用于车辆的混合动力系统及其控制方法与流程

文档序号:19320910发布日期:2019-12-04 00:31阅读:131来源:国知局
用于车辆的混合动力系统及其控制方法与流程
本发明涉及混合动力车辆
技术领域
,尤其是涉及一种用于车辆的混合动力系统及其控制方法。
背景技术
:混合动力汽车具有发动机与电机两个动力源,通过车辆行驶中两种动力源之间的相互配合使其兼具了传统燃油汽车与纯电动汽车的优点,成为解决环境问题与能源问题的最佳车型,是电动化汽车中最具有产业化和市场化前景的动力系统。现有技术中,混合动力汽车的动力驱动系统广泛采用dct(dualclutchtransmission,简写dct)混合动力变速箱,是在dct(双离合器变速器)的双离合器前面增加一个电机、电机前面增加一个离合器组成,齿轮传动,效率高,离合器拖拽阻力造成的能量损失少,液压能量消耗少;发动机和电机并联驱动,扭矩叠加,动力性好;dct技术成熟,实现大规模生产,零部件和总成质量稳定、成本低;但是,存在以下缺点:1、双离合器控制技术复杂,有风险且成本较高;2、双离合器直径、体积较大,增加电机后,轴向长度较大,发动机舱内布置困难;3、发动机驱动车辆起步时,双离合器滑摩控制难度大,容易出现抖动;换档时,两个离合器切换也容易造成抖动;4、一般情况下,受轴向长度、成本等约束,只能有6、7个挡位;低档位之间,速比差异较大,城市道路工况油耗较差。技术实现要素:为解决上述问题,本发明的目的是提供一种传动效率高、挡位多、结构紧凑、零部件技术成熟的用于车辆的混合动力系统,同时公开上述用于车辆的混合动力系统的控制方法,还公开一种包含该混合动力系统的车辆。为实现上述发明目的,本发明采用如下技术方案:一种用于车辆的混合动力系统,其包括发动机、混合动力模块和双输入轴变速机构,所述混合动力模块由电机、行星齿轮系、第一离合器和制动器组成,行星齿轮系具有至少3个转轴,分别为:转轴x1、转轴x2、转轴x3,3个转轴的轴心线在一条直线上,转轴x2的转速介于转轴x1转速和转轴x3转速之间;所述3个转轴中的任意两个之间布置有第一离合器;所述发动机的动力输出轴连接行星齿轮系的转轴x3或转轴x1、以及双输入轴变速机构的第二输入轴,电机的转子与转轴x1或转轴x3连接,转轴x2与双输入轴变速箱的第一输入轴连接;所述制动器安装在发动机的动力输出轴上;所述双输入轴变速机构由第一输入轴、第二输入轴、若干对前进档位齿轮、至少一套倒档齿轮和输出轴组成,第一输入轴上设有奇数挡位主动齿轮,第二输入轴上设有偶数挡位主动齿轮,倒挡主动齿轮设置在第一输入轴或第二输入轴上,输出轴上布置各个挡位的从动齿轮,上述各挡位的主动齿轮与其对应的从动齿轮相互啮合;每一个挡位中有一个齿轮通过同步器与该齿轮所在的轴连接。一种用于车辆的混合动力系统,其包括发动机、混合动力模块和双输入轴变速机构,所述混合动力模块由电机、行星齿轮系、第一离合器和制动器组成,行星齿轮系具有至少3个转轴,分别为:转轴x1、转轴x2、转轴x3,3个转轴的轴心线在一条直线上,转轴x2的转速介于转轴x1转速和转轴x3转速之间;所述3个转轴中的任意两个之间布置有第一离合器;所述发动机的动力输出轴连接行星齿轮系的转轴x3或转轴x1、以及双输入轴变速机构的第二输入轴,电机的转子与转轴x1或转轴x3连接,转轴x2与双输入轴变速箱的第一输入轴连接;所述制动器安装在发动机的动力输出轴上;所述双输入轴变速机构由第一输入轴、第二输入轴、若干对前进档位齿轮、至少一套倒档齿轮、第一输出轴和第二输出轴组成,第一输入轴上固设有奇数档位主动齿轮,第二输入轴上固设有偶数档位主动齿轮,第一输出轴上布置有若干个从动齿轮,第二输出轴上布置有若干个从动齿轮,从动齿轮分别通过各自的同步器与该齿轮所在的轴连接;每个主动齿轮与分别在第一、第二输出轴上的一个从动齿轮啮合。