本文所述的主题涉及用于电梯的救援装置,即用于从电梯轿厢救援电梯乘客的装置。
背景技术:
有时诸如电源故障的操作异常可能引起电梯轿厢停在层站(landing)之间,处于合适的停止区域之外。补救这种情况的一个解决方案是借助于手动制动释放杆手动地断开曳引机械制动器。机械制动器的断开使得电梯轿厢借助于重力朝向最近的层站移动。
制动杆可以位于例如电梯层站区域内,处于电梯井外部。制动杆经由制动-断开线(机械缆线)连接到曳引机械制动器,使得转动制动杆时,制动-断开线机械地拉开机械制动器。
维修人员通过拉着制动杆来保持机械制动器断开,视觉观察电梯轿厢移动,并且当电梯轿厢到达门区域时,使制动杆返回到初始位置以使电梯轿厢停住。处于门区域时,电梯轿厢地面与层站地面处于同一水平高度,以使乘客可以从电梯轿厢离开到层站。
这种制动断开机构必须位于离曳引机械制动器不太远的地方;否则,制动-断开线的长度可能会引起问题。当制动断开线的长度增加时,转动制动杆所需的力也增加。污垢、腐蚀等可能很容易阻塞非常长的制动-断开线的移动,从而使制动断开过程/救援操作复杂化。
另一方面,有时将手动制动断开接口(例如制动杆)设置为远离曳引机械制动器将是有益的。例如,在一些电梯中,希望将手动制动断开接口定位在最低的层站,而曳引机/机械制动器定位于电梯井的上部。
顺利的救援操作需要一些制动杆使用方面的经验。因此,需要更易于使用的设备,但具有同样的不妥协的安全性。
发明目的
鉴于上述情况,本发明的目的是引入一种用于电梯的改进的救援装置,该救援装置提供手动制动断开接口(以下称为“遥控单元”)相对于曳引机械制动器的灵活布置。因此,本发明公开了一种根据权利要求1所述的救援装置、一种根据权利要求16所述的电梯和一种根据权利要求19所述的改装套件。在从属权利要求中描述了本发明的一些优选实施例。一些发明实施例以及各种实施例的发明组合在本申请的说明书和附图中给出。
技术实现要素:
本发明的一个方面是一种用于电梯的救援装置,该救援装置包括制动控制单元,该制动控制单元具有用于连接到电源的输入端子、用于连接到电磁制动器的磁化线圈的输出端子、以及至少一个可控制动断开开关,该至少一个可控制动断开开关与输入端子中的至少一个输入端子相关联,并且适于在第一开关状态下阻止从电源向磁化线圈供应电流,并且在第二开关状态下允许从电源向磁化线圈供应电流。救援装置还包括控制线缆和遥控面板,控制线缆包括一个或多个控制信号线,遥控面板经由控制线缆耦合到制动控制单元。遥控面板包括手动操作的驱动开关,该手动操作的驱动开关经由控制线缆的控制信号线耦合到制动断开开关的控制极。
本发明的另一方面是一种电梯,该电梯包括电梯轿厢和曳引机,曳引机配置成根据来自电梯乘客的服务请求在层站之间驱动电梯井中的电梯轿厢,曳引机包括一个或多个电磁制动器。电梯包括根据本公开的救援装置。
本发明的又一方面是一种改装套件,其包括根据本公开的救援装置,该救援装置适合于装配到根据本公开的电梯中。这意味着根据本公开的救援装置可以被引入到旧的电梯装置中以更新救援功能。
所公开的救援装置结构简单;因此可以详细分析救援装置的操作,以达到高的安全水平。救援装置也适合于安装到各种电梯,因为遥控单元的位置可以相对于制动控制单元基本上自由地选择,例如,与使用机械制动断开线的传统制动杆的情况不同,控制线缆的长度不是限制因素。在优选的实施例中,制动控制单元的可控制动断开开关是安全继电器。这种继电器具有高隔离距离的机械触头,因此确保了磁化线圈电流切断过程中的高可靠性。因此,在救援操作期间,也可以实现曳引机械制动器的可靠操作。
