本申请要求2019年9月5日提交的标题为“联运系统以及其组件(Intermodal Transportation System and Components Thereof)”的第62/896,366号美国临时申请的优先权,所述申请的内容通过引用以其全文结合在此。
技术领域
本发明涉及对联运货物运输以及其组件的改进。
背景技术
货物(无论是成品还是原材料)从生产场所到市场的运输对任何现代经济都必不可少的。联运货物运输涉及使用多种运输模式(例如,铁路、船舶和卡车)在联运集装箱或车辆中运输货物且通常用于运输成品或原材料。尽管卡车运输是地面货物运输中能源效率最低的模式,但它通常比铁路运输更频繁地使用,铁路运输相对更高效、更安全并且有利于较大体积的货物的运输。尽管卡车运输率高于铁路运输,但绝大多数高价值成品通过卡车运输,因为托运人的主要关注点是速度和交货时间的可预测性,这使他们能够控制库存成本、压低价格并保持竞争力。当以这些标准测量时,传统铁路设备的操作特征使得铁路很难与卡车运输竞争。
遗憾的是,我们对卡车运输的依赖导致更高的温室气体(GHG)排放,因为它每吨英里产生的空气污染是联运铁路服务的三到四倍。卡车运输也给社会带来了其它成本。例如,对卡车运输的依赖会导致高速公路拥堵加剧,从而在交通中导致数十亿加仑的额外燃料的购买和消耗以及数十亿工时的浪费。尽管重型卡车在高速公路车辆行驶里程中所占比例不到10%,但也造成90%以上的高速公路路面损坏。涉及重型卡车的事故每年造成的死亡人数比铁路多7到8倍,受伤人数比铁路多大约25倍。
如果模式转换为铁路货运,则这对工业和社会都是有益的,在铁路货运中,钢轨上的钢轮的能源效率得到充分了解并且其它外部成本得到缓解。然而,实现这一目标的技术/设计障碍在很大程度上没有得到解决。因此,需要解决传统铁路设备的设计和运行中的固有局限性,以促进理想的模式转换。
传统的火车通过将一系列轨道车联接在一起而组装,并且当火车移动通过网络时,它会在编组场停车和拆卸,车厢在所述编组场分组到具有类似目的地的块中。这些编组场活动是设备、劳动力和能源密集型活动,也是许多员工受伤的场所。然后将轨道车保留,直到组装好足够的块来调度火车,这通常需要一整天的时间。根据货运的路线,它可能会经过几个这样的堆场,也可能从一条铁路转移到另一条铁路,从而造成进一步的延误。然后,由于涉及大量劳动力和设备,“最后一步”(即在分散的位置进行最终交付或取货)对于铁路来说仍然是一个挑战。因此,再次保留轨道车,直到组装足够的体积以证明调度本地火车是合理的。这些操作特征阻碍铁路与卡车运输竞争高价值货物的能力,因为速度和可预测的交付时间是客户满意度的关键组成部分,因此上文描述的整车货物服务(即,将货物装载到轨道车上或装载到轨道车中)表示铁路收入的份额正在减少。
铁路的燃料和劳动效率用于长途运输且卡车用于收集负载并进行最终交付的铁路联运部分地解决服务和效率问题,并且已经发展成为美国货运铁路收入的最大单一来源。铁路公司通过使用单元火车来避免编组场和双栈井车以增加负载密度,从而提高联运服务的效率。然而,由于这些单元火车的大小和它们所运载的集装箱体积,联运码头的规模不断扩大而数量却在减少,从而将高效的联运货物运输服务的市场限制在最大的城市地区。由此产生的货运交通集中且伴随着噪音和空气污染使联运码头在政治上不受欢迎,而它们对土地的大量需求迫使它们位于相对偏远的区域,从而增加短途运输成本。此外,这些大型联运码头的集装箱平均停留时间可能超过40小时。因此,实际上,在努力克服传统铁路运营中固有的摩擦和低效率的同时,行业已经进行调整,从而引入往往会限制它们所服务的市场的其它低效率的问题。在托运人转向更小型、更频繁的货运时,托运人已经将他们认为的主要竞争优势加倍-使用更少的能源和劳动力来搬运大而重的东西。因此,集装箱可能通过卡车而不是铁路运输,因为铁路运输可能会花费太长时间。例如,集装箱经常从芝加哥运到匹兹堡,距离超过450英里,因为铁路运输将花费更长的时间。短途运输成本加上运输途中将集装箱放置在卡车和/或轨道车上的升降机成本使联运服务的保本距离仅限于500英里以上的货运,尽管80%以上的货物吨位移动距离小于500英里。
为了将重要的货运份额从高速公路转移到铁路,需要改进联运服务的操作特征,以使铁路能够提供与较短距离和较小负载的卡车运输相比具有竞争力的服务。
技术实现要素:
本公开的各种实施例可以包含用于改进的联运货物运输的系统。本文所描述的系统可以包含传统轨道车的结构再设计,其中再设计可以包含托架和支撑桁架,它们有利地将承载结构移动到相互连接的支撑桁架上,从而形成火车的顶端脊柱,其中货物集装箱悬挂在下方。当联接在一起时,这些支撑桁架可以为火车提供火车的线性完整性。在各种实施例中,货物集装箱可以配备有轮子。在进入码头后,铁轨附近和铁轨之间的地板可以被配置成逐渐上升,直到集装箱的轮子支撑集装箱的重量。当与集装箱交换站(CES)正确对齐时,集装箱与火车的连接可以被配置成将集装箱从火车上释放,并且集装箱的轮子可以被配置成枢转,从而允许集装箱滚动到火车的一侧且由另一集装箱替换。这可以允许替换集装箱,而无需提升集装箱或断开火车的轨道车辆组件中的任一个。本文所描述的系统可以解决上文所论述的各种缺点,并且提供优于传统联运系统的额外或替代优势。在各种实施例中,本文所描述的系统解决了这些缺点,而不需要对例如铁轨和/或道岔等的现有基础设施进行任何修改。
在各种实施例中,改进的联运货物运输系统可以包含支撑桁架,所述支撑桁架被配置成将集装箱负载转移到托架并且在联接器处纵向地连接火车。桁架和联接器一起在火车顶部形成铰接式脊柱,从而消除松弛动作。在各种实施例中,连接销可以竖直地焊接到支撑桁架的一端或两端并滑入联接器中的开槽圆柱体中,从而允许支撑桁架旋转但保持它们竖直。在各种实施例中,支撑桁架可以逐渐变窄到连接销(在一端或两端),使得支撑桁架能够在转弯期间在联接器处枢转。在各种实施例中,单个支撑桁架可以容纳电气和/或控制布线。例如,布线可以放置在桁架的中空管内。在一些实施例中,将连接销从上方插入到联接器的开槽圆柱体中导致桁架之间的电气和/或控制布线电路完成。在一些实施例中,可以包含额外设备以增加桁架的承载能力。例如,缆线可以附接到相邻的支撑桁架(例如,通过缆线任一端处的吊钩),并且放置在连接销顶部的千斤顶可以被配置成使缆线处于张紧状态,以减少支撑桁架的偏转并且增加其承载能力。
在各种实施例中,支撑桁架可以包含机械吊钩,所述机械吊钩附接到支撑桁架并且被配置成快速抓取和释放集装箱以便于有效装载和卸载。在各种实施例中,支撑桁架的长度和机械吊钩的间隔可以使两个集装箱能够容纳在托架之间。机械吊钩可以包含锥形末端,以便轻松地在集装箱顶部穿过支撑环路并展开以形成紧密连接,从而最大限度地减少竖直移动。在各种实施例中,可以预先确定吊钩和/或支撑环路的位置以均匀地分布负载。在各种实施例中,机械吊钩通过支撑环路与集装箱的连接可以在集装箱与支撑桁架之间形成轮轴。在各种实施例中,机械吊钩可以被配置成围绕支撑桁架的底弦枢转并由其支撑。在一些实施例中,可以提供安全闩锁以防止集装箱从吊钩脱落。
在各种实施例中,可以提供改进的货物集装箱以与支撑桁架一起使用。在各种实施例中,单个集装箱两端的卷帘门可以从内部和/或外部操作,以使平板车上的两个集装箱能够类似于半挂车进行装载和卸载。在一些实施例中,托架和短途运输卡车可以配备有护罩以在移动时偏转雨水。在各种实施例中,集装箱轮的标准化位置和尺寸可以使集装箱能够在储存期间和/或在船上时堆叠。单个集装箱的轮副可以具有转向机构,所述转向机构在每一端处配备有可伸缩挂钩。在一些实施例中,当两个挂钩缩回时,转向机构还可以允许侧向移动,因此当装载和卸载时集装箱可以被推入和推出桁架下方的位置。
在各种实施例中,改进的联运货物运输系统包含用于与本文所描述的支撑桁架一起使用的改进的集装箱交换系统。当具有如本文所描述的改进设计的火车进入码头时,铁轨附近和铁轨之间的地板高度可能会逐渐升高,直到集装箱的轮子支撑集装箱。在各种实施例中,当计划卸载的集装箱位于正确的CES上时,可以停止火车。一旦正确地对齐,到达的集装箱将与火车断开连接并且集装箱的轮子由CES的枢转底板旋转,所述枢转底板还用于桥接沿着集装箱轮导轨的轨缝。当集装箱正确地对齐并从火车断开时,集装箱可以移到一侧,而离开的集装箱可以同时从相邻的排队站移动到桁架下方的位置。枢转底板然后可以枢转回到它们的原始位置,建立集装箱吊钩和底弦连接,并且火车离开或向前移动以交换下一系列的集装箱。
在参考附图考虑以下描述和所附权利要求后,本文公开的系统的这些和其它目的、特征和特性将变得更加明显,所有这些都形成本说明书的一部分,其中类似附图标记表示各图中的对应部分。然而,应明确地理解,附图仅出于说明和描述的目的并且不旨在限定本发明的限制。如在说明书和所附权利要求中所使用,单数形式“一个(a)”、“一种(an)”以及“所述(the)”包含复数指示物,除非上下文另外清楚地指明。
附图说明
图式仅出于说明的目的提供并且仅描绘典型的实施例或实例实施例。提供这些图式是为了便于读者理解且不应被视为限制本公开的广度、范围或适用性。为了图示的清楚性以及简易性,这些图式未必按比例绘制。