进一步地,上述的混合动力模块中,行星齿轮系具有至少3个转轴,分别为:太阳轮s的转轴、行星轮架c的转轴、齿圈r的转轴,3个转轴的轴心线在一条直线上,行星架c的转轴转速介于太阳轮s的转轴转速和齿圈r的转轴转速之间,上述3个转轴中的任意两个之间布置有第一离合器;所述发动机的动力输出轴连接行星齿轮系中齿圈r的转轴或太阳轮s的转轴、以及双输入轴变速机构的第二输入轴,电机的转子与行星齿轮系中太阳轮s的转轴或齿圈r的转轴连接,行星轮架c的转轴与双输入轴变速箱的第一输入轴连接。所述的用于车辆的混合动力系统,其混合动力模块中的制动器可以采用第二离合器替代,第二离合器安装在发动机的动力输出轴上。本发明还提供一种用于车辆的混合动力系统的控制方法,其运行模式包括:纯电动模式、纯发动机驱动模式、混合动力驱动模式和充电模式。进一步地,上述的纯电动模式工作条件为:发动机不工作,零转速;混合动力系统挂一奇数挡位,第一离合器分离,行星齿轮系差速转动;制动器闭合,限制发动机的动力输出轴转动;电机扭矩作用在太阳轮的转轴上,使其倾向正转;太阳轮驱动行星齿轮转动,行星齿轮倾向于驱动齿圈反向转动;制动器限制齿圈倒转,迫使行星架正向转动。进一步地,上述的混合动力驱动模式工作条件为:发动机和电机混合驱动车辆起步时,混合动力系统挂d挡,变速箱挂一挡,第一离合器分离;起步前,车轮零转速,第一输入轴和行星架零转速,发动机怠速转动,电机反转;起步开始:发动机增加扭矩,电机也增加扭矩并增加速度,驱动行星架和第一输入轴加速,并通过变速箱,驱动车轮转动,此时发动机与电机差速驱动,发动机与车轮之速比能够连续变化,当行星架转速达到一定转速时,第一离合器闭合,发动机与车轮之速比固定,进入固定一挡挡位。更进一步地,上述的发动机和电机混合驱动模式条件下,固定挡位操作步骤为:混合动力系统挂一奇数挡位或偶数挡位,第一离合器闭合,行星齿轮系中的3个转轴同速转动,发动机和电机扭矩分别作用在太阳轮的转轴和齿圈的转轴上,经由行星齿轮系叠加,通过第一输入轴或第二输入轴和相应该挡位齿轮传递到车轮上。更进一步地,上述的发动机和电机混合驱动模式条件下,变换挡位操作步骤为:一、由奇数挡位变换到相邻的偶数挡位1、换挡前:同步器挂奇数挡,第一离合器闭合,锁定行星齿轮系,发动机和电机并联驱动该挡位齿轮;2、开始换挡:调整发动机和电机扭矩,使得tm=ρten,第一离合器承受的扭矩降为零,并且调整后的扭矩之和等于调整前的扭矩之和;其中,tm为电机驱动扭矩,ρ=s/r,r、s分别表示齿圈、太阳齿轮的齿数,ten为发动机驱动扭矩;3、第一离合器释放,发动机和电机差速驱动;该过程中电机和发动机扭矩绕行星架轴平衡,驱动扭矩等于换挡前的扭矩;4、电机调整太阳轮的转轴转速,进而带动齿圈的转轴和第二输入轴调速,使得第二输入轴与新挡位齿轮同步;该过程中电机和发动机扭矩绕行星架轴平衡,驱动扭矩等于换挡前的扭矩;发动机进行扭矩控制,电机则对太阳齿轮进行转速控制,并通过行星齿轮系,控制齿圈转速,使得第二输入轴与待挂偶数挡位齿轮同速转动,便于该挡位同步器顺利挂挡;5、同步器挂新挡位,该过程扭矩保持不变;6、电机输出的扭矩转移到发动机的动力输出轴上,发动机直接驱动第二输入轴和新挡位齿轮,电机扭矩变为零,第一输入轴和原奇数挡位齿轮所受扭矩为零;该过程中,电机扭矩转移给发动机,驱动扭矩等于换挡前的扭矩;7、同步器摘掉原奇数挡位;8、第一离合器闭合,将行星齿轮系锁定,发动机和电机并联驱动新挡位;该过程中,能够调整、平衡电机和发动机扭矩,驱动扭矩和等于换挡前的扭矩;二、由偶数挡位变换到相邻的奇数挡位1、换挡前:同步器挂偶数挡,第一离合器闭合,锁定行星齿轮系,发动机和电机并联驱动该挡位;2、开始换挡:电机输出的扭矩转移到发动机的动力输出轴上,发动机直接驱动第二输入轴和原挡位齿轮,电机扭矩变为零,离合器所受扭矩为零;该过程中,电机扭矩转