根据一个实施例,制动控制单元包括两个可控的制动断开开关,两个可控的制动断开开关都适于彼此独立地阻止向磁化线圈供应电流,并且遥控面板包括两个手动操作的驱动开关,该驱动开关之一经由第一控制信号线耦合到第一制动断开开关的控制极,而另一个驱动开关经由第二控制信号线耦合到第二制动断开开关的控制极。这意味着磁化线圈电流可以通过彼此独立控制的(经由分离的控制信号线,利用驱动开关)、两个独立的部件(制动断开开关)来中断。因此,如果制动断开开关中的一个由于某种原因卡在闭合位置,则另一个制动断开开关仍然可操作,并且可通过中断磁化线圈电流来应用制动器。
根据一个实施例,制动控制单元包括用于指示制动断开开关的开关状态的开关状态指示器。
根据一个实施例,遥控面板包括与一个或多个驱动开关串联连接的手动操作模式选择开关。这意味着利用驱动开关的救援操作是不可能的,直到模式选择开关转到救援位置。
根据一个实施例,电源是备用电源。这意味着通过从备用电源向磁化线圈供应电流,还可能在市电断电期间进行救援操作。
根据一个实施例,电源是dc备用电源,并且其中主电路包括用于从备用电源向磁化线圈供电的dc/dc转换器。这意味着dc/dc转换器可用于将dc备用电源的低电压转换成用于磁化线圈的更高电压。在优选实施例中,dc备用电源是电池。
根据一个实施例,电源是市电。在优选实施例中,市电和备用电源两者都可连接到输入端子。在实施例中,控制单元被配置成使得仅在市电断电的情况下从备用电源供应功率,否则从市电供应功率。
根据一个实施例,制动控制单元还包括用于正常模式制动控制设备的输出线缆的通路端子(passageterminals),以及装配在通路端子和输出端子之间的断接开关。断接开关的控制极经由控制信号线耦合到遥控面板中的模式选择开关,使得断接开关可操作以基于模式选择开关的状态,选择性地将通路端子从输出端子断接或连接到输出端子。这意味着通过将模式选择开关转到救援模式,正常模式制动断开设备可以在救援模式下与磁化线圈的电流供应电路分离。因此,即使正常模式制动断开设备发生故障(例如,如果正常模式制动断开开关的输出短路),仍然可能进行救援操作。
根据一个实施例,断接开关是转接开关,该转接开关具有耦合到通路端子的第一输入、耦合到救援时电流的第二输入、以及耦合到输出端子的输出。这意味着当模式选择开关转到正常模式时,在正常电梯操作期间,制动控制单元也与正常制动断开设备分离。这降低了制动控制单元的故障的可能性。
根据一个实施例,模式选择开关在电梯安全链中具有触头。当模式选择开关处于救援模式时,模式选择开关的安全链触头被装配为处于断开状态,并且当模式选择开关处于正常模式时,模式选择开关的安全链触头被装配为处于闭合状态。这意味着通过将模式选择开关转到救援模式(这中断了电梯安全链),在救援操作期间,正常的电梯操作可以被阻止。
根据一个实施例,救援装置包括可控动态制动开关,可控动态制动开关具有用于耦合到永磁电动机的定子绕组的端子,动态制动开关适于在闭合状态下从永磁电动机的电动势生成制动电流,其中动态制动开关的控制极耦合到电梯安全链,使得当电梯安全链被中断时,动态制动开关处于闭合状态。这意味着通过将模式选择开关转到救援模式,可以从遥控单元启动动态制动,从而中断电梯安全链。因此,借助于动态制动,还可以在救援操作期间降低电梯轿厢速度/加速度,这导致曳引机械制动器的断开/闭合间隔更长(例如,制动断开/闭合频率可以更低,而不因超速引起安全装置的启动,这意味着救援操作更容易执行)。
