主动侧倾控制系统的备用模式的制作方法

文档序号:11608779阅读:230来源:国知局
主动侧倾控制系统的备用模式的制造方法与工艺

本发明涉及一种用于操作具有主动侧倾控制系统和空气悬架系统的机动车辆的方法以及具有空气悬架系统和主动侧倾控制系统的机动车辆,主动侧倾控制系统被设计为使用根据本发明的方法。



背景技术:

如果道路上的不平坦或转弯导致车轮经历弹簧压缩或弹簧伸长,则机动车辆中的侧倾控制系统抵消车辆的侧倾运动。侧倾控制系统将由弹簧压缩或延伸产生的车身的运动传递到车辆的相对侧,其中侧倾控制系统的扭转性能可以引起传动的阻尼和减速,并且因此可以引起有害的动态行为。侧倾控制系统可以设置在机动车辆的前轴、后轴或分别设置在后轴和前轴上。

在被称为主动侧倾控制(arc)的范围内的主动侧倾控制系统在具有高重心的车辆和运动型车辆中变得越来越普遍。在这种情况下,通过改变侧倾控制系统的机械传动行为,车辆的侧倾性能适应于驾驶员的不同驾驶状况和个人偏好。例如,在“运动”操作模式中可能需要“更直接”或“更硬”的传动,或者可能影响在转弯期间机动车辆的转向不足行为。

在机动车辆工业中,空气悬架系统构成螺旋弹簧和弹簧片的普遍替代方案,并且空气悬架系统基本上由产生所需弹簧效应的充气波纹管组成。在这种情况下,空气弹簧的高度也可以通过改变波纹管中空气的空气压力被调整,该空气压力可用于例如在高速行驶时降低车身,或者允许更容易进入机动车辆。此外,例如us2006/0108749a1公开了空气弹簧的体积可以通过例如通过阀门连接附加体积而改变。以这种方式,空气弹簧的弹簧常数可以改变,并且在体积增加的情况下减小,这会导致更软的悬架。具有适应性弹簧常数的空气悬架系统可以被用来获得便利的功能,这些功能类似于上面所解释的用于主动侧倾控制系统的功能。



技术实现要素:

本发明的目的是引入一种用于操作具有主动侧倾控制系统和空气悬架系统的机动车辆的改进方法。

因此,本发明引入一种用于操作具有主动侧倾控制系统和空气悬架系统的机动车辆的方法。该方法至少包括以下步骤:

-根据正常的空气弹簧设定,在正常操作模式下操作空气悬架系统;

-检查主动侧倾控制系统的故障;和

-如果检测到主动侧倾控制系统出现故障,则根据与正常空气弹簧设定不同的特殊空气弹簧设定,以备用操作模式操作空气悬架。

主动侧倾控制系统优选地设置在机动车辆的前部,但是主动侧倾控制系统也可以附加地或替代地设置在机动车辆的后部。

空气悬架系统通常将包括设置在机动车辆的车轮悬架单元上的四个空气弹簧。然而,也可以设想的是,仅将前轮悬架系统或后轮悬架系统体现为空气弹簧,在本发明的范围内,至少在前轮悬架单元上设置空气弹簧。

本发明基于这种认识,并且包括所述这种认识,即,当使用主动侧倾控制系统时,问题在于,在一个或多个主动侧倾控制系统故障的情况下,机动车辆会呈现驾驶员不习惯并且在车辆运动动力学方面不利的侧倾行为。为了避免这种情况,在主动侧倾控制系统故障的情况下,侧倾控制系统的电动马达通常发生短路,或者当存在可调节的减振器时,它们被置于硬设置中。然而,电动马达的短路需要附加的自传导继电器,其在整个运行周期期间被供以电力,由此导致燃料消耗、重量以及在某些情况下机动车辆的包装体积或者其决定性部件之一增加。减振器的调节效果还取决于机动车辆的重心的高度和减振器本身的特定性能,结果是在许多情况下这种解决方案的方法可能被证明是不够的。

本发明利用这样的认识,即,当存在空气悬架系统时,其可以用于改进机动车辆的侧倾稳定性,因为空气悬架系统的决定性操作参数在主动侧倾控制系统故障的情况下被调整,并且空气悬架系统可以以这种方式在特殊操作模式下操作。

特别优选地,根据特殊空气弹簧设定的机动车辆的高度低于根据正常的空气弹簧设定的机动车辆的高度。这可以通过减小空气悬架系统中的空气压力来实现,由此减小空气弹簧的高度并且因此减小在车轮轴上方车身的高度。空气弹簧的这种调节导致机动车辆的重心下降,由此相应地缩短了在侧倾期间作用在机动车辆上的力。该措施的效果在具有设置在前轴附近的发动机和在设置在前部作为空气悬架系统的悬架系统的机动车辆的情况下特别显着,因为发动机构成了机动车辆的总质量的主要部分。

