本发明总体涉及热交换器,并且更具体地,涉及具有多端口挤出件和弯曲构型的微通道热交换器。
制冷剂蒸汽压缩系统在本领域中是熟知的。采用制冷剂蒸汽压缩循环的空调器和冷却器通常用于对供应到建筑物的气候受控区的空气进行冷却,或进行冷却和加热两者。常规地,这些制冷剂蒸汽压缩系统包括以制冷剂流动连通的方式连接以形成闭合制冷剂回路的压缩机、冷凝器、膨胀装置以及蒸发器。
在一些制冷剂蒸汽压缩系统中,冷凝器和蒸发器中的一个是平行管热交换器。此类热交换器具有由在入口集管与出口集管之间以平行关系延伸的多个管提供的多个平行制冷剂流动路径。通常使用扁平的、矩形或椭圆形状的多通道管。每个多通道管具有在管的长度上以平行关系纵向延伸的多个流动通道,每个通道提供小横截面流动面积的制冷剂流动路径。入口集管从制冷剂回路接收制冷剂,并且将此制冷剂流分布在穿过热交换器的多个流动路径中。当制冷剂流离开相应的流动路径时,出口集管收集制冷剂流,并且将所收集的流引导回到制冷剂蒸汽压缩系统。
在某些应用中,需要将平行管热交换器装配到特定尺寸的外壳中,以使空调系统的占地面积最小化。在其他应用中,需要将平行管热交换器装配到特定尺寸的气流管道中。在此类情况下,可能需要使平行管热交换器弯曲或成形以适应这些限制,同时确保对气候受控区进行冷却或加热的能力未减弱。使平行管热交换器弯曲并成形的一个实践涉及使热交换组件围绕圆柱体弯曲。在此工艺期间,将力施加到组件的一侧以使所述组件围绕圆柱体的局部弯折部分缠绕,以便提供使组件弯曲的均匀且可再现的方法。
此方法的一个问题是复合的多端口挤出式(MPE)微通道热交换器比规则的MPE多通道热交换器显著更硬,并且因此更难以弯曲。此外,具有较大容积的较新的制冷系统可能需要复合的热交换器结构,其类似于并排布置并且在端部接合的两块平板。这种结构不能在没有严重损坏的情况下容易地弯曲,除非使用大的弯曲半径,这导致热交换器太大而无法装配在期望的特定尺寸的包壳内。
发明概述
根据本发明的一个实施方案,提供一种热交换器,所述热交换器包括第一歧管以及与所述第一歧管分开的第二歧管。多个热交换管段以间隔的平行关系布置并且以流体方式联接第一歧管和第二歧管。所述多个管段中的每个包括第一热交换管和第二热交换管,第一热交换管和第二热交换管至少部分地由在其间延伸的腹板连接。所述多个热交换管段包括限定热交换管段的第一区段和第二区段的弯曲部。第一区段布置成与第二区段成一定角度。多个第一翅片从所述热交换管段的第一区段延伸,并且多个第二翅片从所述热交换管段的第二区段延伸。
除上述特征中的一个或多个之外,或者作为替代方案,在其他实施方案中,所述弯曲部围绕布置成垂直于所述热交换管段的纵轴的轴线缠绕。
除上述特征中的一个或多个之外,或者作为替代方案,在其他实施方案中,每个热交换管段的弯曲部包括轻微扭曲。
除上述特征中的一个或多个之外,或者作为替代方案,在其他实施方案中,所述多个第一热交换器管和所述多个第二热交换器管中的每个是具有形成于其中的多个离散流动通道的微通道管。
除上述特征中的一个或多个之外,或者作为替代方案,在其他实施方案中,所述多个第一热交换器管和所述多个第二热交换器管是基本上相同的。
除上述特征中的一个或多个之外,或者作为替代方案,在其他实施方案中,所述多个第一热交换器管和所述多个第二热交换器管是不同的。
除上述特征中的一个或多个之外,或者作为替代方案,在其他实施方案中,所述多个第一翅片和所述多个第二翅片中的至少一个安装到所述热交换管段的表面。
除上述特征中的一个或多个之外,或者作为替代方案,在其他实施方案中,所述多个第一翅片和所述多个第二翅片中的至少一个与所述热交换管段的表面一体形成。
除上述特征中的一个或多个之外,或者作为替代方案,在其他实施方案中,所述多个第一翅片和所述多个第二翅片是基本上相同的。
除上述特征中的一个或多个之外,或者作为替代方案,在其他实施方案中,所述多个第一翅片和所述多个第二翅片是不同的。
