包括处于负压的极低压容器的液压回路的制作方法

文档序号:11442731阅读:461来源:国知局
包括处于负压的极低压容器的液压回路的制造方法与工艺

本发明涉及一种包括用于存储流体的极低压容器的液压回路,以及涉及一种装配有这种液压回路的混合动力机动车辆。



背景技术:

尤其由文件fr-a1-3004999示出的一种已知类型的混合动力车辆包括液压回路,该液压回路包括第一液压机,所述第一液压机从装配有低压蓄能器的低压回路中接收流体,以生成压送入高压蓄能器的高压,从而存储液压能。

所述高压为作为发动机工作的第二液压机供应流体,该流体随后朝向低压回路返回。

通常,用于工业中或用于牵引液压混合动力机动车辆的包括低压回路的该类型液压回路包括升压装置,所述升压装置从通常处于大气压强下的极低压容器中汲取,所述极低压容器接收不同的泄露返回,从而尤其在第一液压机中存在较大流量时为具有最小压强的低压回路供应,以便避免流体空穴。

事实上液压机的空穴引发噪音以及内部构件损坏的问题。

升压泵已知可由(尤其包括电动机或由液压回路的压强供应的液压机的)不同部件驱动。

极低压容器可通过具有朝向外部的开口而处于大气压强下。使用该类型的处于大气压强下的容器,易于使流体中溶解的气体被提取并且使回路被净化。

然而这些容器可引发通过入口(尤其通过外部颗粒、湿气、或空气中引起该流体氧化的氧气)污染内部流体的问题。这些不同污染通过降低流体质量而加速了流体的陈化,这可损坏液压回路。

还已知使极低压容器密封,从而为所述极低压容器相对于大气压强略微增压,以便通过避免外部元素的进入来保护所述极低压容器中含有的流体。

然而该略微增压不利于流体中溶解的气体的提取,可存在关于液压回路净化问题。



技术实现要素:

本发明的目的尤其在于避免现有技术的这些缺点。

为此,本发明提供了一种液压回路,所述液压回路包括由升压泵供应的低压回路,所述升压泵从极低压容器中汲取,其特征在于,该极低压容器是密封的,并且包括使内部容积相对于大气压强处于负压(dépression)的装置。

该液压回路的优点在于,简单且有效地通过设置密封容器(其中,使处于负压的装置使极低压强保持低于大气压强),为升压泵布置流体储备(其中,由于该流体的负压,可容易地提取在该流体中溶解的气体)。

根据本发明的液压回路还可包括一个或多个可彼此组合的下述特征。

根据一个实施例,使内部容积处于负压的装置包括真空泵。

根据另一个实施例,使内部容积处于负压的装置包括与大气压强联接的止回阀,所述止回阀仅允许通向外部。

有利地,所述止回阀包括校准弹簧。

有利地,所述密封容器初始时包括代替空气的氮气。

本发明还旨在提供一种混合动力机动车辆,所述混合动力机动车辆包括用于牵引该车辆的液压回路,所述液压回路具有任意其中一项上述特征。

在该情况下,所述车辆装配有内燃机,使内部容积处于负压的装置可包括由该内燃机驱动的真空泵。

在变型中,所述车辆装配有包括进气歧管的内燃机,使内部容积处于负压的装置可包括在该进气歧管上的真空口。

附图说明

通过阅读下文作为非限制性示例给出的详细说明和附图,本发明的其它特征和优点将更加清楚,在附图中:

-图1是根据本发明的液压回路的示意图,所述液压回路包括使处于负压的第一部件;以及

-图2a、图2b和图2c是液压回路的变型的示意图,所述变型包括使处于负压的第二部件,所述第二部件在连续的三个使用情形中示出。

具体实施方式

图1示出了包括含有流体10的密封容器2的液压回路,升压泵4从所述密封容器中汲取,以在最小压强下为低压回路6供应。密封容器2包括未示出的孔,所述孔通常布置用于保持操作(例如是用于填充和排放的开口)并且在运行时闭合。