图1A是根据本发明的实施例的实例支撑桁架的框图的侧视图。
图1B是根据本发明的实施例的实例支撑桁架的框图的截面图。
图1C是根据本发明的实施例的实例支撑桁架的一端的框图的俯视图。
图2是根据本发明的实施例的实例千斤顶的框图的侧视图,所述千斤顶被配置成增加图1A、1B和1C中所描绘的实例支撑桁架的承载能力。
图3A是根据本发明的实施例的附接到实例支撑桁架的实例集装箱的框图的侧视图。
图3B是根据本发明的实施例的经由机械吊钩附接到实例支撑桁架的实例集装箱的框图的端视图。
图3C是根据本发明的实施例的用于在机械吊钩缩回时将集装箱附接到支撑桁架的实例机械吊钩的框图的端视图。
图4A是根据本发明的实施例的附接到支撑桁架的实例货物集装箱的框图的侧视图。
图4B是根据本发明的实施例的附接到支撑桁架的实例货物集装箱的框图的端视图。
图5A是根据本发明的实施例的实例集装箱的框图的端视图,其中集装箱的轮子在码头地板上的导轨中。
图5B和图5C是根据本发明的实施例的实例集装箱交换站的框图的俯视图。
图6A是根据本发明的实施例的实例托架和枢转联接器组合件的框图的端视图。
图6B是根据本发明的实施例的实例托架和枢转联接器组合件的框图的侧视图。
图7A是根据本发明的实施例的实例联接器的框图的端视图。
图7B是根据本发明的实施例的实例联接器的框图的侧视图,其示出附接到枢转联接器组合件的框架的部分。
图7C是根据本发明的实施例的实例联接器的框图的俯视图。
图8A是根据本发明的实施例的实例枢转联接器组合件的框图以及其如何与每个托架中包含的三环结构和枢轴支架介接的端视图。
图8B是根据本发明的实施例的在转弯期间实例托架和枢转联接器组合件的框图的端视图。
图8C是根据本发明的实施例的实例枢转联接器组合件的框图的侧视图。
图8D是根据本发明的实施例的实例枢转联接器组合件的框图以及其如何与每个托架中包含的三环结构和枢轴支架介接的俯视图。
图9是根据本发明的实施例的当在转弯时伸长以及当在直线轨道上缩回时的实例底弦连接器的框图的俯视图。
图10A是根据本发明的实施例的实例托架转向机构的框图的俯视图。
图10B是根据本发明的实施例的在具有平行轮轴的直线轨道上的实例托架转向机构的框图的实例视图。
图10C是根据本发明的实施例的在具有倾斜轮轴的弯曲轨道上的实例托架转向机构的框图的实例视图。
图10D是根据本发明的实施例的实例托架转向机构的框图的侧视图。
图10E是根据本发明的实施例的托架转向机构的实例开槽杆的框图的俯视图。
图11是根据本发明的实施例的具有移位配重的实例控制车厢的框图的侧视图。
图12A是根据本发明的实施例的图11中所描绘的实例控制车厢的实例弓形支撑梁的框图的俯视图。
图12B是根据本发明的实施例的图11中所描绘的实例控制车厢的实例弓形支撑梁的框图的正视图。
图12C是根据本发明的实施例的图11中所描绘的实例控制车厢的实例弓形支撑梁的框图的侧视图。
图12D是根据本发明的实施例的当火车绕弯道行驶时图11中所描绘的实例控制车厢的实例弓形支撑梁的框图的俯视图。
图12E是根据本发明的实施例的当火车绕弯道行驶时图11中所描绘的实例控制车厢的实例弓形支撑梁的框图的正视图。
具体实施方式
本文所描述的发明涉及用于改进的联运货物运输的系统。这种改进的联运货物运输系统可以部分地描述为一系列标准化、可互换组件的组合件,这些组件在正确地连接时形成具有增强能力的火车。例如,在各种实施例中,根据本文所描述的本发明的火车可以包括轨道车辆组件,包含具有集成的枢转联接器组合件(PCA)的托架、支撑桁架,以及在一端或两端处具有悬挂在桁架下方的货物集装箱的控制车厢。在各种实施例中,支撑桁架可以被配置成在托架的顶部处连接到联接器。当经由联接器连接时,支撑桁架可以形成为火车提供线性完整性的铰接式脊柱。在各种实施方案中,悬挂在支撑桁架下方的集装箱和电源组或发电机也可以相互连接并连接到每个相邻托架的下端,以在火车底部形成与托架的枢转联接器组合件一起工作的第二线性连接,以增强火车的稳定性和转弯特征。在各种实施方案中,这些悬挂组件中的每一个都可以是可移除的,以使它们能够以自动化方式在码头用其它组件替换。移除和替换这些组件可能只需要片刻时间而无需提升。在各种实施例中,位于火车前面和/或后面的控制车厢可以被配置成感测轨道曲率的变化,以在转弯/弯曲时提供对火车的控制(即,支撑集装箱的桁架以及配置成经由枢转联接器组合件连接桁架和集装箱的托架)。本领域技术人员将理解,可以在没有这些具体细节或具有等效布置的情况下实践本文中所描述的实施例。在各种情况下,以框图形式展示众所周知的结构和装置以免不必要地混淆实施例。
支撑桁架
图1A是根据本发明的实施例的支撑桁架100的框图的侧视图。在各种实施例中,支撑桁架100可以被配置成将集装箱负载转移到托架并且在联接器处纵向地连接火车。在各种实施方案中,包括本文所描述的组件的火车的长度可以由构成火车的支撑桁架100的数目限定。支撑桁架100的数目可以指示火车能够运输的货物集装箱的数目。在各种实施方案中,火车可以总是比支撑桁架多至少一个托架,以确保每个支撑桁架100由至少两个托架支撑。在各种实施例中,单个支撑桁架100可以容纳电气(电力)和/或控制线束。例如,支撑桁架100可以具有(在内部和/或通过外部附接)一个或多个线束,这些线束容纳电力布线和/或电气布线以沿着火车的整个长度跨越支撑桁架100将电力、能量和/或电信号(例如,诊断数据、指令和/或其它信号)分配到每个组件。在一些实施例中,在支撑桁架100的底弦处的管子可以被配置成容纳电气和/或控制布线。例如,布线可以放置在桁架中的一些或全部的中空管内。在一些实施方案中,火车的每个支撑桁架100可以容纳电气和/或控制布线,以便形成火车范围的电力网和/或控制系统。在各种实施例中,支撑桁架100可以包含用于从上方抓取集装箱的机构。在各种实施例中,支撑桁架100可以包括具有三角形横截面的管状空间框架。例如,图1B示出沿着图1A的线A-A截取的支撑桁架100的截面图。重量轻但坚固的支撑桁架100可以被配置成利用所建立的技术。在各种实施例中,支撑桁架100的长度和集装箱吊钩的间隔可以使两个集装箱能够容纳在托架之间。例如,单个支撑桁架100的长度可以是50英尺。在其它实施例中,集装箱可以构建成允许容纳一个或多个集装箱的不同长度。托架和/或桁架的长度也可以改变。在实例实施方案中,可以基于需求优化支撑桁架100和/或集装箱的长度。基于支撑桁架100和/或集装箱的长度,可以相应地制造和/或修改本文所描述的各种组件(例如,集装箱吊钩的位置、集装箱交换系统的配置,和/或联运货物运输系统的其它组件)。
在各种实施例中,支撑桁架100可以包含至少一个连接销110、一个或多个焊接钢板120、一个或多个圆锥形滚柱轴承130,和/或一个或多个其它组件。在各种实施例中,连接销110可以设置在支撑桁架100上的每一端处。单个支撑桁架100可以纵向地连接在联接器处。例如,每一单个支撑桁架100可以连接到联接器,如本文关于图7A、7B和7C进一步描述。在各种实施例中,连接销110可以垂直地焊接到每个水平端(即,支撑桁架100的前面和后面)并且从上方滑动到联接器中的开槽竖直圆柱体中。当完全接合时,将连接销110插入联接器可以使电力和控制布线电路完成。在各种实施例中,销-联接器组合件可以包含电力电路和/或电路连接,所述电力电路和/或电路连接将关于支撑桁架与联接器之间的连接的质量的即时反馈提供到导体。例如,当销完全插入和/或锁定在联接器的开槽竖直圆柱体中的适当位置时可以完成电路,这可以导致相应地更新诊断显示器。在一些实施例中,将第一支撑桁架的销插入到联接器中可以完成第一支撑桁架与连接到联接器的第二支撑桁架之间的电路。在前述实施例中,完成电路可以使通知提供到导体装置,所述通知指示第一支撑桁架经由联接器(或包括联接器的托架)连接到第二支撑桁架。在实例实施例中,驾驶室中的即时诊断和绿光显示器可以被配置成确认正确接触。桁架和联接器一起在火车顶部形成铰接式脊柱,从而消除松弛动作。通过将每一单个支撑桁架连接到联接器(即,第一托架连接到第一支撑桁架和第二支撑桁架、第二托架连接到第二支撑桁架和第三支撑桁架等)形成的这种铰接式脊柱在本文中可以称为火车的顶弦。值得注意的是,在各种实施例中,单个支撑桁架100可以不直接彼此连接。相反,单个支撑桁架连接到托架的联接器,并且两个单个支撑桁架100与单个托架的连接可以完成两个支撑桁架之间的电路。
在各种实施例中,支撑桁架100可以逐渐变窄到连接销110,从而使支撑桁架100能够在转弯期间在联接器连接处枢转。例如,图1C示出支撑桁架100的一端的框图的俯视图,其中支撑桁架100逐渐变窄到连接销110。在一些实施例中,支撑桁架100可以包含一个或多个焊接钢板120以加固桁架的锥形端部。在各种实施例中,支撑桁架100可以包含在桁架的一端或两端处的圆锥形滚柱轴承130。在各种实施例中,圆锥形滚柱轴承130可以被配置成与联接器的支撑板接合。例如,圆锥形滚柱轴承130可以被配置成搁置在联接器的支撑板720上并且在桁架枢转时提供均匀支撑。在一些实施例中,焊接钢板120可以包含凹陷部140,所述凹陷部可以使圆锥形滚柱轴承130能够在没有干扰的情况下旋转。如本文关于图7A、7B和7C进一步描述,当从上方插入时,可以将连接销110锁定到联接器的开槽竖直圆柱体中。
