本发明涉及燃气热水器用燃烧器技术领域,尤其涉及一种低氮排放燃烧器。
背景技术:
目前燃气热水器降低氮氧化合物的方法是全预混燃烧、浓淡燃烧、火焰中布置冷却体和燃烧室加湿等,其基本出发点在于改变燃烧器结构以达到降低氮氧化合物生成量,实现低氮排放的目的。
1)全预混燃烧降低了可燃混气在火焰高温区的停留时间,即反应时间,但其应用在家用燃气热水器时存在检测、控制复杂,燃烧不稳定,安全隐患大等弊端。
2)浓淡燃烧目的是延缓燃尽,降低高温区的温度,其技术相对复杂,燃烧器设计、制造难度大,成本高,国内应用少。
3)火焰中布置冷却体目的是降低高温区温度,但冷却体会导致CO含量增高,需加强后期燃气与空气混合,技术要求高,同时燃烧器加工制造难度大。
4)燃烧室加湿目的是降低高温区温度,但会导致热效率大幅度降低且无法避免。
低氮排放燃烧器在国内应用较少,因此国内燃气热水器市场以常规产品为主。市面上的低氮排放燃气热水器多以欧美、日韩等国外产品为主,其价格较高,难以普及推广。
技术实现要素:
针对现有技术中存在的问题,本发明的目的在于提供一种热效率高的低氮排放燃烧器。
为达到以上目的,本发明采用如下技术方案。
一种低氮排放燃烧器,包括燃烧器本体,设置在燃烧器本体上的若干燃烧孔,其特征在于,在相邻燃烧孔间的间隙内设有集热支管,集热支管的一端连接有集热进水管,集热支管的另一端连接有集热出水管。
作为改进地,所述燃烧孔排列成若干行,所述集热支管包括并排布置在相邻两行燃烧孔间的若干个直管,集热进水管、集热出水管分别布置在燃烧器本体的两侧。
作为改进地,在集热支管上还设有集热片。
作为改进地,所述集热片置于燃烧器头部,不与火焰接触。
作为改进地,所述低氮燃烧器安装在燃气热水器上,集热进水管与燃气热水器的进冷水管连接,集热出水管与燃气热水器的热交换器盘管连接。
本发明的有益效果是:
一、利用集热支管吸收燃烧器燃烧产生的热量,进而降低整个燃烧器的燃烧温度,实现低氮排放,降低能源消耗,绿色环保;解决了现有燃烧器常规产品氮氧化合物排放量高,低氮排放产品技术复杂,加工制造难度大,成本高等问题,使燃气热水器更加安全、环保,易于推广。
二、由于集热支管吸收的是燃烧器向下排放的热量,当其应用在燃气热水器上时,可将废热利用起来,一定程度上提高了燃气热水器整机效率。
附图说明
图1所示为本发明提供的低氮排放燃烧器结构示意图。
图2所示为本发明提供的低氮排放燃烧器应用示意图。
附图标记说明:
1:燃烧孔,2:集热支管,3:集热进水管,4:集热出水管,5:集热片,6:进冷水管,7:热交换器盘管,8:热交换器,9:出热水管,10:燃烧器本体。
具体实施方式
为方便本领域技术人员更好地理解本发明的实质,下面结合附图对本发明的具体实施方式进行详细阐述。
如图1所示,一种低氮排放燃烧器,包括燃烧器本体10,设置在燃烧器本体10上的若干燃烧孔1,其特征在于,在相邻燃烧孔1间的间隙内设有集热支管2,集热支管2的一端连接有集热进水管3,集热支管2的另一端连接有集热出水管4。
其中,所述燃烧孔1排列成若干行,所述集热支管2包括并排布置在相邻两行间的若干个直管,集热进水管3、集热出水管4分别布置在燃烧器的两侧。
进一步地,在集热支管2上还设有集热片5,所述集热片5置于燃烧器头部,不与火焰接触,在提高集热效果的同时避免CO排放量的增加。
结合图2所示,实际应用时,集热进水管3与燃气热水器的进冷水管6连接,集热出水管4与燃气热水器的热交换器盘管7连接。燃气热水器工作时,冷水经进冷水管6进入后,一部分流向热交换器盘管7,另一部分流向集热进水管3;冷水进入集热进水管3后分流,流经各个集热支管2后在集热出水管4汇合流向热交换器盘管7,期间集热片5吸收燃烧室内热量,并传递给集热支管2,使冷水升温,进入热交换器盘管7的温水流入热交换器8,完成换热并从出热水管9流出。
现有研究表明,燃气燃烧过程中生成的氮氧化合物有三种形式:热力型氮氧化合物,瞬时反应型氮氧化合物,燃料型氮氧化合物。其中热力型氮氧化合物所占份额最大。热力型氮氧化合物在燃烧时产生,主要是NO,由氮气在高温下氧化生成。化学反应过程共有6个,其中4个反应影响相对较小,2个主要的反应过程如下:
N2+O<——>NO+N 1)
N+O2<——>NO+O 2)
这两个反应过程均为吸热反应,因此NO的生成速度受燃烧温度的影响最大。1500℃以上开始生成,温度越高,生成的NO也越多。温度降至1200℃时NO生成量明显降低。由NO进一步氧化成NO2,是在温度低的条件下进行的,因此NO2更多是在NO随烟气排入大气后生成。
本实施例提供的一种低氮排放燃烧器,通过在相邻燃烧孔之间设置集热支管、集热片,由于集热片吸收了燃烧室内的热量,使得燃烧平均温度降低,有效减少热力型氮氧化合物的生成,从而降低烟气中整体氮氧化合物的含量。
根据燃气热水器的热效率公式:η=1-a-b-c。
式中η—热水器效率,%。
a—排烟损失,%。
b—不完全燃烧损失,%。
c—散热损失,%。
常规的燃气热水器散热损失在2.5%左右。本实施例提供的低氮排放燃烧器,其集热管吸收的热量包含燃烧室逸散且未被利用的热量,这部分热量被加以利用去加热冷水,相当于减小了c值,因此在一定程度上还可提高整机效率。
以上具体实施方式对本发明的实质进行了详细说明,但并不能以此来对本发明的保护范围进行限制。显而易见地,在本发明实质的启示下,本技术领域普通技术人员还可进行许多改进和修饰,比如,在燃烧器本体的选型上可以选择水平燃烧器,也可选择直立燃烧器。需要注意的是,这些改进和修饰都落在本发明的权利要求保护范围之内。