在这种情况下,根据特殊空气弹簧设定的机动车辆的高度可以减小到使得机动车辆的车轮悬架系统置于机动车辆车身的停止缓冲器上的程度。与在正常操作模式中操作的空气弹簧相比,停止缓冲器具有大几个数量级的弹簧常数,结果是该措施增加了装置的刚性。这相应地增加了机动车辆对侧倾的抵抗并增强了机动车辆的转向不足行为。在机动车辆的前轴处增加的刚度还会导致侧倾扭矩被分配到前轴,这额外地增加了在横摆期间机动车辆的稳定性。

也可以规定,根据特殊空气弹簧设定的机动车辆空气悬架系统的前部空气弹簧的弹簧常数高于根据正常的空气弹簧设定的机动车辆空气悬架系统的前部空气弹簧的弹簧常数。为此,机动车辆例如可以配备有具有可变体积的空气弹簧。增加体积导致弹簧常数减小,反之亦然。在前轴处的空气弹簧的弹簧常数的增加具有类似于对于车身置于停止缓冲器上所描述的效果,但是不会对于机动车辆的动态行为构成剧烈的干预。

此外,根据特殊空气弹簧设定的机动车辆的空气悬架系统的后空气弹簧的弹簧常数与正常空气弹簧设定相比可以增加。一个/多个弹簧常数的调节可以有利地与通过降低空气弹簧中的空气压力来降低车身相结合。

与正常空气弹簧设定相比,在特殊空气弹簧设定中,还可以减小机动车辆的空气悬架的左侧前部空气弹簧与机动车辆的空气悬架系统的右侧前部空气弹簧之间的通道。为此目的,机动车辆可以具有在设置在彼此相对的车辆侧上的空气弹簧之间的横向连接,空气弹簧的通道例如以可调节的方式通过节气门来配置。在主动侧倾控制系统故障的情况下,通道的减小相应地增加了机动车辆对于侧倾的抵抗,结果是上述内容也适用于其它调整可能性。此外,机动车辆的空气悬架系统的左侧后部空气弹簧和机动车辆的空气悬架系统的右侧后部空气弹簧之间的通道根据特殊空气弹簧设定可以大于根据正常空气弹簧设定。

本发明的第二方面提出了一种具有主动侧倾控制系统、空气悬架系统和连接到侧倾控制系统和空气悬架系统的控制单元的机动车辆。控制单元被设计为执行根据本发明的第一方面的方法。

附图说明

下面将参考示例性实施例的说明更详细地解释本发明,其中:

图1示出了根据本发明的机动车辆的示例性实施例的框图;

图2示出了具有空气弹簧的车轮悬架单元的示例性实施例;和

图3示出了根据本发明的方法的示例性实施例。

具体实施方式

图1以框图示出了根据本发明的机动车辆1的示例性实施例。在机动车辆1的车轮2中,前面的车轮被示出为安装在单独的车轮悬架单元5上。后轮2也可以安装在单独的车轮悬架单元上或安装在共同的车轴上。在所示的示例性实施例中,空气弹簧7设置在所有车轮2上或其悬架单元上。然而,与此相反,在本发明的范围内,空气弹簧7仅存在于机动车辆1的前部或仅存在于机动车辆1的后部也是可能的。机动车辆1在图1中示出为发动机6设置在前面,但是本发明也可以应用于其他构造。

机动车辆1具有侧倾控制系统3,其配备有致动器4并且适于主动侧倾控制方法。在所示的示例性实施例中,侧倾控制系统3设置在机动车辆1的前轮2上,但是此外,侧倾控制系统也可以存在于后轮2处,根据本发明的方法可以也可应用于这种情况。侧倾控制系统3在其彼此相对的端部处连接到前轮2的车轮悬架单元5,并且将车轮2的位移传递到在车辆的相对侧上的车轮2。变速器在此可以通过致动器4来控制,以便实现机动车辆1的所需动态行为。提供控制单元11用于检测侧倾控制系统3的故障的存在,例如致动器4的故障,并且在备用操作模式的范围内执行用于尽可能保持机动车辆1动态驾驶行为的适当措施。为此目的,控制单元11还连接到空气弹簧7上。控制单元11可以是已经提供用于其他目的的部件,例如发动机6的发动机控制单元或类似装置。

在所示的示例性实施例中,空气弹簧7通过第一节气门9连接到压力容器8。节气门9可以打开或关闭,以改变空气弹簧7的总体积。如果空气弹簧7的总体积增加——由于相关联的节气门9被打开或被进一步打开,则空气弹簧7的弹簧常数减小,因为相对大的回避空间可用于在弹起过程期间在一定弹簧距离上被移动或压缩的排出体积,结果是做了总体较少的压缩功。在本发明的范围内,压力容器8可仅设置在前空气弹簧7或后空气弹簧7处,或者甚至完全不设置压力容器8。