在一些实施例中,包括文本所描述的一个或多个组件的组装火车可以包含安装在支撑桁架100上的一个或多个电源。例如,火车可以包含发电机、气动发动机、一个或多个电池,和/或以任何数目的方法安装在支撑桁架100上的其它电源。在一些实施例中,这些电力发电机或电池组可以安装轮式平台上,所述轮式平台具有附接到支撑桁架100的顶置式框架。在一些实施例中,与电力发电机或电池组相邻的托架可以使用与将连接到货物集装箱相同的连接来连接到发电机或电池组,如本文所述。在前述实施例中,电力发电机或电池组可以类似地连接到相邻的电力发电机或电池组和/或相邻集装箱,以便连接火车上的每个集装箱/电力单元。在一些实施例中,电力发电机或电池组可以类似地配置成使用如本文关于附接到支撑桁架100的货物集装箱描述的CES从火车卸载或断开。例如,电力发电机或电池组可以经由CES的枢转底板类似地滚落火车。在各种实施例中,电源可以针对运动产生或供应电力。在一些实施例中,电源可以是“按需”的并且可以根据火车的需要来接合或分离以提高效率。在一些实施例中,电源可以存储从制动产生的能量。可以将已经产生和/或存储的电力分配到服务于整个火车的临时电力网。
在一些实施例中,可以包含额外设备以增加桁架的承载能力。例如,图2示出根据本发明的实施例的实例千斤顶的框图,所述千斤顶被配置成增加图1A、1B和1C中所描绘的实例支撑桁架的承载能力。在一些实施例中,千斤顶210可以放置在连接销110和/或经由连接销110连接单个支撑桁架100的联接器的顶部上。例如,连接销110可以包括中空销,并且在千斤顶210的底座下方的小支柱可以被配置成装配在中空销内。在一些实施例中,缆线220可以附接到相邻支撑桁架100。例如,缆线220可以在任一端处包含用于附接到相邻桁架100的吊钩。在一些实施例中,缆线220可以包括钢缆。如图2中所描绘,千斤顶210可以被配置成在桁架100被加载重量之前使缆线220处于张紧状态。换句话说,缆线220可以通过千斤顶210顶起以消除松弛。千斤顶210和缆线220的这种配置可以减少支撑桁架100中的偏转并增加其承载能力。随着这种配置在支撑桁架100上方的高度增加,可以考虑避免超过具有低间隙的路线的负载规格。
在各种实施例中,附接到支撑桁架100的连接组件可以被配置成快速抓取和释放集装箱以便于有效装载和卸载。例如,图3A示出根据本发明的实施例的在连接点310处附接到支撑桁架100的集装箱300的框图的侧视图。在各种实施例中,集装箱300可以经由一个或多个连接组件在一个或多个连接点310处附接到支撑桁架100。例如,每个集装箱300可以在预定数目的连接点310处附接到支撑桁架100。在一些实施例中,每个集装箱300可以在单个连接点310处附接到支撑桁架100。在其它实施例中,每个集装箱可以在两个或更多个连接点310处附接到支撑桁架100。例如,如图3A中所描绘,每个集装箱300可以在两个连接点310处附接到支撑桁架100。
在各种实施例中,集装箱300的底部可以在集装箱300的位置320处连接到枢转联接器组合件的摆动臂。例如,集装箱300的底部可以在集装箱300的位置320处连接到枢转联接器组合件的摆动臂,如关于图8A到D进一步描述。在集装箱300的底部处与枢转联接器组合件的摆动臂的连接可以形成且在本文中称为火车的底弦,所述摆动臂又连接到另一集装箱300的底部。在各种实施例中,附接到单个支撑桁架100的集装箱300可以连接在火车的底弦处并且使集装箱300一致地作用。例如,在各种实施例中,每个支撑桁架100可以被配置成支撑两个集装箱300。两个集装箱300可以刚性地(但可拆卸地)连接在集装箱300的底部平面的中心线处(例如,集装箱300的位置330)。此连接可以使集装箱300一致地移动且将集装箱300的组合结构刚度提供给火车的框架。通过抵抗桁架中的任何弯曲或下垂,这种连接会将负载向量朝向最靠近托架的吊钩转移,从而增加桁架的承载能力。
在各种实施例中,附接到支撑桁架100的连接组件可以被配置成机械地、磁性地和/或另外将集装箱附接到支撑桁架100并且释放集装箱。例如,附接到支撑桁架100的连接组件可以被配置成在集装箱300的预定孔、环或螺纹处抓取和释放集装箱300。在一些实施例中,连接组件可以包括机械吊钩和/或其它支撑构件或卡扣,集装箱300可以从所述机械吊钩和/或其它支撑构件或卡扣悬挂在支撑桁架100上。例如,图3B示出根据本发明的实施例的经由机械吊钩340附接到支撑桁架100的集装箱300的框图的端视图。机械吊钩340的弯曲螺旋设计可以包含锥形末端,以便轻松地在集装箱300顶部穿过支撑环路并展开以形成紧密连接,从而最大限度地减少竖直移动。在各种实施例中,支撑环路可以沿着集装箱300的中心线定位以确保与支撑桁架100的适当对齐。为了适应有限的旋转量,支撑环路的顶部可以配备有一个或多个滚柱轴承。
在各种实施例中,机械吊钩340的连接可以形成安装有吊钩的支撑桁架100的轮轴。在各种实施例中,吊钩340的位置可以沿着支撑桁架100的长度均匀地分布负载。实际上,如上文所述,每个集装箱300可以在预定数目的连接点310处附接到支撑桁架100。为了简化桁架和/或集装箱的结构设计(例如,通过将钩/环连接移向集装箱300的端部),和/或基于一个或多个其它因素,可以预先确定预定数量的吊钩340的位置以均匀地分布负载。
在各种实施例中,机械吊钩340(或其它连接组件)可以被配置成形成支撑部件。例如,机械吊钩340可以被配置成从上方接合并支撑货物集装箱。在各种实施例中,机械吊钩340可以被配置成围绕支撑桁架100的底弦枢转并由其支撑。在一些实施例中,机械吊钩340可以附接到旋转杆,所述旋转杆在手动地或电气地旋转时将机械吊钩340定位在集装箱300的预定孔、环或螺纹(例如,本文进一步描述的支撑环路410)中。在一些实施例中,每个吊钩可以由安装在支撑桁架100上的电动机旋转。例如,图3C示出根据本发明的实施例的当机械吊钩340缩回和/或远离支撑环路410旋转时机械吊钩340的框图的端视图。当缩回(即,远离悬挂的竖直位置旋转)时,机械吊钩340可以被配置成不干扰集装箱300装载和卸载。换句话说,当远离支撑环路410旋转时,机械吊钩340的形状可以被配置成允许其与集装箱300的顶部之间的间隙。在各种实施例中,可以提供安全闩锁以防止集装箱300从吊钩340脱落。在一些实施例中,控制系统可以被配置成在可以释放安全闩锁且旋转吊钩340之前要求火车在码头中静置。在一些实施例中,集装箱连接可以是自动化的并且在码头中进行或释放,同时集装箱的重量由其自身的轮子支撑。在一些实施例中,吊钩340和支撑环路还可以包含布线连接,使得火车的电力网可以将电力供应到冷藏集装箱。
货物集装箱
在各种实施例中,本文提供一种用于与支撑桁架100一起使用的改进的货物集装箱。图4A是根据本发明的实施例的附接到支撑桁架100的货物集装箱300的框图的侧视图。图4B是根据本发明的实施例的附接到支撑桁架100的货物集装箱300的框图的端视图。在各种实施例中,集装箱300可以包含支撑环路410、轮子420、护栏430、轮舱440、裙板450、边角缓冲器460和/或一个或多个其它组件。在各种实施例中,在集装箱300的一端或两端处的卷帘门可以从内部和/或外部操作。例如,每个集装箱300两端的卷帘门可以使平板车上的两个集装箱能够类似于半挂车进行装载和卸载。在各种实施例中,集装箱300以及其外部组件的外部尺寸可以是标准化的/统一的。例如,集装箱300的轮子420的位置和大小是标准化的。统一的外部尺寸可以允许集装箱300在存储期间和/或在船上时堆叠。在实例实施例中,每个集装箱隔室可以是8’6”高、8’英尺宽和20'英尺长,并且每个轮子420可以具有18英寸的直径。在各种实施例中,轮子420可以在托架的轮轴和支撑梁下方延伸以用于适当的码头操作,同时在铁轨和系杆上方提供足够的间隙以允许其全范围的倾斜运动。
单个集装箱300的轮副可以具有转向机构,所述转向机构在每一端处配备有可伸缩挂钩。无论拉动哪一端,前轮都可以被配置成转向且后轮将固定,因此可以将多个集装箱连接在一起并像机场的行李车一样拉动,以支持高效的码头操作。在一些实施例中,当两个挂钩缩回时,转向机构还可以允许侧向移动,因此当装载和卸载时集装箱可以被推入和推出桁架下方的位置。当附接到具有如本文所述的改进设计的火车时,所有集装箱轮420可以被锁定成与铁轨对齐以促进码头操作。在各种实施例中,从支撑桁架100悬挂的集装箱可以包括干式厢式集装箱、散装油轮、平板车、乘客集装箱和/或一种或多种其它类型的集装箱。例如,本文的各种附图描绘干式厢式集装箱,但很容易想象与轨道车辆组件集成的一种或多种其它类型的集装箱,只要它们的外部尺寸、四个连接点和/或配置成与本文所描述的枢转底板接合的枢转轮副并入到它们的设计中。
