智能卡和光学数据存储设备。计算机可读记录介质也可以分布在网络耦接的计算机系统上,这样可以通过分布式方式例如通过远程服务器或控制器局域网络(CAN)存储和执行计算机可读介质。
下文中,本发明的示例性实施例将参照附图进行更完整的描述,以使得本领域技术人员容易的实现本发明。正如本领域技术人员将意识到的,所描述的示例性实施例能够通过所有不脱离本发明的精神或范围的各种不同方式被修改。此外,相同的附图标记通篇指代相同的元件。
本文使用的术语仅出于说明具体实施方式的目的,而不意在限制本发明。如本文所使用的,单数形式“一个”、“一种”、“该”也意在包括复数形式,除非上下文中另外明确指明。还应当理解的是,在说 明书中使用的术语“包括”和/或“包含”是指存在所述特征、整数、步骤、操作、元件和/或部件,但是不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、部件和/或其组合。如本文所使用的,术语“和/或”包括一个或多个相关所列项的任何和所有结合。在整个本说明书和所附权利要求书中,当描述一个元件“耦接”到另一元件时,该元件可以“直接耦接”到另一元件或通过第三元件“电耦接”到其他元件。
下文中,根据本发明的示例性实施例的混合动力车辆的发动机工作控制装置及发动机工作控制方法将参照必要的附图进行描述。
图1是根据本发明的示例性实施例的执行驱动模式控制方法的混合动力车辆的图。作为一个示例,图1示出了安装有双发动机离合器变速器(DCT:dual engine clutch transmission)的后轮驱动混合动力车辆。然而,图1被提供以示出本发明的示例性实施例,但本发明的技术精神不限于此。本发明的技术精神可以应用于各种实现为使得发动机和电动机分别具有单独的动力输送路径的混合动力车辆。
参考图1,根据本发明的示例性实施例的混合动力车辆可以包括发动机10、电动机20、变速器30、电池40、起动发电一体机50、车轮61和62,以及车辆电场单元70。
首先,发动机10可以配置成燃烧燃料以产生动力,并当制动被施加到车辆时,电动机20可配置成作为发电机来提供驱动转矩以驱动车辆的车轮62。由电动机20产生的电能可以被存储在电池40。当变速器30被实施为包括多个发动机离合器(未示出)的双发动机离合器变速器时,变速器30可以连接到发动机10以基于速度将在发动机10中产生的动力改变成所需转矩,并且将该转矩传输到车轮61。
起动发电一体机50可以配置成起动发动机10或补充发动机10的动力。另外,起动发电一体机50可包括集成起动发电机(ISG:integrated starter&generator)或混合起动发电机(HSG:hybrid starter&generator)。车辆电场单元70可包括在车辆内消耗电能的电子设备,诸如导航设备、全球定位系统(GPS)或数字多媒体广播(DMB)设备。
根据本发明示例性实施例的混合动力车辆可以包括至少一个控制器,例如混合动力控制单元(HCU:hybrid control unit)200、发动机 控制单元(ECU:engine control unit)110、电动机控制单元(MCU:motor control unit)120、变速器控制单元(TCU:transmission control unit)130以及电池控制器(电池管理系统(BMS:battery management system))140。混合控制器200可以是配置成整体地操作下级控制器的顶级(例如,上级)控制器,其中下级控制器可以经由网络连接到顶级控制器,并且顶级控制器可以配置成收集和分析操作混合动力车辆的下级控制器的信息。