移给发动机,驱动扭矩等于换挡前的扭矩;3、第一离合器释放,行星齿轮系的3个转轴差速转动,该过程扭矩保持不变;4、电机调整太阳轮的转轴转速,进而带动行星架的转轴和第一输入轴调速,使得第一输入轴与新挡位齿轮同步;该过程中发动机扭矩直接作用在第二输入轴,通过偶数挡位齿轮驱动车轮,扭矩等于换挡前扭矩;5、同步器挂新挡位,该过程扭矩保持不变;6、调整发动机和电机扭矩,使得tm=ρten,并且调整后的扭矩之和等于调整前的扭矩之和,使得第二输入轴和原挡位齿轮所受扭矩降为零;其中,tm为电机驱动扭矩,ρ=s/r,r、s分别表示齿圈、太阳齿轮的齿数,ten为发动机驱动扭矩;7、摘掉原偶数挡位,该过程扭矩保持不变;8、第一离合器闭合,将行星齿轮系锁定,发动机和电机扭矩并联驱动新挡位齿轮;该过程中,能够调整、平衡电机和发动机扭矩,驱动扭矩和等于换挡前的扭矩。上述的用于车辆的混合动力系统的控制方法,其从纯电动模式转换为混合动力驱动模式的操作步骤为:1、转换前,同步器挂奇数挡,第一离合器分离,制动器锁定发动机的动力输出轴,电机驱动太阳齿轮,经过行星架驱动第一输入轴和挂挡齿轮;2、开始切换:制动器释放,第一离合器闭合,倾向与将行星齿轮系中的3个转轴同速转动,带动发动机的动力输出轴加速;3、限制第一离合器的滑摩扭矩,同时,电机增大扭矩,补偿扭矩损失;4、待发动机的动力输出轴达到点火转速,发动机点火并开始工作,混合动力系统进入混合动力驱动模式。上述的用于车辆的混合动力系统的控制方法,其从混合动力驱动模式转换为纯电动模式的操作步骤为:1、转换前,混合动力系统挂奇数挡位,同步器挂奇数挡,第一离合器闭合,制动器分离,发动机和电机并联驱动;2、开始切换:第一离合器释放,发动机熄火;制动器闭合,将发动机的动力输出轴转速将为零并锁定;3、电机继续驱动太阳轮,系统切换成纯电动模式。本发明还保护一种包括有上述混合动力系统的车辆。由于采用如上所述的技术方案,本发明具有如下优越性:该用于车辆的混合动力系统及其控制方法,其传动效率高,挡位多,结构紧凑,零部件技术成熟,设计合理,引入三轴双自由度的行星齿轮系,发动机和电机可以差速驱动车辆起步,车辆起步平稳,不再需要离合器滑摩驱动车辆起步;全部换挡过程都是由电机控制调速,等输入轴和齿轮实现同步后,同步器直接挂挡,不需要离合器辅助,电机响应快、调速精度高,所以换挡平顺性好、冲击小;换挡过程中,可以在发动机和电机之间转移扭矩,使得在整个换挡过程中,驱动扭矩保持不变,车辆驱动平稳;取消双离合器,降低成本;行星齿轮系可以布置在电机转子内部,节省空间,缩短轴长,液压系统能量消耗可进一步降低;双输入变速箱挡位多,利于整车降油耗,且轴向尺寸短;行星齿轮系对发动机增扭,改善整车油耗;发动机和电机差速驱动,提速过程可以连续变速,进一步降低城市工况油耗;行星齿轮系对电机增扭2~3倍,电机扭矩可降低25~50%,降低电机成本;实现纯电驱动、发动机和电机混合驱动、能量再生制动、巡航发电、驻车发电等功能。附图说明图1是本发明用于车辆的混合动力系统实施例之一的结构示意图;图2是本发明用于车辆的混合动力系统实施例之二的结构示意图;图3是图1、图2中的行星轮系的结构示意图;图4是图3中的行星轮系中各转轴转速杠杆表示图;图5是一般行星轮系中三个转轴转速杠杆表示图;图6是图3中的行星轮系中各转轴扭矩图;图7是在hev工况,发动机速比连续变化时,行星齿轮系中3个转轴转速的杠杆表示图;图8是在hev工况,电机转速控制在零转速附近时,行星齿轮系中3个转轴转速的杠杆表示图;图9a是纯电机驱动模式时,本发明的行星齿轮系中3个转轴转速的杠杆表示图;图9b是纯电机驱动车辆时,本发明的行星齿轮系中3个转轴扭矩的杠杆表示图;图10a是发动机和电机混合驱动车辆起步过程中,本发明的行星齿轮系中3个转轴转速的杠杆表示图;图10b是发动机和电机混合驱动车辆