在一些实施例中,护栏430可以隐藏轮舱440,所述轮舱在堆叠时对齐集装箱和/或容纳支撑环路而不牺牲间隙。在一些实施例中,轮舱440和/或用于支撑环路的外壳可以包含在货舱中。在各种实施例中,狭槽460可以在如图4A中所描绘的裙板450中切割以便于叉车搬运,前提是叉车搬运不影响转向机构。在一些实施例中,狭槽460可以被配置成与安装在运货车或拖车的平板上的旋转吊钩接合。在各种实施例中,卡车或拖车可以被配置成在高速公路上行驶时经由狭槽460固定集装箱。经由狭槽460与集装箱的这些连接可以包括配置成在发生事故的情况下将集装箱固定到卡车或拖车的连接。在一些实施例中,配置成运输本文所描述的集装箱的卡车车厢或拖车还可以包含枢转底板,所述枢转底板与本文所描述以及图5B和图5C中所说明的CES的枢转底板相同或相似。这将允许从卡车的侧面或后面装载和卸载。在一些实施例中,配置成运输本文所描述的集装箱的卡车车厢或拖车可以进一步包含液压升降机,所述液压升降机被配置成升高和/或降低集装箱,使得集装箱的裙板450可以搁置在卡车车厢上而不是迫使集装箱的轮子在运输期间支撑集装箱。如图4B中所描绘,当与配备有用于轮子的升高通道的斜坡一起使用时,裙板450中示出的与轮子成直线的凹口470可以改进坡度变化时的间隙。在实例实施例中,用于集装箱300的这些专用斜坡的主要应用可以是滚上滚下(RoRo)运输活动(下文将进一步描述)。在各种实施例中,货物集装箱的轮子可以被配置成在超过安全负载限制时锁定。例如,可以基于能够由支撑桁架100支撑的最大负载、CES的枢转底板和/或其它组件能力来建立预定义的安全负载限制。集装箱的轮子可以被配置成确定何时超过安全负载限制并导致轮子被锁定,从而禁止集装箱通过轮子移动,直到不再超过安全负载限制。
码头操作
在各种实施例中,本文提供一种用于这种改进的联运系统的改进的集装箱交换系统。如先前所提及,当具有如本文所描述的改进设计的火车进入码头时,铁轨附近和铁轨之间的地板高度可能会逐渐升高,直到集装箱由它们的轮子而不是桁架100支撑。在各种实施例中,改进的集装箱交换系统可以包含:地板,其被配置成上升,直到集装箱由它们的轮子支撑;如本文所描述的集装箱交换站(CES);和/或一个或多个其它组件。例如,图5A是根据本发明的实施例的集装箱的框图的端视图,其中集装箱的轮子在码头地板上的导轨中。当火车进入具有本文所描述的改进的集装箱交换系统的码头时,地板水平面510可以被配置成逐渐上升以与集装箱300的轮子汇合。例如,当与图5A相比时,图4B描绘火车的端视图,就好像它正在铁轨上行驶一样。当图4B中描绘的火车进入码头时,铁轨附近和铁轨之间的地板可能会逐渐升高,直到集装箱的轮子支撑集装箱(如图5A中所描绘)。值得注意的是,在各种实施例中,单个集装箱不包含与铁轨接合的铁轨轮。例如,图4B和图5A中描绘的铁轨轮480包括托架的铁轨轮,支撑集装箱300的支撑桁架100连接到所述铁轨轮。在各种实施例中,可以提供与轨缝520相邻的平滑金属通道或导轨(例如,集装箱轮导轨530),以帮助在火车移动通过码头时使集装箱保持适当对齐。
图5B和图5C是根据本发明的实施例的集装箱交换站(CES)的框图的俯视图。在各种实施例中,当计划卸载的集装箱位于正确的CES上时,可以停止火车。在码头内对火车的控制可能会转移到选线计算机,以确保正确的集装箱与适当的CES正确对齐。一旦正确对齐,到达的集装箱可以与火车断开连接并且集装箱的轮子由CES的枢转底板旋转90度,所述枢转底板还用于桥接沿着集装箱轮导轨530的轨缝520。集装箱附件应易于断开和连接,因为集装箱的重量由集装箱的轮子支撑。在一些实施例中,可以配置桁架与支撑桁架的联接器/托架之间的连接,和/或控制车厢与其相邻托架之间的连接,使得当在码头交换集装箱和/或电力单元时它们不需要断开。换句话说,可能不需要像在编组场使用传统铁路设备那样拆卸火车,以将集装箱负载重新定向到网络内的各个目的地。在一些实施方案中,可以在火车到达之间的码头处按目的地对集装箱进行分类,而无需在此活动中使用任何轨道车辆组件。如本文所用,术语“轨道车辆”可以指本文所描述的改进火车的组件(即,支撑桁架100、具有集成的枢转联接器组合件的托架,以及控制车厢)减去从支撑桁架100悬挂的组件(即,货物集装箱和/或电源)。在一些实施方案中,码头和每个CES可以使用机械臂和/或其它构件来完全自动化交换集装箱和电力单元的过程,以提高码头效率、最小化火车停留时间并减少员工受伤的可能性,同时还允许货物保持移动并提高系统对轨道车辆组件的投资利用率。为了说明枢转底板的两个位置,图5B包含位于(或旋转到)平行于铁轨的位置中的枢转底板540,并且图5C包含位于(或旋转到)垂直于铁轨的位置中的枢转底板550。换句话说,枢转底板550仅包括枢转90度的枢转底板540。当火车在车站内沿轨道向下移动时,枢转底板可以如图5B所示定位(即,枢转地板540)。当集装箱移入和移出支撑桁架100下方的位置时,枢转底板可以如图5C中所示定位(即,枢转底板550)。在一些实施例中,所有枢转底板可以被配置成一致地移动。
当集装箱适当地对齐并从火车断开时,机械臂可以被配置成将每个到达的集装箱推到一侧,同时将离开的集装箱从相邻的排队站移动到桁架下方的位置。枢转底板550然后可以枢转回到板的原始位置(即,结合枢转底板540描绘的位置),进行集装箱吊钩和底弦连接,并且火车离开或向前移动以交换下一系列的集装箱。在一些实施方案中,可以同时更换组员并且调换具有满油箱或充电电池的发电机,以最大限度地减少码头延误并保持货物移动。在一些实施方案中,可以布置组员更换,以便在一列火车上轮班,然后在另一列火车上返回,因此消除过夜的成本并提高工作满意度。
在各种实施例中,CES单元可以布置成相邻的对,在它们之间具有托架空间。在一些实施例中,安装在每个码头的数量可以随货物体积而变化。例如,大容量码头可能具有十几对或更多对,每对都有几个相邻的排队站,因此可以在重新定位之前为火车的大片段提供服务,并且可以在火车到达之间预先定位用于多个交换操作的离开的集装箱。在各种实施例中,选线软件可以按目的地对集装箱进行分组,以最小化火车在每个停靠站应重新定位的次数。
在高容量码头和多条路线会聚的码头,将火车分成两段并在单个步骤中更换其中一个而不是交换集装箱组可能更有效。在此操作中,可以卸载要拆分火车的桁架下方的集装箱,并且可移动的桥式起重机可以提升和支撑所述桁架。由于每一段可能包含控制车厢,因此火车段(例如,控制车厢和零个或多个托架)可以独立移动并且一旦分开,离开段可以从相邻侧线移入并以类似但相反的方式连接,从而创建一列新火车,其中所有车载集装箱的目的地都在同一条路线上。去往由码头服务的不同路线的集装箱可能已经在码头或到达之前分拣到此断开点的正确一侧。
在各种实施例中,这些较大的码头还可以配备有自动火车组装站,从而可以从位于现场的备用组件组装去往不同路线的火车段。支撑桁架可以存放在顶置式货架上,因此托架可以以更压缩的方式存放,然后在为各种路线收集集装箱时降低到预先定位的托架上。在一些实施例中,改进的联运系统可以保持备用组件的库存,这些备用组件可以在整个系统的码头集合中来回流动。载有要运往多条路线的集装箱的火车段可能会被完全拆卸,并用于恢复到码头的火车组装站的组件的工作库存。管理这些备用组件的位置并最大限度地减少移动的空集装箱的数量可能会受到管理部门的仔细监控,着眼于保持对季节性需求波动做出快速响应的能力。在一些实施例中,这些更复杂的码头还可以容纳维护设施,因为这些码头可能够将各个组件轮换进入和离开用于维修、清洁和检查的服务。
托架和枢转联接器组合件
在各种实施例中,本文所描述的托架及其枢转联接器组合件(PCA)可以形成单个组件,所述组件包括两个单独但集成的子组合件,这些子组合件以将集装箱与铁轨底座冲击和振动隔离的方式相互作用,同时保持铁轨之间的集装箱重心,即使在高速转弯时也是如此。PCA由在组合件顶部处的联接器组成,所述联接器可以在搁置在支撑环(托架结构的组件)上时从一侧滑动到另一侧。侧板在联接器的前部和后部,所述侧板在支撑环的侧面下方延伸到刚好位于支撑环内部的销,所述销可以附接从联接器悬垂的框架,所述框架可以支撑飞轮并延伸到刚好位于托架轮轴上方的摆动臂。此框架还可以连接到在平行环之间安装在托架的前部和后部的枢轴支架,以进一步将PCA固定到托架结构,同时允许其围绕支架中的枢轴点进行枢转,所述枢轴点可以包括支撑环的中心轴。
在各种实施例中,改进的联运托架可以被配置成容纳驱动机构并将负载从组合件顶部的支撑桁架和联接器向下传递到轮轴和铁轨。图6A是根据本发明的实施例的托架和枢转联接器组合件的框图的端视图。图6B是根据本发明的实施例的托架和枢转联接器组合件的部分的框图的侧视图。在图6B中,为了说明枢转联接器组合件的一部分,描绘至少没有水平支架860和飞轮660的托架。例如,图6A和图6B示出具有枢轴支架和足够PCA的托架的三环结构设计,以了解托架的三环结构如何与PCA集成。在图8A-D(本文进一步描述)中,PCA被示出为具有足够的托架结构以了解PCA如何与托架的三环结构集成。
在各种实施例中,托架可以包括两个或更多个平行环(例如,平行环610)、一个或多个支撑环(例如,支撑环620),和/或一个或多个其它组件。这些环可以包括形成托架的结构框架的大钢环。在各种实施例中,平行环610可以平行于铁轨,并且支撑环620可以垂直于平行环610定位并且在平行环610之间居中。在各种实施例中,平行环610可以为支撑环620提供支撑,所述支撑环承载联接器以及附接到联接器的负载。