具体地,ECU 110可以与通过网络与其连接的HCU 200互通(interwork)以操作发动机10。MCU 120可以与通过网络与其连接的HCU 200互通以操作电动机20。TCU 130可以配置成根据通过网络与其连接的HCU 200的操作而操作设置在变速器30中的电致动器或液压致动器以执行目标变速器档位的齿轮连接。换句话说,TCU 130可以配置成通过致动器操作多个构成变速器30的发动机离合器,来调整发动机10产生的动力的间歇(intermittence)。电池控制器140可以配置成整体地检测关于电池40的信息如电压、电流或温度,以管理和调整充电状态(SOC:state of charge)以及对电池40充电或放电的电流值,从而防止电池被过放电至低于限定电压或者过充电至超过限定电压。
此外,根据本发明示例性实施例的混合动力车辆还可以包括功率转换器(例如,低电压直流-直流(DC-DC)转换器,LDC)170。功率转换器170可以连接到电池40和车辆电场单元70之间,并且可以配置成将从电池40输出的高电压功率转换成用于车辆电场单元70的低电压功率,并且发送该低电压功率。另外,功率转换器170可以配置成监测电池40的输出,以检测指示车辆中电能消耗的车辆电气部件的负载量。
具有上述结构的混合动力车辆可以工作在驱动模式如电动车辆模式(EV模式)、混合动力电动车辆模式(HEV模式)和再生制动模式(RB模式)下,其中电动车辆模式(EV模式)是使用电动机20的电力的电动车辆模式,混合动力电动车辆模式(HEV模式)是利用发动机10的转矩作为主动力源以及电动机20的转矩作为辅动力源的混合动力车辆模式,在再生制动模式(RB模式)中,当制动器被接合或车辆由惯性驱动时,制动和惯性能量可通过从电动机20产生电力而被收 集以对电池40充电。具有上述结构的混合动力车辆可包括发动机工作控制装置(参考将在下文描述的图2的附图标记300),并且可以配置成通过发动机工作控制装置来调整发动机10的工作点。
另一方面,根据本发明的示例性实施例,发动机工作控制装置300可以包括在构成混合动力车辆的控制单元110,120,130,140和200中的至少一个中。例如,发动机工作控制装置300可以包括在混合动力控制单元200或发动机控制单元110中。
根据本发明示例性实施例的发动机工作控制装置和发动机工作控制方法将参考图2和图3在下面进行详细的描述。图2是示意性地示出根据本发明的示例性实施例的发动机工作控制装置的图。
参考图2,根据本发明示例性实施例的发动机工作控制装置300可包括冷却剂温度检测单元311、斜坡检测单元312、进气温度检测单元313、预热(warm-up)控制映射图321、冷机(cold)控制映射图322、工作点获取单元331、斜坡校正单元332、进气温度校正单元333、废气再循环(EGR:exhaust gas recirculation)校正单元340、工作点确定单元350和学习数据存储单元360。该装置的各个单元可以由具有处理器和存储器的控制器(例如,顶级控制器)进行操作。此外,各种传感器可以用于收集各种信息的单元中。
冷却剂温度检测单元311可以包括冷却剂温度传感器(未示出)。特别是,冷却剂温度检测单元311可以配置成使用冷却剂温度传感器检测冷却剂管路的冷却剂温度,其中冷却剂管路冷却发动机10。当循环通过冷却剂管路中的冷却剂穿过发动机10时,通过与发动机10热交换来吸收从发动机10产生的热。因此,发动机10的温度可以从由冷却剂温度检测单元311检测到的冷却剂温度来推定。
斜坡检测单元312可包括压力传感器(未示出)。斜坡检测单元312可以配置成使用压力传感器来检测大气压,并且从车辆获得其斜坡驾驶信息。压力传感器可以包括在斜坡检测单元312中,并且压力传感器可以包括大气压传感器、真空压力传感器等。
进气温度检测单元313可包括可以布置在车辆的进气系统中的温度传感器(未示出)。进气温度检测单元313可以配置成利用温度传感器来检测车辆的进气温度(或环境温度)。预热控制映射图321和冷机 控制映射图322是发动机工作点的映射图,其中发动机工作点可以被映射到对应于车辆的车速、档位和驾驶者要求转矩。当当前车速、当前档位和当前驾驶者要求转矩被输入时,预热控制映射图321和冷机控制映射图322可配置成输出相应的发动机工作点。