可由不同部件(例如电动机或液压机)驱动的升压泵4包括并联布置的校准止回阀8,所述校准止回阀允许流体从下游通向上游,以便将所述升压泵的输出压强限制至低压回路6中所需的压强。

液压回路包括与密封容器2联接的负压源12,所述负压源生成低于大气压强的压强,以便使该容器保持处于负压。

对于混合动力机动车辆中所使用的液压回路,尤其可使用通常布置在车辆中以用于为负压制动辅助系统供应的负压源。对于装配有内燃机、或装配有由该内燃机驱动或由独立电动机驱动的负压泵的车辆,负压源可尤其为在进气歧管上的真空口。

注意到,在该情况下,密封容器2需足够坚硬以抵御外部大气压强,该密封容器构成与制动辅助系统联接的补充真空存储设备,所述补充真空存储设备在负压源运行停止的情况下为该辅助提供了更大的自主性。因此对于制动系统具有更好的安全性。

密封容器2运行时不包括朝向外部的连通,因此密封容器2避免了与外部环境的直接交换,这避免了来自外部环境的入侵物(尤其是灰尘颗粒、或湿气、或空气中的氧气)。

因此更容易地保护容器中含有的流体的质量,这有利于该流体的陈化,以及有利于确保液压回路的不同构件的耐久性。尤其确保了对于该液压回路的过滤系统的保护,所述过滤系统可不太经常被更新。

此外,负压系统12在经常或持久地实施将气体抽吸到密封容器2中的同时执行提取流体中溶解的气体(尤其是空气),这有利于液压回路的净化。

注意到,在略微降压的流体10中实施泵抽的升压泵4构成以较小流量发送低压的类型的泵,该泵通常自动起动并且对空穴不太敏感。

图2a、图2b和图2c示出了密封容器2,所述密封容器的上部装配有止回阀20,所述止回阀仅允许通向外部并且与大气压强联接。

阀20尤其可包括校准弹簧,所述校准弹簧确保了在容器2打开之前在该容器中的较小负压阈值。

以该方式,确保了该阀20的最佳密封性,该阀可仅通过负压阈值打开。此外,容器2中的负压被减小一个值,该值等于由校准弹簧提供的差值,这简化了承受较弱压强差的容器的制造。

形成使容器2处于负压的装置的止回阀20的运行如下所述。

在完整的液压回路运行期间,该回路中的流体的总体积发生变化,所述变化尤其包括不同压力蓄能器的填充变化以及起因于流体膨胀和构件膨胀的差值,所述差值由源于容器2等级的变化来体现。

从提供了图2a所示的最大等级vmax的使用情形(在该情形中,容器2中的流体容积最大,并且内部压强等于大气压强)出发,在之后的运行过程中该容器中的等级降低,所述等级可达到图2b所示的最小等级vmin。

因此在流体容积减小的该阶段中,由于止回阀20保持卡挡而不存在外部空气的进入,因此容器2中生成负压,所述负压同保持在该容器中的具有最大等级vmax的自由容积与保持具有最小等级vmin的自由容积的比值成比例。

之后,当容器2中的流体容积增大时,该容器中的压强上升并且同时还保持低于大气压强,这使止回阀20保持关闭,从而在如图3a所示等级回到最大等级vmax时理论上达到该大气压强。在超过该大气压强的情况下,气体从止回阀20泄露。

实际上可尤其因为流体温度变化引起了该流体和构件的不同膨胀而具有较小差值,然而作为真空泵运行的止回阀20在所有情况下使容器内部压强保持低于或等于大气压强。

以同样的方式通过负压来得到流体的优化除气。

作为使处于负压的装置的两个版本的补充,可初始时为关闭的容器2填充氮气以替代空气,这避免了流体的氧化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1