根据一个实施例,控制线缆包括耦合到备用电源的电源线,并且遥控单元包括备用电源状态的指示器。这意味着可以从遥控单元监控备用电源(例如电池)的操作状况。这在备用电源设置在电梯井中并且遥控单元设置在层站地面中、处于电梯井外的情况下尤其有用。
根据一个实施例,制动控制单元包括与输出端子相关联的固态开关,用于选择性地阻止或允许向磁化线圈供电。这意味着还可以用固态开关来中断/恢复向磁化线圈的功率供应。只有在所选择的操作情况中(例如在释放遥控单元中的驱动开关时)才有必要使用机械制动断开开关。如果仅在必要时使用机械制动断开开关,否则使用固态开关,则可以减少机械制动断开开关的开关事件的数目,并且它们的寿命可以增加。
根据一个实施例,制动控制单元包括安全逻辑,该安全逻辑具有耦合到固态开关的控制极的输出和耦合到开关状态指示器的输入,该输入用于接收制动断开开关的开关状态信息。安全逻辑包括逻辑元件,该逻辑元件被配置为比较接收到的制动断开开关的开关状态,并且在制动断开开关中的一个保持在闭合状态而另一个制动断开开关从闭合状态改变到断开状态然后返回到闭合状态的情况下,阻止向输出端子的功率供应。这意味着通过固态开关来阻止向磁化线圈的电流供应,因此如果两个制动断开开关都在连续的救援运行之间未断开,则制动器不会断开(例如当一个制动断开开关断开,从而中断到磁化线圈的电流供应时,另一个制动断开开关也必须在可以再次恢复向磁化线圈的电流供应之前断开)。通过这种方式,可能检测制动断开开关之一是否发生故障并被卡在闭合位置。从而可以提高救援装置的安全性。
根据一个实施例,制动控制单元包括耦合到固态开关的控制极的调制器。调制器配置为通过调制固态开关来调整输出端子电压。这意味着制动器断开后,可能减少输出端子电压/磁化电流。当制动器断开时,较小的磁化线圈电流足以保持制动器断开。因此,通过将磁化电流减小到更小值(但该更小值足以保持制动器断开),可以减小磁化线圈的功率损耗,并且可以降低制动线圈温度的上升。
根据一个实施例,遥控单元设置在层站中。这意味着还可以从层站、在电梯井外部执行救援操作。
根据一个实施例,曳引机、正常模式制动控制器、制动控制单元和备用电源彼此极为靠近地设置在井中。这意味着它们之间只需要短的电源线缆,这简化了电气化,并且减少了可能的emc扰动。
附图说明
在下文中,参照附图,本发明将借助于其实施例的一些示例来更详细地描述,其实施例本身不会限制发明的应用范围,其中
图1示出了根据一个实施例的电梯的示意图。
图2示出了根据一个实施例的救援装置的电路图。
图3示出了根据一个实施例的电磁制动器的基本操作元件。
图4示出了根据一个实施例的电梯驱动器。
具体实施方式
为了清楚起见,在图1-4中,仅表示认为是理解本发明所必需的那些特征。因此,例如,可能未表示对应领域中存在的所周知的某些部件/功能。
在描述中,相同的附图标记一律用于相同的项。
图1是根据示例性实施例的电梯的示意图。电梯包括电梯轿厢31和电梯驱动器。电梯驱动器的主要元件在图4中进一步示出。因此,电梯驱动器包括曳引机23和变频器40。如本领域已知的,曳引机23配置成根据来自电梯乘客的服务请求在层站34之间驱动电梯井33中的电梯轿厢31。
变频器40和曳引机23安装在电梯井33的顶端附近。曳引机23包括永磁电动机22和旋转牵引轮(未示出),旋转牵引轮安装至永磁电动机22的轴线。变频器40连接到永磁电动机22的定子21,用于向永磁电动机22供电。电梯轿厢31和配重(未示出)通过曳引索(未示出)悬挂。曳引索经由曳引机23的牵引轮延伸。永磁电动机22驱动牵引轮,从而引起电梯轿厢31和配重在电梯井33中沿相反方向移动。