此外,可以基于车辆的加速器踏板操纵状态、车速、制动器踏板操纵状态、当前档位和电场负载量计算驾驶者要求转矩。加速器踏板操纵状态表示基于驾驶者对加速器踏板操纵的加速器踏板的接合度(例如,施加到踏板的压力量),并且对应于从加速器踏板位置传感器(APS)输出的APS信号。制动器踏板操纵状态表示基于驾驶者对制动器踏板操纵的制动器踏板的接合或分离,并且对应于从制动器踏板位置传感器(BPS)输出的BPS信号。
可以根据发动机10的每分钟转速(RPM:revolution per minute)和变速器30的齿轮比之间的关系检测车辆速度。档位表示当前档位的位置。车辆的电场负载量是车辆中使用的功率消耗,并可通过将车辆电场单元70的功率消耗和电动空调(未示出)的功率消耗相加获得。
发动机10的状态可以根据发动机10的工作温度所属的温度区域而被分成预热状态和冷机状态。发动机10的工作温度可从通过发动机10的冷却剂管路的冷却剂温度来估计。因此,发动机工作控制装置300可利用冷却剂温度区分发动机10的工作温度的预热状态和冷机状态。例如,当由冷却剂温度检测单元311检测到的冷却剂温度大于参考目标温度(a)时,发动机10的工作温度可以被分类为预热状态,以及当冷却剂温度等于或小于参考目标温度(a)时,发动机10的工作温度可以被分类为冷机状态。
预热控制映射图321是可以用于确定发动机10的工作点处于发动机10的预热状态的映射图。在预热状态下包括在预热控制映射图321中的发动机工作点可以由基于发动机10的效率选择的系统最佳工作线(OOL)进行设置。系统OOL对应于经选择包括发动机工作点的发动机工作区域,这些发动机工作点被选择为用于每个车速、档位和驾驶者要求转矩的发动机10的最佳工作点。车辆的燃料消耗处于最低的工作点可以被选择为发动机10的最佳工作点。冷机控制映射图322是可以用于确定发动机10的工作点处于发动机10的冷机状态的映射图。 在冷机状态下包括在冷机控制映射图322中的发动机工作点可以由基于发动机10的效率选择的系统OOL进行设置。
工作点获取单元331可以配置成从冷却剂温度检测单元311接收冷却剂温度,并且基于冷却剂温度确定发动机10的工作温度。换句话说,工作点获取单元331可以配置成基于从冷却剂温度检测单元311接收到的冷却剂温度来确定发动机10是否处于预热状态或冷机状态。例如,当冷却剂温度大于参考目标冷却剂温度(a)时,工作点获取单元331可以配置成确定发动机10处于预热状态,并且当冷却剂温度等于或小于参考目标冷却剂温度(a)时,工作点获取单元331可以配置成确定发动机10处于冷机状态。
工作点获取单元331可以配置成基于发动机10的工作温度,利用预热控制映射图321和冷机控制映射图322中的任一图来确定发动机工作点。当发动机10的工作温度被确定为预热状态时,工作点获取单元331可以配置成使用预热控制映射图321来确定发动机工作点。另外,当发动机10的工作温度被确定为冷机状态时,工作点获取单元331可以配置成使用冷机控制映射图322来确定发动机工作点。
当工作点获取单元331使用预热控制映射图321或冷机控制映射图322获得发动机工作点时,该发动机工作点可以作为候选工作点被输出,以确定发动机10的工作点。在下文,为了描述的方便,由工作点获取单元331使用预热控制映射图321或冷机控制映射图322而获得的发动机工作点被称作“第一候选工作点”。
斜坡校正单元332可以配置成确定对应于从斜坡检测单元312接收到的车辆的斜坡驾驶信息的发动机工作点。特别是,斜坡校正单元332可以配置成使用相应的发动机工作点被映射到车辆的每个车速、档位和驾驶者要求转矩的发动机工作点映射图来确定发动机工作点,并且斜坡校正单元332可以配置成基于车辆的斜坡驾驶信息来校正或调节发动机工作点,以获得对应于车辆的当前斜坡驾驶信息的发动机工作点。
