带有转子轮毂的轮毂轴承单元的制作方法

文档序号:11760692阅读:289来源:国知局
带有转子轮毂的轮毂轴承单元的制作方法与工艺

本发明涉及一种轮毂轴承单元,其包括以转子形式构造的轮毂。特别地,该单元在其内包括等速万向节。所讨论的单元适用于轴承的内圈可旋转的应用,或者适用于机动车辆的驱动轮的应用。



背景技术:

从现有技术中已知应用于机动车辆的驱动轮的凸缘类型的轮毂轴承单元。例如,文献ep2602123a1描述了一种用于机动车辆的车轮的轮毂轴承单元,其在这种情况下是不对称的,包括可围绕旋转轴线旋转的凸缘轮毂、固定到凸缘轮毂并且横向于旋转轴线放置的凸缘、径向定位在凸缘轮毂的外侧并且设置有彼此轴向间隔开的座圈的固定环、以及定位在固定环和凸缘轮毂之间的两排滚动体(例如滚珠)。凸缘轮毂一体地形成用于轴向外部的成排滚珠的径向内座圈,而用于轴向内部的成排滚珠的径向内座圈形成在轴承的内圈上,径向地和外部地安装在凸缘轮毂上。

这种类型的实施例,特别是当用于在传递载荷方面要求的应用中时,在轴承的圈和滚动体之间产生相当大的局部载荷;此外,该实施例不能用于生产非常坚固或高度耐用的轴承。

最后,由于存在固定到凸缘轮毂并横向于旋转轴线的凸缘部分,并且还由于凸缘轴承和等速万向节的轴向长度将在这些部件安装在车辆上时彼此相对增加,因此通常具有大的轴向总体尺寸。

还应当记住,尽管机动车辆制造商需要持续改进轴承的性能,特别是在强度或至少刚性方面,但是它们还要求在产品中提供这样的性能而不需要额外的成本,或者甚至以更低的成本。同时,机动车辆制造商旨在遵守持续降低co2排放的法定要求,越来越多地将车辆的重量视为一个基本参数。必须减小车辆的所有部件的重量。如果以部件重量的不可忽略的增加为代价,则轴承的强度的增加通常是不可接受的。还应该记住,许多制造商不再需要单独的部件,而是需要预组装的模块,这对于安装在汽车上更容易处理。

为了提高轴承的性能特别是强度,必须增加压力中心之间的距离。这可以通过增加轴承滚动体中心的圆周的直径(称为节圆直径)来实现。这样的解决方案是已知的并且已经被开发以便在相当大程度上改进性能。增加节圆直径具有的缺点是,体积且因此重量也随着节圆直径的值的平方而显著增加。这种重量增加通常对于机动车辆制造商是不可接受的。

通过进一步增加滚动体中心圆周的直径,可以进行另一种改进,使得等速万向节可以装配到轴承中,并且被称为万向节的罩(bell)的部分可以与轮毂也就是说与轴承的内圈集成。显然,部件的集成使得能够减小整个单元的重量和成本。通过还将轴承的小内圈与万向节的罩集成在轴向内部位置,可以进一步减小重量和成本。换句话说,轮毂还用作轴承的单个内圈和等速万向节的罩。

显然,这些设计指导本身不足以开发具有相当大的强度而又轻且不增加成本的新型轮毂轴承单元。



技术实现要素:

本发明的目的是提供一种用于机动车辆的驱动轮的轮毂轴承单元,其特征在于强度和轻便性,而不会增加成本。

这不仅通过增加轴承滚动体中心的圆周的直径,通过将等速万向节装配到轴承中并且将被称为万向节的罩的部分与轮毂(也就是说与轴承的内圈)集成,但最重要的是通过以提供具有高强度并结合有限重量的单元的方式设计整个单元的显著尺寸来实现。

根据本发明,描述了一种具有所附独立权利要求中所述特征的轮毂轴承单元。

根据在所附从属权利要求中所述的特征描述本发明的其它优选和/或特别有利的实施例。

附图说明

现在将参照附图描述本发明,附图示出了本发明的一些非限制性示例性实施例,其中:

-图1是根据本发明优选实施例的通过轮毂轴承单元的轴向对称截面,

-图2是通过轮毂轴承单元的轴向对称截面,示出了本发明的第二实施例,以及

-图3是通过轮毂轴承单元的轴向对称截面,示出了本发明的第三实施例。

具体实施方式

现在参考附图,根据本发明第一实施例的轮毂轴承单元整体由10表示。

单元10包括轮毂20和轴承单元30。在整个本说明书和权利要求书中,指示位置和取向比如“径向”和“轴向”的任何术语和表达被解释为涉及轴承单元30的中心旋转轴线x。然而,诸如“轴向外部”和“轴向内部”的表述是指组装状态,并且在当前情况下,优选地分别是指车轮侧和与车轮侧相对的一侧。