备选地,曳引机23和变频器40可以设置在电梯井坑中。电梯系统还可以具有分离的曳引索和悬挂索。在这种情况下,曳引索可以经由设置在井坑中的曳引机23的牵引轮延伸。进一步地,悬挂索可以联接到井顶端附近的至少一个滑轮。术语“索”被理解为指传统的圆形绳索和带。备选地,曳引机23和变频器40可以设置在与井33分离的机房中。
根据本公开的电梯也可以实施于没有配重的情况。
图1的曳引机23包括用于牵引轮移动的制动的两个电磁制动器7。图3示出了制动器7中的一个制动器。电磁制动器7包括:固定至曳引机23的固定主体的固定制动器主体35,以及布置为相对于制动器主体35移动的电枢36。在制动器主体35和电枢36之间装配有弹簧37,以在它们之间施加推力。具有磁化线圈6的电磁体装配在制动器主体35内部。通过凭借弹簧37的推力将电枢驱动为抵靠曳引机23的旋转部分的制动表面38,来应用制动器7。制动器7通过磁化线圈6通电而断开。通电时,磁化线圈6引起制动器主体35和电枢36之间的引力,该引力进一步使得电枢36通过抵抗弹簧37的推力而脱离制动表面38。
正常模式制动控制器17连接到制动器7的磁化线圈6,以在正常的电梯操作期间选择性地断开或闭合制动器7。正常模式制动控制器17设置在变频器40中,与曳引机23和制动器7靠得很近。在一些替代实施例中,正常模式制动控制器17设置于安装在电梯层站34中的控制面板中。在正常模式下,当开始新的电梯运行时制动器7断开,并且在运行结束时制动器7用于使电梯轿厢31保持停滞。通过向磁化线圈6供应所需电流量,控制制动器7断开。通过中断电流供应来应用制动器7。
在功能不合格的情况下,电梯轿厢31的运行可能以如下方式中断,使得电梯轿厢31被卡在层站34外部,因此电梯轿厢31中的电梯乘客不能离开电梯轿厢31。功能不合格可能例如由市电3a的停电、或者例如由电梯控制系统的操作错误或故障而引起。由于这一原因,图1的电梯具有用于执行救援操作的救援装置,其中维修人员使卡住的电梯轿厢安全地返回层站34,以使乘客可以离开轿厢31。这是通过断开制动器7以借助于重力来移动电梯轿厢31来进行的。
救援装置包括制动控制单元1、遥控单元12和备用电池3b。制动控制单元1和备用电池3b设置在井33中,与曳引机23/制动器7和正常模式制动控制器17靠得很近。遥控单元12设置在电梯井33的外部,处于控制面板39中,控制面板39被安装至井坑入口的层站门框。遥控单元12经由控制线缆10与制动控制单元1耦合。
图2示出了图1的救援装置的电路图。制动控制单元1具有连接到市电3a的输入端子2a、以及连接到备用电池3b的输入端子2b。市电3a可以是例如230vac电压网络。制动控制单元1还具有输出端子4,输出端子4连接到两个电磁制动器7的磁化线圈6。制动控制单元1还具有igbt晶体管25形式的固态开关,该igbt晶体管25与输出端子4相关联,用于选择性地阻止或允许向磁化线圈6供电。
dc/dc转换器16耦合于输入端子2b和固态开关25之间。dc/dc转换器16向igbt晶体管25的输入供应来自备用电池3b的电流。同时,dc/dc转换器16还将电池3b电压转换为磁化线圈6所需的更高的dc电压值。在正常的电梯操作期间,电池3b利用电池充电器43充电。