特别是,斜坡校正单元332可以配置成使用预热控制映射图321或冷机控制映射图322以获得对应于车辆的当前车速、档位和驾驶者要求转矩的发动机工作点。当使用预热控制映射图321或冷机控制映 射图322获得发动机工作点时,斜坡校正单元332可以配置成基于车辆的当前斜坡驾驶信息来增加或减少发动机工作点,以获得对应车辆的当前斜坡驾驶信息的发动机工作点。
斜坡校正单元332还可以包括发动机工作点映射图,其中相应的发动机工作点可以被映射到车辆的每个车速、档位和驾驶者要求转矩,还映射到每个斜坡,并且斜坡校正单元332可以配置成使用发动机工作点映射图来确定对应于斜坡驾驶信息的发动机工作点。特别是,在斜坡校正单元332中使用的发动机工作点映射图反映了基于斜坡的车辆发动机10的效率变化,并且可以通过将不同的发动机工作点映射到相应的斜坡来进行设置。
当基于车辆的斜坡驾驶信息获得发动机工作点时,斜坡校正单元332可以配置成将发动机工作点作为确定发动机10的工作点的候选工作点输出。下文中,为了描述的方便,对应于由斜坡校正单元332获得的斜坡驾驶信息的发动机工作点被称为“第二候选工作点”。
进气温度校正单元333可以配置成从进气温度检测单元313接收车辆的当前进气温度,并且输出与其对应的发动机工作点。进气温度校正单元333可以配置成使用相应的发动机工作点被映射到车辆的每个车速、档位和驾驶者要求转矩的发动机工作点映射图来确定发动机工作点,并且配置成基于车辆的当前进气温度来校正或调整发动机工作点,以获得对应于进气温度的发动机工作点。
具体地,进气温度校正单元333可以使用预热控制映射图321或冷机控制映射图322以获得对应于车辆的当前车速、档位和驾驶者要求转矩的发动机工作点。当使用预热控制映射图321或冷机控制映射图322获得发动机工作点时,进气温度校正单元333可以配置成基于车辆的当前进气温度来增加或减少所获得的发动机工作点,以获得对应于当前进气温度的发动机工作点。
进气温度校正单元333可包括发动机工作点映射图,其中相应的发动机工作点被映射到车辆的每一车速、档位和驾驶者要求转矩,还映射到相应的进气温度,并且进气温度校正单元333可以配置成使用发动机工作点映射图来确定对应于车辆的当前进气温度的发动机工作点。特别是,在进气温度校正单元333中使用的发动机工作点映射图 反映了基于进气温度的在车辆发动机10的效率中的变化,并且可以通过将不同的发动机工作点映射到相应的进气温度而进行设定。
当基于进气温度获得发动机工作点时,进气温度校正单元332可以配置成将发动机工作点作为确定发动机10的工作点的候选工作点输出。下文中,为了描述的方便,对应于由进气温度校正单元333获得的进气温度的发动机工作点被称为“第三候选工作点”。
EGR校正单元340可以配置成从EGR装置(未示出)接收EGR率。EGR率对应于EGR装置中的废气的再循环率,并指示当EGR电磁阀被打开时的特性值。EGR校正单元340可以配置成接收从工作点获取单元331、斜坡校正单元332和进气温度校正单元333输出的候选工作点,并且基于EGR装置的EGR率来校正和调整候选工作点,并且输出候选工作点。
EGR校正单元340可以配置成基于从EGR装置接收到的EGR率来设置发动机10的相应工作区域。此外,候选工作点可以被校正,使得从工作点获取单元331、斜坡校正单元332和进气温度校正单元333输出的发动机工作点被包括在对应于EGR率的工作区域中,并被输出到工作点确定单元350。
另一方面,当车辆不包括EGR装置时,EGR校正单元340可被省略。因此,从工作点获取单元331、斜坡校正单元332和进气温度校正单元333输出的候选工作点可以不通过EGR校正单元340被传递到工作点确定单元350。工作点确定单元350可以配置成从EGR校正单元340或者从工作点获取单元331、斜坡校正单元332和进气温度校正单元333接收候选工作点,并使用候选工作点确定发动机10的最佳工作点。当接收到候选工作点时,工作点确定单元350可以配置成内插候选工作点以获得发动机10的最佳工作点。