起步过程中,本发明的行星齿轮系中3个转轴扭矩的杠杆表示图;图11a是混合驱动时由奇数挡位变换为偶数挡位过程,本发明的行星齿轮系中3个转轴转速的杠杆表示图;图11b是混合驱动时由奇数挡位变换为偶数挡位过程,本发明的行星齿轮系中3个转轴转速的杠杆表示图;图12a是混合驱动时由偶数挡位变换为奇数挡位过程中,本发明的行星齿轮系中3个转轴转速的杠杆表示图;图12b是是混合驱动时由偶数挡位变换为奇数挡位过程中,本发明的行星齿轮系中3个转轴转速的杠杆表示图;图13是本发明用于车辆的混合动力系统中的双输入轴变速机构实施例之一的结构示意图;图14是本发明用于车辆的混合动力系统中的双输入轴变速机构实施例之二的结构示意图;图15是本发明用于车辆的混合动力系统实施例之三的结构示意图;图中:1-发动机;2-动力输出轴;3-制动器;4-第一离合器;5-行星齿轮系;6-电机;7-转子;8-第二离合器;10-混合动力模块;11-第一输入轴;12-第二输入轴;15-输出轴;16-第一输出轴;17-第二输出轴;20-双输入轴变速机构;s-太阳轮;c-行星轮架;r-齿圈。具体实施方式下面结合附图和实施例对本发明的技术方案作进一步详细说明。如图1所示,该用于车辆的混合动力系统,其包括发动机1、混合动力模块10和双输入轴变速机构20,所述混合动力模块20由电机6、行星齿轮系5、第一离合器4和制动器3组成,行星齿轮系5具有至少3个转轴,3个转轴的轴心线在一条直线上,3个转轴分别为太阳轮s的转轴、行星轮架c的转轴、齿圈r的转轴,发动机1的动力输出轴2与齿圈r的转轴连接,且与双输入轴变速机构20的第二输入轴12连接,电机6的转子7与太阳轮s的转轴连接,行星架c的转轴与双输入轴变速机构20的第一输入轴11连接,第一离合器4布置在太阳轮s、行星轮架c和齿圈r中任意两个的转轴之间,用于将行星齿轮系的3个转轴锁定在一起,同速转动;所述制动器3安装在发动机1的动力输出轴2上;所述双输入轴变速机构20由第一输入轴11、第二输入轴12、若干对前进档位齿轮、至少一套倒档齿轮gr和输出轴15组成,一套倒档齿轮gr中的两个齿轮之间设有转向齿轮,前进挡位齿轮分别是挡位齿轮g1、g2、g3、……,一套倒档齿轮gr中的两个齿轮之间设有转向齿轮,第一输入轴11上设有奇数挡位主动齿轮、倒档主动齿轮,第二输入轴12上设有偶数挡位主动齿轮,输出轴15上布置各个挡位的从动齿轮,上述各挡位的主动齿轮与其对应的从动齿轮相互啮合;每一个挡位中有一个齿轮通过同步器与该齿轮所在的轴连接;同步器挂挡时,该齿轮与相应的轴连接,同速转动;同步器摘挡时,该齿轮与相应的轴分离。如图2所示,该用于车辆的混合动力系统,其包括发动机1、混合动力模块10和双输入轴变速机构20,所述混合动力模块20由电机6、行星齿轮系5、第一离合器4和制动器3组成,行星齿轮系5具有至少3个转轴,分别为太阳轮s的转轴、行星轮架c的转轴、齿圈r的转轴,3个转轴的轴心线在一条直线上,发动机1的动力输出轴2与齿圈r的转轴连接,且与双输入轴变速机构20的第二输入轴12连接,电机6的转子7与太阳轮s的转轴连接,行星架c的转轴与双输入轴变速机构20的第一输入轴11连接,第一离合器4布置在行星齿轮系中任意两个转轴之间,用于将行星齿轮系的3个转轴锁定在一起,同速转动;所述制动器3安装在发动机1的动力输出轴2上;所述双输入轴变速机构20由第一输入轴11、第二输入轴12、若干对前进档位齿轮、至少一套倒档齿轮gr、第一输出轴16和第二输出轴17组成,一套倒档齿轮gr中的两个齿轮之间设有转向齿轮,第一输入轴11上固设有奇数档位主动齿轮dg1/3、dg5/7,第二输入轴上固设有偶数档位主动齿轮dg2/4、dg6/8,第一输出轴16上布置有从动齿轮dg1、dg5、dg2、dg6,各个从动齿轮分别通过各自的同步器s1、s5、s2、s6与该轴连接,