制动控制单元1包括安全继电器形式的两个可控制动断开开关8a,8b;9a,9b。两个继电器都有两个安全触头8a,8b;9a,9b。安全触头8a,8b;9a,9b与对应的输入端子2a、2b相关联。每个安全继电器8a,8b;9a,9b适于独立于另一安全继电器,来阻止向对应的磁化线圈6供应电流。这意味着如果安全继电器8a,8b;9a,9b中的一个安全继电器有安全触头卡在闭合位置,则另一个安全继电器8a,8b;9a,9b仍然可操作,并且可以通过中断磁化线圈6的电流来应用制动器7。
安全触头8a,8b;9a,9b是常开(n.o.)触头。它们被装配到制动控制单元1的主电路,以使在断开状态下,它们阻止向磁化线圈6供应电流,并且在闭合状态下,它们允许向磁化线圈6供应电流。
控制线缆10包括控制信号线11a、11b、11c。如下文所公开的,控制信号经由控制信号线11a、11b、11c从遥控面板12发送到制动控制单元1。
遥控单元12包括两个手动操作的驱动开关13a、13b。驱动开关中的一个驱动开关13b经由第一控制信号线11b耦合到第一制动断开开关8a,8b的控制极8c,另一个驱动开关经由第二控制信号线11a耦合到第二制动断开开关9a,9b的控制极9c。遥控单元12还包括手动操作的模式选择开关,其具有与驱动开关13a、13b串联连接的触头15a。模式选择开关15具有正常模式(启用正常的电梯操作)和救援模式(启用救援操作)这两种模式(位置)。模式选择开关触头15a在救援模式下处于闭合状态,而在正常模式下处于断开状态。当模式选择开关触头15a闭合时,驱动开关13a、13b接收dc电源电压vcc。dc电源电压vcc经由控制缆线11d来自备用电池3b。
当驱动开关触头13a、13b被手动闭合时(通过操作手动按钮),控制电压vcc经由控制缆线11a、11b连接到制动断开开关安全继电器的控制线圈8c、9c,引起安全触头8a,8b;9a,9b的闭合。这具有两个作用:一方面,电流可以通过安全触头8a、9a和二极管桥式整流器41,从市电3a流向igbt晶体管25。同时,安全触头8b、9b的闭合连接dc/dc转换器16的控制电压,从而启用dc/dc转换器的操作。
遥控单元12包括vcc电压状态的指示器24,指示器24还指示备用电池3b的状态。指示器24可以例如是led。借助于指示器24,可能在不进入电梯井33的情况下检查备用电池3b的状况。
遥控单元12还具有超速调速开关42。超速调速开关42在预定的超速杆(overspeedlever)处断开,使得安全继电器触头8a,8b;9a,9b断开。
调制器27耦合到igbt晶体管25的控制极。调制器27根据特定的开关模式以高开关频率使igbt晶体管25接通和断开,以调节输出端子4的电压。因此,可以降低输出端子4的电压,以避免磁化线圈6中的过多功率损耗。另一方面,输出端子4的电压可以暂时提高,以确保机械制动器7适当地断开。如技术人员所了解,开关模式取决于所使用的调制方法。本领域已知的合适的调制方法是例如脉冲宽度调制、频率调制和滞后调制。
制动控制单元1包括用于指示安全触头8a,8b;9a,9b的开关状态的开关状态指示器14。开关状态指示器14包括耦合到安全触头8b、9b的光耦合器14a、14b。
制动控制单元1还包括安全逻辑26。安全逻辑26具有耦合到调制器27的输出,以选择性地启用或阻止去往igbt晶体管25的控制极的控制信号。安全逻辑26的输入耦合到光耦合器14a、14b的输出。安全逻辑26具有逻辑电路,该逻辑电路例如可以是分立ic电路、微控制器和/或fpga的形式。逻辑电路被配置为比较安全触头8b、9b的开关状态,并且在安全继电器触头8b、9b中的一个保持在闭合状态,而8b、9b中的另一个从闭合状态改变到断开状态然后返回到闭合状态的情况下,阻止通过igbt晶体管25供应电流。这种特定的逻辑使得可能检测制动断开开关8a,8b;9a,9b中的一个是否已经故障并且被卡在闭合位置。进一步地,在那种情况下,阻止制动器7断开以确保电梯安全。