工作点确定单元350还可以被配置成选择多个接收到的候选工作点中的任一工作点作为发动机10的工作点。例如,当发动机10的工作温度处于冷机状态时,工作点确定单元350可省略候选工作点的内插,并且获得通过工作点获取单元331得到的第一候选点作为最佳工作点。
当从候选工作点获得最佳工作点时,工作点确定单元350还可以 配置成基于变速器30、电池40和电动机20的工作温度来校正最佳工作点。具体地,变速器30的工作温度可以从变速器30的油温得到,以及电动机20的工作温度可以从穿过电动机20的冷却剂管路的冷却剂温度得到。工作点确定单元350可以配置成基于由工作点确定单元350先前选择的最佳工作点来执行工作点的学习,以校正当前选择的最佳工作点,并且使用工作点学习来最后确定发动机10的最佳工作点。
当发动机10的最佳工作点由工作点确定单元350确定出来时,学习数据存储单元360可以配置成存储对应于当前车速和档位的最佳工作点。此外,当工作点确定单元350确定后续的最佳工作点时,学习数据存储单元360可以提供最佳工作点作为学习数据。工作点确定单元350可以配置成在学习数据存储单元360存储的最佳工作点中,读出从与车辆的当前车速和档位相同的车速和档位选择的最佳工作点,并且利用该最佳工作点来校正当前选择的最佳工作点。
图3是示出根据本发明的示例性实施例的发动机工作控制装置的发动机工作方法的流程图。参照图3,根据本发明的示例性实施例的发动机工作控制装置300可以配置成在步骤S100中检测穿过发动机10的冷却剂管路的冷却剂温度。
发动机工作控制装置300可以配置成在步骤S101中,基于步骤S100中检测到的冷却剂温度来选择预热控制映射图321和冷机控制映射图322中的任一图作为获得第一候选工作点的发动机工作点映射图。换句话说,发动机工作控制装置300可以配置成比较冷却剂温度和预定的阈值,并基于比较结果确定发动机10是处于预热状态还是冷机状态。当发动机10被确定为处于预热状态时,预热控制映射图321可被选择为用于获得第一候选工作点的发动机工作点映射图,以及当发动机10被确定为处于冷机状态时,冷机控制映射图322可被选择为用于获得第一候选工作点的发动机工作点映射图。
当在步骤S101中预热控制映射图321或冷机控制映射图322被选择时,发动机工作控制装置300可以配置成在步骤S102中基于所选择的发动机工作点映射图来确定发动机10的第一候选工作点。在步骤S102中,预热控制映射图321或冷机控制映射图322是发动机工作点映射图,其中相应的发动机工作点可以被映射到车辆的每个车速、档 位和驾驶者要求转矩。此外,预热控制映射图321是基于在预热状态下的发动机10的效率而设置的发动机工作点映射图,以及冷机控制映射图322是基于在冷机状态下的发动机10的效率而设置的发动机工作点映射图。
发动机工作控制装置300可以配置成在步骤S103中,确定对应于车辆的当前斜坡驾驶信息的第二候选工作点,并确定对应于车辆的当前进气温度的第三候选工作点。在步骤S103中,发动机工作控制装置300可以配置成基于车辆的车速、档位和驾驶者要求转矩来确定发动机工作点,并且基于车辆的当前斜坡驾驶信息来校正发动机工作点以获得第二候选工作点。在步骤S103中,发动机工作控制装置300可以使用相应的工作点被映射到车辆的每一车速、档位和驾驶者要求转矩以及每个斜坡的发动机工作点映射图以获得第二候选工作点。
在步骤S103中,发动机工作控制装置300可以配置成基于车辆的当前车速、档位和驾驶者要求转矩来确定发动机工作点,并且基于车辆的当前进气温度来校正发动机工作点以获得第三候选工作点。在步骤S103中,发动机工作控制装置300可以使用相应的发动机工作点被映射到车辆的每一车速、档位和驾驶者要求转矩以及相应的进气温度的发动机工作点映射图以获得第三候选工作点。