第二输出轴17上布置有从动齿轮dg3、dg7、dg4、dg8,各个从动齿轮分别通过各自的同步器s3、s7、s4、s8与该轴连接,主动齿轮dg1/3与从动齿轮dg1、dg3啮合,主动齿轮dg5/7与从动齿轮dg5、dg7啮合,主动齿轮dg2/4与从动齿轮dg2、dg4啮合,主动齿轮dg6/8与从动齿轮dg6、dg8啮合;每一个主动齿轮与两个被动齿轮啮合,从而减少占用轴向空间;第一输出轴16和第二输出轴17的输出齿轮与主减齿轮啮合;每一个主动齿轮与两个被动齿轮啮合形成两个挡位,共四组,八个挡位,所需齿轮数量少,沿轴向布置四排齿轮和二对同步器,轴向尺寸紧凑;挡位之间速比变化也比较合理,如表1所示。表1挡位cls1s2s3s4s5s6s7s8总速比变化比01挡o16.1(增扭)1挡oo10.391.552挡oo8.0661.2883挡oo6.5341.2354挡oo5.2851.2365挡oo4.2671.2386挡oo3.4661.2317挡oo2.7961.248挡oo2.2711.231如图1、2所示,所述的用于车辆的混合动力系统,其制动器3的功能是:在纯电驱动或能量再生制动时,锁住发动机1的动力输出轴2,阻止其转动,并给齿圈r施加约束反力矩;在需要发动机转动时,释放发动机的动力输出轴,使其能够自由转动。结合图3、图4描述图1、图2中的行星齿轮系各转动轴的运动学关系。太阳轮s的转轴、行星轮架c的转轴、齿圈r的转轴存在以下运动学约束:nr+ρ·ns=(1+ρ)·ncρ=s/r其中:nr、ns和nc分别表示齿圈r、太阳齿轮s和行星架c的转速;r和s分别表示齿圈r和太阳齿轮s的齿数;这个运动学约束也可以用杠杆图直观地描述,如图4所示,一杠杆水平放置,上面有三个点,依次为s、c、r,分别代表太阳齿轮s、行星架c、齿圈r;点s到点c之间的距离为1,点c到点r的距离为ρ=s/r;从每一个点引出一条垂直于杠杆的矢量,分别代表太阳齿轮s、行星架c、齿圈r的转速,则3个矢量的顶点保持在一条直线上。由图4可知,行星架c的转速总是介于太阳轮s转速和齿圈r转速之间;齿圈r的转轴和太阳齿轮s的的转轴的连接可以互换,并保持功能不变。如图5所示,一般地说,一个行星齿轮系至少有3个转轴:分别为:转轴x1、转轴x2、转轴x3,3个转轴的轴心线在一条直线上。三个转轴的转速之间存在运动学约束,该运动学约束可用杠杆图示法表示:一个杠杆水平放置,上面有三个点x1、x2、x3,分别代表这三个转轴,点与点之间的距离是由行星齿轮系的参数决定的;从每一个点引出一个垂直于杠杆的矢量,表示该轴的转速,则三个矢量箭头定点在一条直线上。由图5可看出,转轴x2的转速总是介于转轴x1转速和转轴x3转速之间;转轴x1和转轴x3的连接可以互换,并保持功能不变。发动机1的动力输出轴2连接行星齿轮系的转轴x3、以及双输入轴变速机构20的第二输入轴12,电机6的转子7与转轴x1连接,转轴x2与双输入轴变速箱20的第一输入轴11连接,第一离合器4布置在行星齿轮系的任意两个转轴之间,用于将行星齿轮系的3个转轴锁定在一起,同速转动。行星齿轮系中的3个转轴上承受扭矩,太阳轮的转轴所受扭矩之和为ts,齿圈的转轴所受扭矩之和为tr,行星架的转轴所受扭矩之和为tc,如图6所示。第一离合器分离时,这三个扭矩之间存在以下关系:ts=ρ·trtc=ts+tr电机6与太阳轮s的转轴连接并作用驱动扭矩tm,ts=tm;发动机1与齿圈r的转轴以及第二输入轴12连接,发动机驱动扭矩为ten,第二输入轴的反作用扭矩为t2,tr=ten-t2;第一输入轴11与行星架c的转轴连接,第一输入轴的反作用扭矩t1=tc;反作用扭矩t1实际上就是行星架输出到第一输入轴的扭矩的反作用扭矩,大小相等,方向相反;反作用扭矩t2实际上就是齿圈r输出到第二输入轴的扭矩的反作用扭矩,大小相等,方向相反。