在各种实施例中,平行环610可以搁置在支撑梁630上,所述支撑梁连接到托架轮轴且由托架轮轴支撑。在各种实施例中,支撑梁630可以设计为具有比平行环610半径略大的倒拱。换句话说,平行环610可以搁置在连接在托架的轮轴处的支撑梁630上,位于半径略大于环的拱形倒置外壳内。图6B包含支撑梁630的剖视图,其展现滚柱轴承632和相对的弹簧634。在各种实施例中,一系列滚柱轴承632、特氟隆滑块和/或其它类似的低摩擦组件(类似于本文进一步描述的滚柱轴承640))可以在平行环610与这些拱形梁630之间形成界面,从而当托架的轮子在铁轨中的斜坡上滚动时允许梁在环下方枢转,同时仍然提供均匀的支撑。在一些实施例中,对置弹簧634可以缓冲枢转移动并且将平行环610拉回到其静止位置,以在托架未连接到火车时维持支撑环620的竖直位置。在一些实施例中,平行环610的外边缘被包围在支撑梁630内,而内边缘保持部分开放以附接支撑环620且适应其有限的移动范围。在一些实施例中,支撑梁630还可以适应平行环610中的轻微侧向移动,因为轨道条件可能导致支撑环620和平行环610的相交平面偏离90度,从而将平行环610拉得更近。
在各种实施例中,两个平行的环610和支撑环620在环彼此相交的点处连接,从而沿着垂直轴和水平轴形成刚性框架。在各种实施例中,这些连接可以围绕竖轴枢转以允许环在环相交的点处略微偏离90度角。换句话说,这些连接可以围绕竖轴枢转,因为轨道条件可能导致平行环610在彼此相反的方向上移动。在各种实施例中,这些枢轴点可以包含允许扭转和/或偏转的弹簧或其它类似的电气或机械机构,以使相交的环在弯曲后恢复到垂直关系。
在实例实施例中,所示的托架和桁架组合件大约为9'宽、8'6\"长和15'高-完全在装载量规内(即,铁路车辆及其负载的最大高度和宽度,以确保它们能够安全地通过隧道、桥下并远离轨道旁的建筑物结构)。在此实施例中,负载可以倾斜高达22到23度,同时仅将联接器降低5到6英寸。如果需要改进的杠杆来移位联接器,则可以将枢转联接器组合件延伸到托架轮轴下方,从而将最大倾斜角限制在17到18度。在各种实施例中,托架轮轴可以在支撑梁中的水平狭槽内移动,以适应本文关于图10A、10B和10C描述的托架转向机构。
在各种实施例中,枢转联接器组合件可以包含飞轮660、联接器670、支撑飞轮且连接到托架的结构680的框架,以及底弦连接690。在各种实施例中,联接器670搁置在托架的支撑环620的顶部并使用一系列滚柱轴承640或低摩擦滑块(类似于上文关于滚柱轴承632描述的轴承设计,其在平行环610与拱形支撑梁630形成界面)。例如,联接器670的下侧可以是弯曲的并且配备有滚柱轴承640或允许其在支撑环620上从一侧移动到另一侧的滑块。例如,图7A示出联接器的框图的端视图,图7B示出联接器与枢转联接器组合件框架的附接的一部分的框图的侧视图,以及图7C示出根据本发明的一个或多个实施例的联接器的框图的俯视图。如先前关于图1A、1B和1C所描述,焊接到支撑桁架100的连接销110可以降低到联接器的开槽圆柱体中,所述开槽圆柱体允许支撑桁架100转动而不允许支撑桁架100围绕它们的水平轴线旋转。
如图7A、7B和7C中所描绘,托架和枢转联接器组合件(PCA)可以包含凹入的滚柱轴承640或类似地成形的滑块(如上文关于图6A和图6B所描述)、支撑PCA的框架的销710、支撑板720,和/或一个或多个其它组件。在各种实施例中,与凹入的滚柱轴承640或滑块接合的支撑环620的顶部拱的凸形形状将允许支撑环620随着平行环610和支撑环620界面对轨道条件作出反应而从垂直方向略微倾斜。在各种实施例中,支撑环620中允许的倾斜度可以通过作用在环顶部的联接器的侧板720和穿过环底部中的狭槽的PCA框架的中心垂直轴来严格地限制。与包含在图9所示的底弦连接器中的弹簧和/或张紧装置一起工作的联接器及其附接的桁架可以在由轨道条件引起的任何弯曲之后将支撑环620连续地拉回到竖直位置。图7A包含联接器和支撑环620的剖视图且示出滚柱轴承640的实例位置。在各种实施例中,从开槽的竖直圆柱体740延伸的竖直壁730倾斜,以向支撑板720提供足够的空间来容纳预期的桁架枢转的全部范围。在一些实施例中,支撑板720(支撑桁架100搁置在其上)具有轻微的圆锥形形状以与圆锥形轴承接合,所述圆锥形轴承将围绕连接销附近的桁架的底弦,如图1A中所描绘。在一些实施例中,联接器设计可包含两个相邻桁架之间的铰接点,因此当火车遇到坡度变化时它们可以偏离直线。
在各种实施例中,PCA框架可以从联接器向下延伸到刚好在托架轮轴810上方,其中摆动臂820延伸托架的长度并且附接到相邻的集装箱。例如,图8A示出实例枢转联接器组合件的框图的端视图以及它如何与包含在每个托架中的三环结构和枢轴支架接合,图8B示出在转弯期间实例托架和枢转联接器组合件的框图的端视图(如下文结合图9进一步讨论);图8C示出实例枢转联接器组合件的框图侧视图,并且图8D示出根据本发明的一个或多个实施例的实例枢转联接器组合件的框图俯视图以及它如何与包含在每个托架中的三环结构和枢轴支架接合。为简单起见,未描绘托架轮子和拱形梁并且示出托架轮轴810以供参考。在各种实施例中,此枢转联接器组合件还可以支撑飞轮660,所述飞轮被配置成围绕支撑环620的中心轴枢转。当所有相邻集装箱彼此连接并且在联接器组合件的底部(例如,如描述为图3A中的集装箱300的位置320和位置330)连接到摆动臂820时,火车在火车的底弦处具有第二纵向连接,所述第二纵向连接结合桁架和平行环/支撑梁界面工作以将支撑环620的竖直位置保持在小公差内。
在各种实施例中,PCA框架可以从销710(在图7A和图7B中描绘)悬垂,所述销在支撑环620的内侧上连接到联接器。PCA框架可以支撑飞轮660并通过三个竖直构件(即,在托架的前部和后部的两个竖直构件和通过支撑环620底部中的狭槽装配的中间竖直构件)向下延伸,所述竖直构件附接到枢转联接器组合件的摆动臂820(其还被描绘为配置成支撑飞轮并连接到托架结构的框架680)。在各种实施例中,PCA包含:飞轮驱动轴850;水平飞轮支架860,其延伸到在托架前部和后部的枢轴支架840中的枢轴点650;竖直飞轮支撑件870,其通过销710固定到联接器的下侧并在三个位置(其中两个与枢轴点650连接并且第三位置从销710下降,以通过其驱动轴穿过支撑环620底部处的狭槽支撑飞轮)在框架的底部向下延伸到摆动臂820,和/或一个或多个其它组件。
在各种实施例中,飞轮660及其质量可以位于托架的中心以对其操作具有稳定作用。在各种实施例中,飞轮660可以在制动时收集和存储势能,并且可以在其托架内施加动力方面发挥作用(例如,根据需要接合/断开托架的动力)。在一些实施例中,电动机可以经由传动装置联接到飞轮660,并且可以使用传动装置和/或电机从火车的电网汲取的能量使飞轮旋转。在一些实施例中,传动装置可以在滑行时分离并且在制动时将能量存储在飞轮660中。
在各种实施例中,枢转联接器组合件的旋转必须被缓冲以防止下端在转弯时撞击托架轮子的内侧。这可以例如通过缆线和在支撑环620内的弹簧装置880来完成,当PCA框架穿过支撑环620中的狭槽时,它们附接到联接器的两侧和PCA框架的中心竖直构件。
枢转联接器组合件(PCA)与托架的独特三环结构设计的交互可以提供一个或多个操作优势。例如,这种交互可以改进货物的悬挂和行驶特性。在各种实施例中,三环结构的几何形状以及在伴随弓形件之间的沿着可能影响负载的所有三条轴线的滑动界面可以有助于将货物与铁轨底座冲击隔离。如果托架轮子在斜坡上滚动,则托架的支撑梁630仅在平行环610下方枢转。一个轮轴相对于另一轮轴的任何竖直移动将在连接它们的支撑梁630的中心减半,并在联接器下方的支撑环620的中心再次减半。由旋转飞轮660产生的离心力将缓冲和延迟联接器的任何反应,并且集装箱吊钩340与联接器的距离以及集装箱的支撑环路410在吊钩340上旋转的能力将进一步隔离负载。实际上,此火车的各个组件(例如,控制车厢、PCA、托架)可以充当火车的混合悬挂系统的一部分。联接器和支撑桁架应保持几乎静止,而托架的环形接口允许托架轮子在其下方独立地移动,同时仍提供平滑、均匀的支撑。与带有位于环中心的飞轮660的陀螺仪有些相似,这种配置提供几个位置,其中当托架轮轴朝向货物集装箱移动时,托架轮轴处的震动的影响会逐渐减弱。
枢转联接器组合件还可以改进转弯。在各种实施例中,PCA框架中的枢轴点650更靠近顶部,因此集装箱的重量将使其保持竖直,从而当在直线轨道上时,使联接器及其负载在铁轨之间居中。当转弯时,离心力和动量将导致集装箱向外摆动,从而将PCA框架底部处的摆动臂推向弯道外侧,同时在相反方向上枢转联接器。例如,图8B示出根据本发明的实施例的在转弯期间实例托架和枢转联接器组合件的框图的端视图。当包括支撑桁架100和本文所述的托架和枢转联接器组合件(PCA)两者的火车进入弯道时,集装箱的质量将导致集装箱在火车的底弦处向外摆动。由于集装箱底部经由枢转联接器组合件的摆动臂820连接到托架,因此集装箱在火车的底弦处向外摆动将导致摆动臂组合件向外摆动,从而使联接器670朝向弯道的内侧移动,如图8B中所描绘,所述联接器搁置在托架的支撑环620的顶部上并且使用一系列滚柱轴承640或低摩擦滑块。这会将更多的重量转移到内侧轮子上并且将桁架/联接器脊柱的线性完整性移向弯道内侧,其中桁架/联接器脊柱无法拉伸,从而阻止火车向外倾斜的趋势。