轴承单元30包括固定的径向外圈31和两排滚动体32、33,在该示例中为滚珠,它们位于径向外圈31和用作径向内圈的轮毂20之间。为了简化图形表示,附图标记32和33用于指示单独的滚珠和成排的滚珠;特别地,32表示轴向外部的成排滚珠或单独的滚珠,而33表示轴向内部的成排滚珠或单独的滚珠。此外,为了简单起见,术语“滚珠”在本说明书和附图中作为示例被频繁使用,而不是更通用的术语“滚动体”(并且也使用相同的附图标记)。然而,应当理解的是,可以使用任何其它滚动体(例如滚子、圆锥滚子、滚针滚子等)来代替滚珠。

图1示出了对称轴承的情况,也就是说,对于两组成排的滚动体具有相同节圆的轴承。本说明书的其余部分的内容也适用于不对称轴承的情况,这两种轴承类型之间唯一的实质区别在于,相应圈32、33的滚动体的中心的圆周的直径在对称轴承中具有相同的值pb,而上述直径在不对称轴承中彼此不同。优选地呈轴向延伸管形状的径向外圈31在其自身内限定用于相应的成排滚动体32、33的座圈34、35。

径向外圈31具有适于联接到形成在车辆的固定元件(例如在附图中未示出的已知类型的悬架的转向节)中的圆柱形座的径向外圆柱形表面31a。圆柱形表面31a在径向外圈31的整个轴向尺寸上延伸,并且具有与转向节的圆柱形座的尺寸相同数量级的轴向尺寸。

成排的滚动体32、33不仅在径向外圈31上旋转,而且在轮毂20的中心管状部分21上旋转,其限定用于轴向外部的滚动体32的座圈36和用于轴向内部的滚动体33的轴向内座圈37。为了更清楚起见,在图2中示出了前述的座圈36、37。轮毂20因此用作单个内圈,替代两个内圈,如众所周知的,这两个内圈通常用于凸缘轮毂轴承单元的标准解决方案。

轮毂20还限定了在轴向内侧上的肩部22和轴向外凸缘部分23。凸缘部分具有多个轴向固定孔24,其轴线沿着直径pcd的圆周相对于对称轴线x放置。这些孔是用于相同数量的固定装置(例如图中未示出的固定螺栓)的座,其以已知的方式将机动车辆车轮的元件例如制动盘(也是已知类型的,在图中未示出)连接到轮毂20。

有利地,用于使机动车辆的车轮和制动盘居中的衬套50可以由金属板例如钢制成,并且优选地通过简单的压配合操作联接到轮毂的凸缘部分23。可替代地,如图2所示,该衬套50可以与轮毂20制成一体。

来自机动车辆(未示出)的变速器组件的半轴的运动的传递由等速万向节60提供。特别地,万向节60的外罩集成到轮毂20中,轮毂20限定万向节的座圈62在其轴向内终端部分61中。通过保护盖63将万向节与外部隔离而将润滑脂容纳在等速万向节内部。

可替代地,可以通过形成轮毂20来省略保护盖,如图3所示,作为具有盘状加强部分25的腹板结构,其将包含等速万向节60的空间与外部环境密封。加强部分25可以有利地设置有凹槽以减小其重量。

为了增加强度,轮毂轴承单元被设计成显著地增加两排滚动体的的节圆直径pb,将其值提高到接近轴向固定孔24的轴线的圆周的直径pcd的值。

另外,由于两个直径pb和pcd的值相似,所以可以减小轮毂20的凸缘部分23的径向延伸。因此,与标准解决方案的t形相比,该单元具有更管状的形状,象一种转子。因此,由车轮施加在轮毂凸缘上的弯曲扭矩的影响显著减小,结果是施加到轴承本身的滚动体的力减小。

此外,增大的节圆直径使得等速万向节60能够安装在单元内部,并且使得万向节的罩能够集成到轮毂20中,即结合到轴承的内圈中。部件的集成限制了作为整体的单元的重量和成本。

最后,如果衬套50也集成到轮毂20中,如图2所示的实施例那样,则单元的部件总数减少两个。

因此,通过单元的某些几何特性的适当设计来优化单元。

首先,这适用于轴向内部的成排滚动体的中心与等速万向节的滚动中心之间的轴向距离l。

如果等速万向节的滚动中心相对于轴向内部的滚动体的中心处于轴向内部位置,则该轴向距离l通常被认为是正的。相反,如果等速万向节的滚动中心相对于轴向内部的滚动体的中心处于轴向外部位置,则距离l具有负值。如果满足以下条件,则获得在单元的高强度和减小的重量方面的更大优化:

其中:

l是轴向内部的滚动体33的中心与等速万向节的滚动中心之间的轴向距离,

pb是成排滚动体32、33的节圆直径,

s是凸缘23的轴向外表面与轴向外部的成排滚动体32的的中心之间的轴向距离,

a是成排滚动体的32、33的中心之间的轴向距离。

由公式(1)定义的比率确定了轮毂轴承单元的总体尺寸。如果指导单元开发的优先级是车辆的可驾驶性,则趋向于下限(0.4或0.5,视情况而定)的比率可能是优选的。显然,如果该比值低于下限,则这将减小由节圆直径的增加所提供的强度的优点,并且将导致该单元配置为具有相对于径向延伸的大的轴向延伸。后一种情况还可能在诸如锻造或等同程序的生产过程中产生一些问题。

如果单元的设计基于减轻重量和紧凑性的要求,则较高的比率即趋向于上限4的较高比率是优选的。超过公式(1)定义的比率的值是不合适的,以避免过大的单元尺寸并失去其优化的益处。

有利地,要监视的另一几何比率由以下公式给出:

其中,除了已经提到的符号之外,

db是滚动体的直径,

dj是等速万向节的球的直径。

该比率控制单元的轴向延伸。对于一些应用来说,如果设计优先级是车辆的可驾驶性,则可以推荐该比率的较高值。然而,如果轴向紧凑性是设计的期望结果,则优选较低的值。在任何情况下,不宜超过2.5的阈值,特别是如果这是由l的高值引起的,以避免等速万向节的滚动中心相对于轴承的座圈和滚动体朝向单元的轴向内侧过远地定位。

优选地,应当仔细检查的另一几何比率由以下公式给出:

其中,除了已经提到的符号之外,

pj是等速万向节的节圆直径。

该比率与轮毂轴承单元的坚固性相关。为了最佳的负载传输,建议比率至少大于1,以确保轮毂20的管状部分21的最小厚度。如果该值低于1,则这也将导致管状部分21的最终形状在成形过程方面不是最佳的。

另一方面,优选保持低于3的上限。虽然解决方案的目的是增加单元的强度或刚性,但同样重要的是控制重量,且因此控制成本。该比率的过高值将使得本解决方案在其外观方面对于顾客不具有吸引力。

最后,待监测的另一个比率由以下公式给出:

其中,除了已经提到的符号之外,

pcd是用于将制动盘固定到轮毂轴承单元的轴向孔24的轴线的圆周的直径。

对于该解决方案,比率pcd/pb也很重要。如上所述,该解决方案的关键方面之一是管状或转子状形状,其减小了凸缘部分的径向延伸。如果该比率的值超过2.6,则所需的强度优势将完全丧失。另一方面,由于强度和重量之间的折衷几乎总是主要设计目标之一,如果不是唯一一个,则小于0.7的值将导致在所识别的解决方案中实际上不可避免的吸引力损失。

总之,该解决方案的主要优点之一是关于滚动体和轮毂的凸缘部分的增加的强度。

另一个优点是更多部件的集成,对成本、对关键接口的移除以及因此对性能具有积极影响。移除的接口是与以下相关的接口:

a)使用单个内圈代替常规使用的两个内圈:在这种情况下,不需要将一个圈压配合到另一个圈上,或者执行随后的调整操作。显然,在两个圈之间不存在相对旋转的风险,也不存在对径向和轴向内圈的塑性变形的任何需要;

b)轮毂和等速万向节的罩之间的集成,导致消除了标准解决方案中存在的两个部件之间的带槽连接。因此,不存在由于两个部件之间的任何间隙或者当负载的施加方向改变时将发生的所产生的噪声的问题;不需要拉削带槽轮廓,也不需要对具有带槽轮廓的等速万向节进行热处理。此外,省去用于扭矩传递所需的接口消除了在关键应用中可能的故障模式。最后,不需要螺栓将等速万向节锁定在轴承上。

考虑到为了提供足够坚固的接口,接口的面对部件必须足够厚,而接口的减小具有需要较少的材料存储空间的附带效果,而如果仅存在一个部件,则整体厚度通常较小。

应当理解的是,本发明不限于这里描述和示出的实施例,其被认为是单元的示例;对于本领域技术人员显而易见的是,在不脱离如所附权利要求及其等同物所限定的本发明的范围的情况下,可以对作为示例性实施例描述的元件的功能和配置进行各种改变。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1