发动机的速比:发动机1的动力输出轴2的转速与变速箱输出轴的转速之间的比值称为速比。本发明的混合动力系统有n个固定变速挡位,速比分别η1、η2、η3、……、ηn,只要每次挂一个档位,并闭合第一离合器4,发动机1的动力输出轴2可以逐个实现全部这些挡位。具体情况如下:如果是挂奇数挡位i,则第一输入轴11的速比就等于该挡位的速比ηi;行星架c的转轴与第一输入轴11连接,速比也等于ηi;由于第一离合器4闭合,将行星齿轮系5锁定,3个转轴同速转动,齿圈r的转轴和发动机1的动力输出轴2的速比也等于ηi。类似地,如果同步器挂一个偶数挡位j,则第二输入轴12速比就等于该挡位速比ηi;齿圈r的转轴和发动机的动力输出轴2与第二输入轴连接,速比也等于ηi;由于第一离合器闭合,行星齿轮系5锁定,3个转轴同速转动,太阳轮s的转轴和电机轴的速比也等于该挡位速比ηi。除上述n个固定挡位以外,在提速过程中,本发明的混合动力系统还可以为发动机提供连续速比,条件是电池能够提供所需要的电能,参见图7。混合动力系统工作如下:系统挂1挡、第一离合器分离,发动机和电机差速驱动;发动机保持在一定的速度,电机转速不断地随车速变化而变化,发动机转速与第一输入轴的速比在连续变化,对输出轴的速比也是连续变化;只要是挂奇数挡位,系统就可以实现连续变速。连续变速能够改善整车在城市道路工况的油耗。类似地,挂其他奇数挡位,系统也可以实现一定范围内的连续变速。参见图8,在差速驱动的情况下,本发明的混合动力系统可以较长时间地提供一个速比,是一个准固定速比。挂1挡位,电机在零转速附近,发动机速比大约等于(1+ρ)·η1,比1挡速比还大,为方便起见,称之为01挡。电机能较长时间在零转速附近工作,是因为电机转速接近于零时,耗电量很小,动力电池可以较长时间供电。还有一个原因:电机转速可以大于零,是电动工况,消耗电池中的电能;也可以小于零,是发电工况,给电池充电。这样电机可以在零转速附近长时间工作,基本保证电池内电量平衡。结果,系统获得一个额外的挡位/速比,共有n+1的速比,速比范围也扩宽到(1+ρ)倍。本发明用于车辆的混合动力系统的控制方法,其运行模式包括:纯电动模式、纯发动机驱动模式、混合动力驱动模式和充电模式。本发明的用于车辆的混合动力系统的控制方法,其纯电动模式(ev模式)工作条件为:1、混合动力系统挂一奇数挡位,速比为ηi;第一离合器4分离,行星齿轮系差速转动;制动器3闭合,限制发动机1的动力输出轴2转动;2、参见图9a、图9b,电机扭矩作用在太阳轮s的转轴上,使其倾向正转;太阳轮驱动行星齿轮转动,行星齿轮倾向于驱动齿圈反向转动;制动器限制齿圈倒转,迫使行星架c正向转动;3、电机扭矩为tm,行星架c轴的扭矩则为(1+1/ρ)·tm;4、电机转速为ns,行星架c的转轴转速为ns/(1+1/ρ),电机驱动总速比为(1+1/ρ)·ηi。本发明的用于车辆的混合动力系统,其混合动力驱动模式(hev模式)工作条件为:参见图10a、图10b,发动机和电机混合驱动车辆起步时,1、混合动力系统挂d挡(前进挡),变速箱挂一挡,第一离合器4分离;起步前,车轮零转速,第一输入轴11和行星架也是零转速,发动机怠速转动,电机反转;2、起步开始:发动机增加扭矩,电机也增加扭矩并增加速度,驱动行星架和第一输入轴加速,并通过变速箱,驱动车轮转动;3、此时发动机与电机差速驱动,发动机与车轮之速比可连续变化,优化发动机工况,降低油耗;提速过程较短,电池电量可支持;4、车辆加速,转速提高,行星架转速提高;5、当行星架转速达到一定转速时,第一离合器闭合,发动机与车轮之速比固定,进入固定一挡挡位。