由于无法压缩顶弦,因此这种相同的枢转运动将迫使火车的底弦在其远离弯道中心移动时拉伸,因此可以在底弦连接690中提供一定程度的纵向柔性,其中集装箱附接到枢转联接器组合件的摆动臂820。当托架加速或减速时以及当托架在轨道中遇到撞击时,这种纵向柔性还可以允许托架在托架负载(例如,集装箱)下方稍微移位,因为在弯曲梁的任一端处的竖直移动将迫使梁支撑的平行环610竖直地和水平地移动。
例如,图9提供根据本发明的实施例的当在转弯时伸长以及当在直线轨道上缩回时的实例底弦连接器的框图的俯视图。位于枢转联接器组合件的摆动臂820的两端处,底弦连接器在其中心线处附接到相邻集装箱的底部。这些连接点的位置在图3A中示出(集装箱300的位置320)。在各种实施例中,底弦连接器可以包含铰接点910、线缆920、一个或多个弹簧930、椭圆形孔940和/或一个或多个其它组件。在各种实施例中,底弦连接器可以被配置成在转弯时拉伸,但仍向枢转联接器组合件的摆动臂820施加侧向压力。在一些实施例中,椭圆形孔940可以被配置成提供一些侧向游隙以补偿不均匀装载的集装箱,并且可以与安装在平行环610之间的托架的前部和后部上且在图6A、图8A和图8D中所示的开槽枢轴支架840一起工作,以在引起联接器反应之前提供柔性或减震的测量。当缩回时,集装箱的侧向移动自由度可能会受到限制,但是当在转弯期间伸长时,铰接点910和扩展的外壳可以提供更大的移动独立性。在各种实施例中,当不转弯时,弹簧930可能倾向于将集装箱拉回到与轨道的中心线对齐。这些弹簧和部署在托架设计中的其它弹簧的张紧量可以是可调整的,以响应于重载与空集装箱的不同重量提供行驶调整机构。在各种实施例中,当托架遇到轨道中的凹陷时,平行环610和弯曲支撑梁630的交互可能导致支撑环620略微偏离竖直方向。底弦连接器中的弹簧930和平行环/支撑梁界面中的对置弹簧可以适应这种移动,但持续地将支撑环拉回到竖直方向。在一些实施例中,底弦连接器中的对置弹簧930也可以充当减震器,以防止当在恶劣的轨道条件下运行时托架撞击集装箱。
在各种实施例中,托架还可以配备有转向机构。例如,图10A示出根据本发明的实施例的实例托架转向机构的框图的俯视图。在各种实施例中,托架转向机构可以包含至少一个滑动点1020、一个或多个枢轴点1030、一个或多个槽形杆1040、一个或多个三角形板1050、一个或多个连杆1060和/或一个或多个其它组件。在各种实施例中,支撑转向机构的框架1080可以附接到支撑梁630。如图5A和图5B中所示,支撑梁630设计有水平狭槽以适应由转向机构引起的托架轮轴的移动。在各种实施例中,还在托架轮子与支撑梁之间提供足够的空间以允许这种转向动作。在一些实施例中,悬架弹簧和/或减震器也可以设置在托架轮轴810与支撑梁630之间以改进行驶特性。在一些实施例中,托架转向机构可以使每个轮轴810具有与其正上方的桁架的直接机械连接,从而使它们始终保持彼此垂直,从而导致两个轮轴的交点始终接近于弯道半径的中心。
在各种实施例中,每个联接器可以配置有内部齿轮,以测量它所支撑的两个桁架偏离直线的程度,从而提供对轨道的曲率的准确测量,托架在任何时间点在所述轨道上运行。为了说明,图10B示出在具有平行轮轴的直线轨道上的托架转向机构的实例视图,以及图10C示出在具有倾斜轮轴的弯曲轨道上的托架转向机构的实例视图。为进一步说明托架转向机构,图10D示出实例托架转向机构的框图的侧视图,并且图10E示出根据本发明的实施例的托架转向机构的实例槽形杆的框图的俯视图。从联接器到托架转向机构的机械连杆可以调整托架轮轴810之间的角度,以使联接器感测到的角度与通过相邻桁架偏离直线的程度测量的轨道曲率程度相匹配。换句话说,可以调整托架轮轴810之间的角度,使得托架轮轴的交点将接近弯道半径的中心。这可能导致托架轮子1010转向通过弯道,从而减少轮子与铁轨之间的摩擦,这将延长设备寿命、减少铁轨上的磨损并提高火车运行的能源效率。例如,支撑框架1080内的螺旋式机构可以将滑动点1020在其狭槽内从一侧移动到另一侧,从而导致槽形杆1040围绕其枢轴点1030枢转三角形板1050,从而导致连杆1060调整轮轴的定向。
在各种实施例中,除了和/或代替包括本文所描述的两个平行环610和支撑环620的三环设计(并且例如在图6A和图6B中描绘),一个或多个替代结构可以用于本文所描述的托架中。例如,可以使用替代结构(并且完全不同),只要它包含在支撑梁630和联接器处具有滑动界面的弯曲弓形件,固定枢轴点650,并为枢转联接器组合件以及其集成飞轮660的倾斜移动提供足够的空间。
在各种实施例中,托架设计还可以包含在枢轴点650处的一定柔性,以缓冲在例如一个铁轨的高度相对于另一个铁轨突然下降的情况下对联接器机构的突然侧向抖动。此下降可以将枢轴点650向下和向一侧移动,从而迫使联接器首先朝着斜坡移动,然后随着负载移位而离开。在本文中关于图6A、8A和8D描述在不影响本文所述的系统的转弯能力的情况下抑制此动作的机构。例如,具有对置弹簧的狭槽可以设计到固定枢轴点650的枢轴支架840中,所述狭槽为枢轴点650处的水平狭槽和附接到平行环610的每一端处的竖直狭槽。这些狭槽的长度和弹簧的阻力可以进行调整,以对轨道条件和所需的行驶特性作出响应。
驱动机构
在各种实施例中,在每个托架的中心处的飞轮(例如,飞轮660)可以包括驱动机构的组成部分并且可以用于存储在制动时产生的势能和/或机械能。在各种实施例中,安装悬挂平台上的发电机或电池可以为火车供电,所述悬挂平台以与货物集装箱相同的方式附接。可能经过改装以燃烧压缩天然气(CNG)而不是柴油燃料的标准商用发电机可以共同地为服务于整个火车的电网供电。火车的长度、火车负载的重量和将行驶的地形可能确定每辆火车上放置的发电机和/或电力单元的数量,并配备一两个备用以防止机械故障。对驱动机构的控制可以确保每个托架对推进或停止火车的努力做出同等贡献,而不管各个飞轮的旋转速度如何,以最大限度地减少联接器上的任何纵向应力并为它们提供所需的移动自由度来优化系统性能。如果托架的驱动机构发生故障,则它可能会切换到空档并脱离,以便火车可以保持移动。
一些实施例可以使用一个或多个电动机,所述电动机被配置成使飞轮转动,所述飞轮将使用变速传动装置连接到驱动轮。这些传动装置将在加速或巡航时从飞轮中汲取能量,在滑行时分离,并在制动时将能量存储在飞轮中。电机用于将飞轮的转速保持在其预定范围内消耗的电量可以确定火车的发电机数量和容量。尽管飞轮驱动轴850在图8A和图8D中示为笔直的,但是在一些实施例中,飞轮驱动轴850可以包含在飞轮660的中心与支撑环620之间的万向接头和重叠套筒,以适应支撑飞轮660的PCA框架的枢转移动。尽管示为延伸穿过且超出图8A到D中的支撑环620,但是在一些实施例中,飞轮驱动轴850可以终止于支撑环620内部以适应将驱动火车的电机和传动装置的替代布置。
在各种实施例中,当火车接近码头时,可以允许飞轮的旋转速度减慢,因此制动过程可以用于将飞轮恢复到飞轮操作范围的高端,以预期稍后将火车从静态发车加速所需的努力。存储在飞轮中的势能也可以用于在码头操纵火车,使得可以关闭或更换发电机。如果存储的能量不足以完成所有必要的码头操作以及加快在码头添加到火车上的任何托架上的飞轮的旋转,则火车也可以连接到码头的电源。这可以减少噪声和/或保持码头附近的空气质量。
控制车厢
在各种实施例中,本文所描述的增强的转弯特性至少部分地源自以下事实:在枢转联接器组合件已将它们移向弯道的中心之后,联接的支撑桁架(火车的顶弦)将不会伸展。对于成功地提高火车的平均转弯速度的此特征,前几个托架中的一个或多个可以绕弯道移动,以便在顶弦的前端放置足够的锚定块。同样,当最后几个托架移动通过弯道时,火车的后部也可以锚定以抵消任何甩鞭效应。在各种实施例中,控制车厢可以位于火车的前部和/或后部以感测轨道曲率的变化,然后提供这种锚定效果。例如,控制车厢以及其配重可以通过控制进入弯道的前几个集装箱的响应和/或抵消最后几个集装箱离开弯道时的甩鞭效应来帮助提供这种锚定块。在一些实施例中,控制车厢也可以容纳驾驶员的舱室。
图11中说明用于为控制车厢提供上述所需锚定效果的实例机构。例如,图11说明根据本发明的实施例的控制车厢1100。在各种实施例中,控制车厢1100可以包含拱形支撑梁1110、梁支撑板1120、配重1130,和/或一个或多个其它组件。在各种实施例中,控制车厢1100可以不具有支撑桁架,因此没有销来插入到销联接器组合件中以与相邻托架连接。因此,需要用于将控制车厢与相邻托架的顶弦(即,顶侧结构)连接的机构。