图1中的示例性实施例还示出了分别设置在车辆的相对侧上的空气弹簧7之间的横向连接,并且该横向连接经由第二节气门10可以打开或关闭,或者可以具有施加于其上的可选择的流动阻力。彼此相对的空气弹簧7之间的连接被打开的程度越大,在空气弹簧7之间可以移动的体积越大,结果是当节气门10打开时与它关闭时相比,空气弹簧抵消更小的侧倾运动。因此,空气弹簧7之间的横向连接还允许在侧倾控制系统3具有故障的情况下控制机动车辆1的侧倾行为。在本发明的范围内,仅在前空气弹簧7处、仅在后空气弹簧7处、在前空气弹簧7和后空气弹簧7处提供横向连接,或者甚至根本不提供横向连接。

控制单元11不仅连接到侧倾控制系统3的致动器4,而且连接到第一和第二节气门9、10和空气弹簧7(至目前为止它们分别存在),并且被设计成控制这些组件。特别地,控制单元11可以以可变的方式预限定空气弹簧7中的压力和节气门9、10的打开状态。

图2示出了具有空气弹簧7的车轮悬架单元的示例性实施例。在现有技术中,已知多种车轮悬架单元的变型,其也可以在本发明的范围内使用。用于车轮2的示例性车轮悬架单元5具有轮架13,该轮架可枢转地连接到枢转安装的下横向连杆14和上横向连杆15上。在所示的示例中,空气弹簧7接合在上横向连杆15上,但是也可以使空气弹簧7接合在下横向连杆14上,这使得空气弹簧7具有相对较大的安装空间,但是通常需要适配于上横向连杆15。对于附图,选择所示的构造是出于简化图示的原因,而不希望在本发明的范围内表达偏好。

空气弹簧7在一端处连接到上横向连杆,在其另一端连接到车身12。此外,提供例如由硬橡胶体现并且可具有抛物线横截面积的停止缓冲器16。停止缓冲器16通常设置在车身12上,但是也可以设置在车轮悬架单元5上,例如设置在上横向连杆15上。在备用操作模式中,提供的是将空气弹簧中的压力7降低到使得车身12通过停止缓冲器16置于车轮悬架单元5上的程度。停止缓冲器16的更大数量级的弹簧常数连同同时降低的机动车辆1的重心使得在故障情况下会带来对侧倾的增加的抵抗和机动车辆1更好的转向不足行为。

图3示出了根据本发明的方法的示例性实施例。在步骤s1中开始之后,在步骤s2中读出侧倾控制系统的合适的运行参数,并且在步骤s3中检查是否存在横向连接3的故障情况。如果不是这种情况,则系统直接或在预定时间段过去之后分支回到步骤s2,并且空气弹簧继续以正常空气设定操作。代替侧倾控制系统的操作参数,侧倾控制系统的故障情况也可以基于机动车辆1的其他合适的参数来检测,而不做一般性限制。

相反,如果在步骤s3中侧倾控制系统3存在故障情况,则空气弹簧的设定在随后的步骤中被改变为特殊空气弹簧设定。为此,在步骤s4中,空气弹簧中的压力减小,并且因此机动车辆的车身降低,这也降低了机动车辆相对于车轮悬架单元的重心。在这种情况下,空气弹簧中的压力可以减小到使车身置于停止缓冲器上的程度。在这种情况下,可以省略步骤s5至s9。

在步骤s5中,当存在具有可变体积的空气弹簧时,可以减小前空气弹簧的体积,以便增加这些空气弹簧的弹簧常数。在步骤s6中,可以增加后空气弹簧的体积,以便降低后空气弹簧的弹簧常数。通过这些措施实现改进的转向不足和侧倾行为。

在步骤s7中,可以减小或关闭前空气弹簧之间的横向连接。在步骤s8中可以规定,后空气弹簧之间的横向连接被打开或进一步打开。最后,在步骤s9中,通过听觉和/或视觉信号,可以使机动车辆驾驶员意识到改变机动车辆的动态行为并因此构成事故的可能原因的故障情况。该方法可以在步骤s10中结束。

步骤s4至s9可以以任何所需的顺序同时或相继进行。此外,可以根据机动车辆空气悬架系统的实施例省略各个步骤(空气弹簧前/后?可变空气弹簧体积前/后?空气弹簧前/后之间的横向连接?)。

本发明允许具有主动侧倾控制系统和空气悬架系统的机动车辆针对主动侧倾控制系统具有故障行为的情况的改进的动态行为。通过根据本发明的所述方法,即使在主动侧倾控制系统的故障期间,也可以确保对侧倾的足够抵抗和所需的机动车辆转向不足行为。

虽然已经通过优选实施例的示例性实施例更详细地示出和描述了本发明,但是本发明不受所公开示例的限制。在不背离如权利要求中限定的本发明的保护范围的情况下,本领域技术人员可从现有的示例性实施例导出本发明的变型。

附图标记列表

1机动车辆

2车轮

3侧倾控制系统

4致动器

5车轮悬架单元

6发动机

7空气弹簧

8蓄压器

9第一节气门

10第二节气门

11控制单元

12车身

13轮架

14下横向连杆

15上横向连杆

16停止缓冲区

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1