本发明的用于车辆的混合动力系统的控制方法,其发动机和电机混合驱动模式条件下,固定挡位操作步骤为:1、混合动力系统挂奇数挡位i,第一离合器闭合;第一输入轴和行星架的速比为ηi;由于第一离合器闭合,行星齿轮系中的3个转轴同速转动,齿圈和发动机速比也等于ηi;发动机和电机扭矩分别作用在太阳轮s的转轴和齿圈r的转轴上,经由行星齿轮系叠加,通过第一输入轴和该挡位齿轮i传递到车轮上;2、混合动力系统挂偶数挡位j,第一离合器闭合;第二输入轴和齿圈的速比为ηj;由于第一离合器闭合,行星齿轮系中的3个转轴同速转动,齿圈和发动机速比也等于ηi;发动机和电机扭矩分别作用在太阳轮s的转轴和齿圈r的转轴上,经由行星齿轮系叠加,通过第二输入轴和该挡位齿轮j传递到车轮上。本发明的用于车辆的混合动力系统的控制方法,其发动机和电机混合驱动模式条件下,变换挡位操作步骤为:一、由奇数挡位变换到相邻的偶数挡位,参见图11a、图11b:1、换挡前:同步器挂奇数挡i,速比为ηi;第一离合器闭合,锁定行星齿轮系,发动机和电机并联驱动该挡位齿轮,如图11a中的水平实线;2、开始换挡:调整发动机和电机扭矩,使得tm=ρten,离合器承受的扭矩降为零,并且调整后的扭矩之和等于调整前的扭矩之和;其中,tm为电机驱动扭矩,ρ=s/r,r、s分别表示齿圈、太阳齿轮的齿数,ten为发动机驱动扭矩;3、第一离合器释放,发动机和电机可以差速驱动;该过程电机和发动机扭矩绕行星架轴平衡,驱动扭矩等于换挡前的扭矩;4、电机调整太阳轮s的转轴转速,进而带动齿圈r的转轴和第二输入轴调速,使得第二输入轴与新挡位齿轮同步;该过程电机和发动机扭矩绕行星架轴平衡,驱动扭矩等于换挡前的扭矩;发动机进行扭矩控制,而电机则对太阳齿轮进行转速控制,并通过行星齿轮系,控制齿圈转速,从而使得第二输入轴与待挂偶数挡位齿轮同速(同步)转动,以便该挡位同步器顺利挂挡,如图11a中的虚线。由于电机转速控制响应快、精度高,能提高同步器挂挡的快速性和平顺性,减小挂挡冲击。5、同步器挂新挡位(偶数挡),该过程扭矩保持不变,如图11b中的斜实线;6、电机输出的扭矩转移到发动机的动力输出轴上,发动机直接驱动第二输入轴和新挡位齿轮,电机扭矩变为零,第一输入轴和原奇数挡位齿轮所受扭矩为零;该过程中,电机扭矩转移给发动机,驱动扭矩等于换挡前的扭矩;7、同步器摘掉原奇数挡位;8、第一离合器闭合,将行星齿轮系锁定,发动机和电机并联驱动新挡位;该过程中,可以调整、平衡电机和发动机扭矩,驱动扭矩和等于换挡前的扭矩,如图11b中的虚线。二、由偶数挡位变换到相邻的奇数挡位,参见图12a、图12b:1、换挡前:同步器挂偶数挡j,速比为ηj;第一离合器闭合,锁定行星齿轮系,发动机和电机并联驱动该挡位,如图12a中的实线;2、开始换挡:电机输出的扭矩转移到发动机的动力输出轴上,发动机直接驱动第二输入轴和原挡位齿轮,电机扭矩变为零,离合器所受扭矩为零;该过程中,电机扭矩转移给发动机,驱动扭矩等于换挡前的扭矩;3、第一离合器释放,行星齿轮系中的3个转轴差速转动,该过程扭矩保持不变;4、电机调整太阳轮s的转轴转速,进而带动行星架c的转轴和第一输入轴调速,使得第一输入轴与新挡位齿轮同步,使得该挡同步器容易挂挡,如图12a中的虚线;该过程中发动机扭矩直接作用在第二输入轴,通过偶数挡位齿轮驱动车轮,扭矩等于换挡前扭矩;由于电机转速控制响应快、精度高,能提高同步器挂挡的快速性和平顺性,减小挂挡冲击。5、同步器挂新挡位(奇数挡),该过程扭矩保持不变,如图12b中的实线;6、调整发动机和电机扭矩,使得tm=ρten,并且调整后的扭矩之和等于调整前的扭矩之和,使得第二输入轴和原挡位齿轮所受扭矩降为零;其中,tm为电机驱动扭矩,ρ=s/r,r、s分别表示齿圈、太阳齿轮的齿数,ten为发动机驱动扭矩;7、摘掉原偶数挡位,该过程扭矩保持不变;8、第一离合器闭合,将行星齿轮系锁定,发动机和电机扭矩并联驱动新挡位齿轮;该过程中,可以调整、平衡电机和发动机扭矩,驱动扭矩等于换挡前的扭矩,如图12b中的虚线。