在各种实施例中,控制车厢1100可以经由至少顶弦连接1140、底弦连接1150和/或刚性第三连接1160连接到相邻托架。在各种实施例中,顶弦连接1140可以包括链条或类似的柔性缆线,所述链条或类似的柔性缆线在销联接器组合件或一些其它联接机构处附接到相邻托架的顶弦,以将相邻托架的联接器连接到控制车厢1100的配重。在各种实施例中,底弦连接1150可以在其底弦连接器940处将控制车厢1100连接到相邻托架。在各种实施例中,底弦连接1150可以包含一种机构(例如,液压传动装置辅助件),所述机构将相邻托架的摆动臂820推向弯道外侧,以补充由移位配重1130在将所述托架的联接器朝向弯道内侧枢转时施加的力。此装置还可以允许后控制车厢1100刚好在进入弯道之前起始相邻托架的联接器670的移位,以努力抵抗任何预期的甩鞭。在各种实施例中,除了与顶弦和底弦的连接之外,刚性第三连接1160可以包括控制车厢1100与相邻托架之间的额外联接。在各种实施例中,刚性第三连接1160可以具有齿轮机构和/或其它构件以检测到火车正在进入弯道。这可以类似于联接器670内部的配置成检测和测量相邻桁架100偏离直线的程度的机构。在各种实施例中,刚性第三连接件1160可以防止移位配重1130将相邻托架拉近控制车厢,使得其施加的所有力可以用于枢转相邻PCA并移位其联接器670。
在各种实施例中,控制车厢1100可以被配置成利用配重1130,所述配重可以被配置成在拱形支撑梁1110上从一侧滚动到另一侧(其也在本文进一步描述的图12A、12B和12C中描绘)。在各种实施例中,拱形支撑梁1110可以朝向控制车厢1100的后部倾斜并且安装在枢转支撑板1120上,所述枢转支撑板安装在斜面上。在各种实施例中,支撑板1120可以由刚性第三连接1160中的机构旋转。刚性第三连接件1160可以铰接并且用于感测火车何时进入弯道,然后旋转支撑板1120以使配重1130朝向弯道内侧移位。例如,当控制车厢1100与相邻托架之间的刚性第三连接1160检测到火车正在进入弯道时,机械连杆将使拱形支撑梁1110下方的支撑板1120枢转。由于当支撑板1120枢转时,拱形支撑梁1110安装在斜面上,因此支撑梁1110朝向弯道内侧的一端下降,而另一端上升,因此重力会迅速将配重1130移动到下部且朝向弯道内侧的位置。
在各种实施例中,配重1130的尺寸可以设计成帮助起始和维持相邻的枢转联接器组合件(PCA)的旋转,就像离心力和动量开始使相邻桁架下方的集装箱朝弯道外侧摆动一样。在优选实施例中,由于底弦连接器(其在图9中描绘)在被拉伸之前只允许有限的侧向运动,因此引线联接器组合件的这种移位有助于引发连锁反应,所述连锁反应在每个托架进入弯道时在整个火车长度上波动。在各种实施例中,移位的配重1130可以锚定火车的前部,直到前几个托架已经移动通过弯道;之后,前几个托架将锚定后面的托架。
在一些实施例中,这些相同的原理可以适用于后部控制车厢。在使用具有配重的后部控制车厢的实施例中,后部控制车厢的配重可以在到达弯道之前开始移位,以便定位自身以抵抗火车后部的甩鞭。如上文所提及,附接到底弦连接1150的液压传动装置辅助件可以努力帮助配重移位相邻的联接器670。知道火车的速度和长度可以使车载计算系统能够计算后部控制车厢何时接近弯道。当轨道变直时,重力将使相邻的集装箱和联接器组合件返回到竖直位置,同时控制车厢中的拱形支撑梁(例如,控制车厢1100的拱形支撑梁1110)返回其正常位置(例如,垂直于轨道)。这两个动作的组合可以将滚动的配重返回到拱的顶部并且使其在铁轨之间居中。
图12A说明拱形支撑梁1110的实例俯视图,图12B说明拱形支撑梁1110的实例正视图,并且图12C说明根据本发明的一个或多个实施例的拱形支撑梁1110的实例侧视图。在各种实施例中,拱形支撑梁1110的片段A可以被设计成甚至在附接的联接器组合件开始枢转之前在弯道的内侧轮上快速地移动配重1130。在一些实施例中,在片段B上的配重1130的任何额外移动将反映附接的联接器组合件已经枢转的程度。拱形支撑梁1110的精确几何形状连同其所抵靠的支撑板1120的倾斜角可以允许作用在配重上的重力将其快速地移动到某一位置,所述位置促使相邻联接器移位并且在火车进入弯道时将火车的顶弦锚定到弯道内侧,这可以允许增加转弯速度。例如,图12D示出当火车绕弯道行驶时图11中所描绘的实例控制车厢的拱形支撑梁1110的实例俯视图,并且图12E示出根据本发明的实施例的当火车绕弯道行驶时拱形支撑梁1110的实例正视图。在弯曲轨道上,在弯道内侧的支撑梁1110的端部下降并移动到后部,从而导致重力在内侧轮子上移位配重1130。因为支撑板1120在斜面上,所以当支撑梁1110旋转时,一侧下降而另一侧升高,从而迫使配重到达正确的一侧。
在一些实施例中,除了可能涉及相邻联接器组合件的旋转的顶弦连接和底弦连接之外,控制车厢与相邻托架之间的第三刚性连接可以帮助阻止控制车厢和托架在配重移位时拉到一起的趋势。由于控制车厢和相邻托架之间的复杂关系,因此在一些实施例中,可以更永久地附接控制车厢和相邻托架,并且第一负载单元可以是发电机或电池组,以便各个控制车厢可以在其自身的电源下方移动。在一些实施例中,安装在各个控制车厢中的摄像头可以允许驾驶员从任一端驾驶火车并在倒车时提供可见性。
在各种实施例中,机械连杆可以用于连接和激活控制车厢和托架内的关键功能。例如,机械连杆可能更坚固且更稳定、更易于维护并且更不易发生故障。
本文所描述的改进的联运系统可以促进例如海洋到河流的转移和/或陆地到水的转移。远洋船舶和内河驳船可以被设计成在港口中平静的水面上连接和交换集装箱,无需对接或使用起重机,而是以滚上滚下的方式。轮式集装箱改进的移动性可以促进集装箱在船舶和驳船上、在每一水平面内和水平面间移动,因此集装箱可以在停靠站之间在船上进行分类,并且可以将离开的集装箱放置在出口坡道附近以促进快速转移。当与配备有用于轮子的升高通道的斜坡一起使用时,裙板450中示出的凹口470可以提高坡度变化时的间隙(如上文所述)。当在内河驳船与陆基码头之间转移集装箱时,此特征可能特别有用,因为潮汐作用和水位可能导致它们相对于彼此的高度变化很大。
系统优点
改进的联运系统的实施例可以包含一类新的铁路设备,其中代替将常规的轨道车联接在一起,火车由一系列标准化的可互换组件(例如,托架、桁架、控制车厢)组装而成,这些组件允许以自动方式交换货物集装箱和发电机,无需提升且无需脱离火车的轨道车辆组件中的任一个。由于货物集装箱被配置成易于与火车分离,因此轨道车辆在按目的地分拣货物中不起任何作用,因此编组场不需要在中间位置卸货或取货,因此此设备可以保持参与长途运输移动。按目的地对货物进行分类可以在火车到达之间在自动化码头内进行。
在一些实施方案中,本文所描述的各种组件可以具有全新设计并且不能与任何现有铁路设备(例如,除了轨道和道岔除外)交互或需要符合任何现有铁路设备。在一些实施例中,本文所描述的所有组件可以被设计成易于维护,尤其是更换磨损物品。在一些实施例中,本文所描述的组件的设计可以结合最新的现代控制、安全和诊断设备(例如正向火车控制诊断传感器,用于监测设备性能并在故障发生之前预测故障),测量铁轨底座缺陷并报告它们的位置,并且将RFID标签附接到所有组件以持续地跟踪它们的位置、报告它们的状况和可用性,以及在货物集装箱的情况下,它们是否被装载、船上有什么、它要去哪里以及谁拥有它。
在传统的铁路设备的情况下,每个传统的轨道车和联接器必须足够坚固,以将一百节或更多节装载车厢拉上坡。在根据本文所描述的实施例设计的火车和火车组件(例如,托架、桁架和/或其它组件)中,动力可以均匀地分布在整个火车中,从而消除传统设备中存在的线性应力。本文所描述的实施例还可以允许具有更轻设备设计,所述更轻设备设计具有改进的皮重/负载比、更好的燃料经济性和/或更少的铁路基础设施磨损。刚性的铰接式脊柱可以消除火车运行中的联接和松弛作用。传统的联接过程本质上是在5mph下的受控碰撞,这种碰撞既响亮又猛烈并且可能损坏敏感货物。但是在根据本文描述的实施例的火车和火车组件中,刚性脊柱和分布式动力可以通过消除火车运行中的放线和缓冲力事件来减少弯道处的轮/轨磨损并降低脱轨风险。
这些操作特性允许一种改进的联运系统,所述联运系统克服传统铁路设备的许多限制并显着提高铁路联运服务的性能和竞争力,因此它可以将其范围扩展到更小的市场、更短的运输距离和更小的负载。这种改进的设备设计可能具有将大量货物从高速公路转移到铁路的可能性,从而降低卡车运输造成的社会成本和环境破坏。卡车体积的任何减少都将减少重型卡车造成的路面损坏,从而延长现有高速公路和桥梁的使用寿命。政府预算也将受益于较低的高速公路维护成本,以及构建减少拥堵和维持对高效经济至关重要的高速公路服务水平所需的额外车道里程的可能推迟。根据最近的CBO报告,联邦、州和地方政府现在每年在高速公路基础设施上花费1770亿美元,但美国土木工程师协会将我们的基础设施评为“D”,美国44%的主要道路状况不佳或一般。根据国家交通研究小组TRIP,在需要维修的道路上行驶每年会花费美国驾驶员1289亿美元的额外车辆维修和运营成本(每位驾驶员605美元)。美国联邦公路管理局估计,在道路、高速公路和桥梁改进上花费的每一美元都会以降低车辆维护成本、减少延误、减少燃料消耗、提高安全性、降低道路和桥梁维护成本以及由于改进的交通流量而减少排放的形式获得5.20美元的回报。这些事实表明,铁路货运量的有意义的转变将提供远远超出降低GHG排放、改进空气质量和改进高速公路安全性的社会效益。