当在步骤S102和S103中第一至第三候选工作点被获得时,发动机工作控制装置300可配置成在步骤S104中基于EGR装置的EGR率来执行校正第一到第三候选工作点的EGR校正。换句话说,发动机工作控制装置300可配置成设置对应于当前EGR率的发动机10的工作区域,并且校正第一至第三候选工作点以被包括在基于EGR率设置的工作区域中。
接着,在步骤S105中发动机工作控制装置300可使用EGR校正过的第一至第三工作点中的至少一个工作点以获得发动机10的最佳工作点。在步骤S105中,发动机工作控制装置300可以配置成内插EGR校正过的第一至第三工作点,以获得最佳工作点。
在步骤S105中,发动机工作控制设备300可配置成选择EGR校正过的第一至第三候选工作点中的任何一个工作点作为发动机10的最佳工作点。例如,当发动机10的工作温度处于冷机状态时,发动机工 作控制装置300可以选择第一候选点作为发动机工作点。另一方面,当EGR装置没有安装在车辆中时,第一至第三候选点被EGR校正的步骤S104可被省略。具体地,在步骤S105中,发动机工作控制设备300可以使用未进行EGR校正的第一至第三候选点,以获得发动机10的最佳工作点。
当在步骤S105中获得最佳工作点时,发动机工作控制装置300可以配置成在步骤S106中基于变速器30、电池40和电动机20的工作温度来校正最佳工作点。此外,在步骤S107中,在步骤S106中校正后的最佳工作点还可以通过将先前选择的最佳工作点用作学习数据的工作点学习来进行校正,以最终确定为发动机10的最佳工作点。如上所述确定的发动机工作点可以用来在ECU110中调整发动机10的输出。
另一方面,图3示出的是在执行第一候选工作点被获得的步骤S102之后,执行第二和第三候选工作点被获得的步骤S103,但本发明的示例性实施例不限于此。获得第一候选工作点的步骤和获得第二和第三候选工作点的步骤的顺序可以改变,并且获得第一候选工作点的步骤和获得第二和第三候选工作点的步骤可以并行地执行。
在现有技术中,即使发动机10的效率基于发动机10的工作温度而进行变化,系统最佳工作线(OOL)也基于在代表性的工作温度(预热状态)的发动机10的效率进行选择。因此,现有技术的系统OOL不能基于发动机10的工作温度反映效率的变化,以致基于系统OOL确定的发动机工作点实际上可能被确定在不正确的区域内,而不是在燃料消耗处于最低的区域,从而降低燃料消耗。
因此,如上所述,本发明的示例性实施例分别提供了预热控制映射图321和冷机控制映射图322,其中预热控制映射图321确定在发动机10的预热状态下的发动机工作点,冷机控制映射图322确定在发动机10的冷机状态下的发动机工作点。进一步,该控制映射图中的一个可以基于发动机10的工作温度进行选择性的使用,以获得发动机工作点,因此能够基于确定发动机工作点的工作温度来反映发动机10的效率变化。
此外,在本发明的示例性实施例中,当发动机工作点被确定时,可以反映基于斜坡和进气温度的发动机10的效率变化,并且基于车辆 的行驶距离的发动机10的效率变化可以通过使用工作点学习而被反映,从而获得最佳的发动机工作点。
如上所述,根据本发明的示例性实施例,当发动机工作点被确定时,发动机工作点通过考虑改变发动机10效率的因素来校正,以确定发动机工作点在燃料消耗处于最低的区域中,从而改善燃料消耗。
根据本发明的示例性实施例的发动机工作控制方法可以通过软件来执行。当该方法由软件执行时,本发明的组件是执行必要操作的代码段。程序或代码段可以存储在处理器可读介质中或通过传输介质或者计算机数据信号进行传输,其中计算机数据信号与通信网络中的载波结合。
本发明所参照的附图和所描述的详细说明是本发明的示例性实施例,并仅用于描述本发明的目的,而不是限制包括在所附权利要求中的本发明的范围。因此,本领域普通技术人员可以容易地选择和替换示例性实施例。此外,本领域普通技术人员可省略在说明书中描述的一些组件而不会降低性能或添加组件以改善性能。另外,本领域普通技术人员可以根据工艺环境或设备来改变在说明书描述的方法的步骤的顺序。因此,本发明的范围需要由权利要求及其等同形式而非所描述的示例性实施例来确定。