电流经由制动控制单元1,从正常模式制动控制设备17向磁化线圈6供应。在救援模式,正常模式制动控制设备17与磁化线圈6隔离,并且制动控制单元1连接到磁化线圈6,以使制动控制单元1可以向磁化线圈6供应电流,而不受正常模式制动控制设备17的任何干扰。因此,在正常模式下,制动控制单元1与磁化线圈6隔离,并且正常模式制动控制设备17连接到磁化线圈6,以使正常模式制动控制设备17可以向磁化线圈6供应电流,而不受制动控制单元1的任何干扰。该隔离功能在下文公开的制动控制单元1中实施。
正常模式制动控制单元1的电流供应线缆连接到制动控制单元1的通路端子5。磁化线圈6的电流供应线缆进一步连接到制动控制单元1的输出端子4。制动控制单元1包括具有第一输入18a、第二输入18b和输出18c的转接开关18。第一输入18a耦合到通路端子5,并且第二输入18b耦合到救援时电流供应,例如,耦合到来自输入端子2a、2b的电流路径。在图2的实施例中,第二输入18b耦合到igbt晶体管25的发射极。转接开关18的输出18c耦合到输出端子4。
断接开关的控制极18d经由控制信号线11c耦合到遥控面板12中的手动操作的模式选择开关15a。
当模式选择开关15a转到正常操作状态(断开状态)时,电流从正常模式制动控制设备17、通过转接开关18的第一输入18a、进一步经由输出端子4、向磁化线圈6供应。同时,第二输入18b保持断开,从而将磁化线圈6与igbt晶体管25隔离。
当模式选择开关15a转到救援操作状态(闭合状态)时,电流从输入端子2a、2b、通过igbt晶体管25和第二输入18b、进一步经由输出端子4、向磁化线圈6供应。同时,第一输入18a保持断开,将磁化线圈6与正常模式制动控制设备17隔离。
模式选择开关触头15b中的一个在电梯安全链19中。在公开内容中,术语“电梯安全链”必须广义地理解为包括电梯安全触头的传统串联连接电路以及在新的电梯安全码中启用的现代可编程电子安全设备。开关触头15b在正常电梯操作期间闭合,并且在救援模式下断开。断开开关触头15b意味着电梯安全链19中断。当中断时,安全链19阻止正常的电梯操作,从而增强救援操作的安全性。
图1的救援装置还包括动态制动开关20a、20b。动态制动开关20a、20b用于在救援操作期间对曳引机23的旋转进行制动,以在救援操作期间使电梯轿厢移动稳定。动态制动开关20a、20b的连接原理表示在图4中。当闭合时,动态制动开关从曳引机23的永磁电动机22的电动势生成制动电流。
动态制动开关20a、20b的端子与永磁电动机22的定子绕组21耦合。在图4的实施例中,动态制动开关20a、20b是接触器或继电器的常闭(n.c.)触头。这意味着即使没有控制电压可用时(例如断电期间),动态制动也一直是可能的。另一方面,代替机械开关,也可以使用固态开关(诸如igbt晶体管、mosfet晶体管、氮化镓晶体管、碳化硅晶体管等)。动态制动接触器的控制线圈20c与电梯安全链19耦合。当开关触头15b断开时(例如在救援操作期间),中断到控制线圈20c的电流,以启动动态制动。
借助于示例性实施例,对本发明进行了以上描述。对于本领域技术人员显而易见的是,本发明不限于上述实施例,并且许多其他应用在由权利要求限定的发明构思的范围内是可能的。