在各种实施方案中,自动化码头操作还可以代表本文描述的改进的联运系统优于传统系统的优势。分拣过程中不可或缺的集装箱交换和火车装配站可以放置在室内,以保护设备并减少噪音传播。使用存储在飞轮中的能量和/或轻触码头的电源可能允许在码头访问期间关闭发电机。因此,根据本文描述的各种实施例的改进的联运码头可以是产生很少空气污染并且因此不太可能产生政治反对的安静邻居。
由于备用集装箱和桁架可以竖直地存储,因此码头占地面积可能小于传统的联运码头,从而有利地允许它们更靠近人口中心定位以减少短途运输成本。一些集装箱可以直接卸载到在相邻的下沉混行道上等待的平板卡车上,以便卡车几乎立即出发进行最终交付。其它集装箱可能保持在码头中,并被添加到稍后开往正确方向的火车上。
在各种实施方式中,选线软件可以按目的地对集装箱进行分组,因为联运系统的组件(例如,火车、控制车厢、托架、集装箱、库存/货物,和/或其它组件)移动通过运输基础设施,以便最大限度地减少下游码头延迟。出发的集装箱和重加燃料的发电机可以放置在特定的排队站(例如,码头、海港、CES),其中当到达的集装箱和发电机位于特定CES时,火车可能会停止。多个交换可能同时发生,因此每个码头处安装的CES的数量可以是货物体积的函数。
在各种实施方案中,增强的设备利用率还可以代表本文描述的改进的联运系统优于传统系统的优势。典型的轨道车只在大约10%的时间里产生收入,即装载和移动。通过将货物集装箱与轨道车辆分开并在火车到达之间的自动化码头中对它们进行分类,本文所述的实施例可能有益地不需要编组场,从而使大多数设备能够在更大部分的时间内保持创收服务。这可以有利地降低每单位承载能力的设备资金成本。由于驾驶员通常会装载和卸载集装箱或内部货架,而不是在内侧处理货物,所以这种优势可能也会在短途运输操作中产生。
铁路通常在每列火车上配备第二机车以防止搁浅。标准发电机可能只是机车成本的小部分,提供更精细的备用和动力辅助,并且由于本文描述的组件设计,任何所需的维护、修理或检查可能仅需要脱机获取最少的设备投资。
在各种实施方案中,与传统系统相比,本文所描述的改进的联运系统可以提供改进的悬架。本文所描述的各种组件可以充当悬架系统的一部分,将集装箱与不平坦的铁轨底座的影响隔离开来并保护货物免受损坏。特定集装箱对承载集装箱的托架的一个轮子的突然移动的任何反应可能会因设计中的灵活性而减少、延迟和/或缓冲。消除火车运行中的松弛作用和联接将进一步保护货物免受损坏。
这些改进的悬架特性和增强的转弯特性(如上所述)应该允许改进的联运火车以更高的平均速度(甚至可能是客运火车速度)运行,并可能在传统铁路设备可能被迫减小速度的条件相对较差的轨道上运行。在更高的平均速度下,运输时间可能比卡车运输更具竞争力,并且设备利用率指标可能会进一步提高,从而每单位设备投资产生更多吨英里数。相对较轻的设备和较小的负载应最小化对铁路基础设施施加的任何额外维护负担。
小型移动装载单元可以移动通过装载码头,从而允许用户在他们的制造、包装和分销活动中追求生产力的提高。基线设计指定小型的零担运输(LTL)大小的集装箱,但为许多用户(例如包裹递送公司)配备四个内部轮式货架将进一步扩大运输服务的灵活性。例如,内部轮式货架可以用于在途中按目的地对包裹进行分类。在这种情形下,可以提供专用集装箱交换站以将卸载的集装箱放置在转盘上,打开其卷帘门并且拉出一个或多个内部货架,然后旋转集装箱以在将集装箱返回到火车之前插入具有相同或类似目的地的更换货架。在一些实施例中,内部货架也可以设计成承载特定物品(例如,汽车变速器或仪表板),以降低包装和装箱成本。然后,这些集装箱或它们的货架可以滚动到装配厂的适当站,以进行最终安装,而无需进一步处理。较少的包装还可以有益地减少固体废物流,从而提供例如环境和/或成本优势。这种方法还可以提高货架大小负载的联运效率,而不是像传统设备那样仅限于单元火车。
在一些实施例中,本文所描述的改进的联运系统的组件可以有助于在码头处存储集装箱或货架,从而为用户提供分布式仓储选项。库存可以在市场之间重新定向以满足预期的区域货物需求波动,并且可以在不需要运输代理或客户处理产品的情况下这样做,从而减少处理劳动力并仅产生铁路运输成本,同时确保用户的最终交付仅包含根据需要进行本地短途运输。在某些情况下,具有现场码头的专用工业和配送园区具有本文所述的各种结构特征。例如,可以在顶置式铁轨上运行的自动传送机系统可以在码头与用户设施之间全天候运输集装箱。在这种情况下,大型零售商可以在一夜之间从一个相对偏远、成本较低的配送中心将装载的集装箱运送到区域商店,并使用内部货架将库存直接运送到销售现场进行补货。
在一些实施方案中,与传统系统相比,本文所描述的改进的联运系统可以提供更持续的运输。例如,钢轨上的钢轮比铺砌道路上的卡车轮胎的能源效率高6到10倍。较轻的设备设计及其改进的皮重/负载比和托架转向机构应该产生优于传统铁路设备的效率增益。飞轮可以用于存储和再利用通常因制动而损失的大部分能量,并且改进的转弯特性可以通过不必在弯道前使火车减速太多且然后将它们加速回运行速度来节省能量。
促进消除如本文所述的编组场活动也可以减少燃料消耗,因为仅在堆场转换中,1类铁路每年可能使用超过2亿加仑的柴油燃料。在行程的长途运输和短途运输部分使用CNG且在码头设有加油站将进一步减少空气污染物。在时间上,电池技术的进步可能允许火车和短途运输卡车通过使用可再生能源充电的电池供电,以实现零排放运行。在一些情况下,组件设计可能允许通过用电池组替换一些发电机来尽早过渡到混合配置。由于此系统受驾驶员短缺或燃料价格波动的影响较小,因此可能会产生更稳定的运输服务定价。具有编队功能的自动驾驶卡车的预期到达可能会降低劳动力成本,但自动驾驶卡车不太可能像铁路运输那样节能或减轻交通拥堵和路面损坏问题。
本文描述的实施例可以有益地为铁路行业提供改进的运输性能。在一些实施例中,本文所描述的托架和/或其它组件可以与现有基础设施完全兼容,但也可以预期本文所描述的火车的制动和加速可能比传统设备响应更快,从而允许更短的火车时隙。这可能为铁路提供一个机会,以更充分地利用其现有资产基础并扩大路线/路径的创收潜力,而不受其现有编组场容量的限制或对其施加任何额外压力,并且对其基础设施的额外磨损最小。如本文所描述,在使用不同轨距的铁路之间转移负载可能与将两列火车并排停放并将集装箱翻过来一样简单。
本文所描述的实施例还可以有益地促进短途运输操作与长途运输的协调,并在各个码头的服务区域内使用计算机化的路由系统来匹配取货和交付,以最小化成本并优化服务。这为托运人提供了一个联系点,即门户到门户,在目前被认为相当混乱的市场中,需要使用第三方物流公司来协调运输。通过利用具有分布式仓储选项的实施例,即使是小公司也可以在通常需要高效的全国分销网络的供应链中竞争。
本文所描述的各种设备实施例的改进的悬架和行驶特性可以与消除联接和松弛作用相结合,以减少货物损坏。由于货物可以在锁定的集装箱中移动,和/或当不在传输中时,可以容纳在室内码头和存储设施的受控环境中,因此可以消除(或至少减少)偷窃行为。由于在一些实施例中,我们的设计预期系统及其员工通常将处理集装箱和/或内部货架而不是它们的内容物,因此应该降低破损率、收缩率和保险率。实施例可能能够提供与卡车运输相比具有竞争力但成本更低的服务。最后,在满足其业务目标时使用这种清洁技术的那些托运人将展示他们对可持续发展的承诺,这是衡量良好企业公民的越来越重要的衡量标准。
出于解释的目的,阐述众多具体细节以提供对本说明书的透彻理解。本领域技术人员应理解,可以在没有这些特定细节或具有等效布置的情况下实践本文中所描述的实施例。因此,应理解,本技术不限于所公开的实施例,而相反旨在涵盖在所附权利要求的精神和范围内的修改和等效布置。例如,应理解,本发明技术预期在可能的范围内,任何实施例的一个或多个特征可以与任何其它实施例的一个或多个特征组合。
在各种情况下,以框图形式示出众所周知的结构和装置以免混淆本说明书。框图的组件(例如,模块、块、结构、装置等)可以以不同于本文明确描述和描绘的方式进行各种组合、分离、移除、重新排序和替换。
在本说明书中提及“一个实施例”、“实施例”、“一些实施例”、“各种实施例”、“某些实施例”、“其它实施例”、“一系列实施例”等表示结合实施例描述的特定特征、设计、结构或特性包含在本公开的至少一个实施例中。例如在本说明书中各个地方出现的短语“在一个实施例中”或“在实施例中”不一定全部指代同一个实施例,也不是与其它实施例相互排斥的单独实施例或替代实施例。此外,无论是否明确提及“实施例”等,都描述各种特征,这些特征可以以各种方式组合并包含在一些实施例中,但在其它实施例中也可以以各种方式省略。类似地,描述各种特征,这些特征可以是对于一些实施例的偏好或要求,但不是对于其它实施例的偏好或要求。
本文所使用的语言主要是出于可读性和指导目的而选择,并且可能未选择其来描绘或限制本发明的主题。通过考虑本文中公开的本发明的说明书以及实践,本领域的技术人员将清楚本发明的其它实施例、用途和优点。本说明书应该仅被视为示例性的,并且本发明的范围因此预期仅由所附权利要求书限制。