本发明的用于车辆的混合动力系统的控制方法,其从纯电动模式(ev工况)转换为混合动力驱动模式(hev工况)的操作步骤为:1、转换前,同步器挂奇数挡i,第一离合器分离,制动器锁定发动机的动力输出轴,电机驱动太阳齿轮,经过行星架驱动第一输入轴和挂挡齿轮;2、开始切换:制动器释放,允许发动机的动力输出轴转动;第一离合器闭合,倾向与将行星齿轮系中的3个转轴同速转动,从而带动发动机的动力输出轴加速;3、为避免产生较大的冲击,要限制第一离合器的滑摩扭矩;同时,电机要适当增大扭矩,补偿扭矩损失;4、待发动机的动力输出轴达到点火转速,发动机点火并开始工作,系统进入混合动力驱动模式。本发明的用于车辆的混合动力系统的控制方法,其从混合动力驱动模式(hev工况)转换为纯电动模式(ev工况)的操作步骤为:1、转换前,系统挂奇数挡位,同步器挂奇数挡i,第一离合器闭合,制动器分离,发动机和电机并联驱动;若系统挂偶数挡位,则应先变换到奇数挡位;2、开始切换:第一离合器释放,允许发动机轴减速;发动机熄火;制动器闭合,将发动机的动力输出轴转速将为零并锁定;3、电机继续驱动太阳轮,系统切换成纯电动模式(ev工况)。如图13所示,该用于车辆的混合动力系统,其双输入轴变速机构20由第一输入轴11、第二输入轴12、若干对前进档位齿轮、至少一套倒档齿轮gr、和输出轴15组成;第一输入轴11通过两级齿轮传动到第一输入轴11’,齿轮11a与齿轮11b啮合为第一级传动、齿轮11b与齿轮11c啮合为第二级传动;第一输入轴11’上布置奇数挡位驱动齿轮g1、g3、g5、g7,通过相应的同步器s1、s3、s5、s7与该轴连接;第二输入轴12上布置偶数挡位驱动齿轮g2、g4、g6、g8,通过相应的同步器s2、s4、s6、s8与该轴连接;输出轴15上布置挡位的4个从动齿轮,固连在该轴上,4个从动齿轮分别与g1和g2、g3和g4、g5和g6、g7和g8啮合;每一个从动齿轮与两个主动齿轮啮合为一组,形成两个挡位;共四组,八个挡位,所需齿轮数量少,沿轴向布置四排齿轮和二对同步器,轴向尺寸紧凑;挡位之间速比变化也比较合理。如图14所示,该用于车辆的混合动力系统,其双输入轴变速机构20由第一输入轴11、第二输入轴12、若干对前进档位齿轮、至少一套倒档齿轮gr、和输出轴15组成;第一输入轴11通过一级齿轮传动到第一输入轴11’,第二输入轴12通过一级齿轮传动到第二输入轴12’;第一输入轴11’上布置奇数挡位驱动齿轮g1、g3、g5、g7,通过相应的同步器s1、s3、s5、s7与该轴连接;第二输入轴12’上布置偶数挡位驱动齿轮g2、g4、g6、g8,通过相应的同步器s2、s4、s6、s8与该轴连接;输出轴15上布置挡位的4个从动齿轮,固连在该轴上,4个从动齿轮分别与g1和g2、g3和g4、g5和g6、g7和g8啮合;每一个从动齿轮与两个主动齿轮啮合为一组,形成两个挡位;共四组,八个挡位,所需齿轮数量少,沿轴向布置四排齿轮和二对同步器,轴向尺寸紧凑;挡位之间速比变化也比较合理。如图15所示,该用于车辆的混合动力系统,其发动机1的动力输出轴2上安装有第二离合器8;第二离合器8替代图1、图2中的制动器3,其他不变。纯电动驱动时:第二离合器8分离,将发动机的动力输出轴2与混合动力模块20分离;挂一奇数挡位;第一离合器4闭合,将行星齿轮系所在一起,同速转动,电机输出扭矩,通过行星齿轮系、挂挡齿轮驱动。发动机和电机混合驱动时:第二离合器8闭合,发动机的动力输出轴2与行星齿轮系中的相关转轴连接在一起;其他所有的功能和实现方法都不变。本发明还保护一种包括有上述混合动力系统的车辆。以上所述仅为本发明的较佳实施例,而非对本发明的限制,在不脱离本发明的精神和范围的情况下,凡依本发明申请专利范围所作的均等变化与修饰,皆应属本发明的专利保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1