根据本发明的另一个实施方案,提供一种使热交换器弯曲的方法,所述热交换器具有以间隔的平行关系布置并且以流体方式联接第一歧管和第二歧管的多个热交换管段。所述多个管段中的每个至少包括至少部分地由腹板连接的第一热交换器管和第二热交换器管。所述方法包括将至少一个间隔件安置在相邻的热交换管段之间的弯曲部分处。所述多个热交换管段围绕布置成垂直于所述热交换管段的纵轴的轴线弯曲,以便实现期望的角度。移除所述至少一个间隔件。
除上述特征中的一个或多个之外,或者作为替代方案,在其他实施方案中,所述弯曲部分限定每个热交换管段的第一区段和第二区段,并且所述期望的角度是在所述第一区段与所述第二区段之间测量的。
除上述特征中的一个或多个之外,或者作为替代方案,在其他实施方案中,所述至少一个间隔件由非导电的半刚性塑料形成。
附图简述
在说明书的结论处的权利要求书中具体指出并明确要求保护被认为是本发明的主题。通过以下结合附图进行的详细描述可明白本发明的上述和其他特征及优点,在附图中:
图1是制冷系统的蒸汽制冷循环的实例的示意图;
图2是根据本发明的实施方案的微通道热交换器在弯曲操作之前的侧视图;
图3是根据本发明的实施方案的微通道热交换器的管段的横截面图;
图4是根据本发明的实施方案的微通道热交换器的管段的横截面图;
图5是根据本发明的实施方案的微通道热交换器的透视图;并且
图6是根据本发明的实施方案的微通道热交换器的弯曲部的透视图。
详细描述参考附图通过举例的方式来解释本发明的实施方案以及优点和特征。
详细描述
现在参考图1,示意性地示出空调系统的蒸汽压缩或制冷循环20。示例性的空调系统包括但不限于:例如分离式、柜式、冷却器式和屋顶式系统。制冷剂R被配置来循环通过蒸汽压缩循环20,以使得制冷剂R在低温和低压下被蒸发时吸收热量并且在较高的温度和压力下冷凝时释放热量。在此循环20内,制冷剂R沿如箭头所指示的逆时针方向流动。压缩机22从蒸发器24接收制冷剂蒸汽并将所述制冷剂蒸汽压缩至较高的温度和压力,然后相对较热的蒸汽穿行到冷凝器26,在冷凝器26中所述蒸汽通过与冷却介质(未示出) (诸如空气或水)的热交换关系而被冷却并冷凝至液体状态。液体制冷剂R然后从冷凝器26穿行到膨胀装置28,其中制冷剂R在穿行到蒸发器24时会膨胀至低温两相的液体/蒸汽状态。低压蒸汽然后返回到压缩机22,在压缩机22中重复所述循环。必须理解,图1中所描绘的制冷循环20是HVAC&R系统的简化表示,并且所述示意图中可包括本领域中已知的许多增强和特征。
现在参考图2,更详细地示出被配置用于在蒸汽压缩系统20中使用的热交换器30。热交换器30可在蒸汽压缩系统20中用作冷凝器24或蒸发器28。热交换器30包括:第一歧管或集管32;与第一歧管32间隔开的第二歧管或集管34;以及多个管段36,所述多个管段36以间隔的平行关系在第一歧管32与第二歧管34之间延伸并且连接第一歧管32和第二歧管34。在示出的非限制性实施方案中,第一集管32和第二集管34大体上竖直取向,并且热交换管段36在两个集管32、34之间大体上水平延伸。然而,其他构型,诸如第一集管32和第二集管34基本上水平布置的构型也在本发明的范围内。
如图3和图4的横截面所示,在第一歧管32与第二歧管34之间延伸的多个管段36中的每个是多端口挤出式(MPE)管段36,并且至少包括第一热交换管38和第二热交换管40,第一热交换管38和第二热交换管40由至少部分地在其间延伸的腹板42连接。在一个实施方案中,布置在最外部的管段36处的腹板42包括多个开口。多个第二热交换管40的宽度可基本上等于或不同于多个第一热交换管38的宽度。虽然如图3所示,第二热交换管40比第一热交换管38宽,但是多个第一热交换管38等于或宽于多个第二热交换管40的其他构型在本发明的范围内。
每个热交换管38、40的内部流动通路可由内壁划分成多个离散流动通道44a、44b,所述多个离散流动通道44a、44b在管段36的长度上延伸,并且在相应的第一歧管32与第二歧管34之间建立流体连通。第一热交换管38的内部流动通路可划分成与第二热交换管40的内部流动通路不同数量的离散流动通道44。流动通道44a、44b可具有任何形状的横截面,例如像圆形横截面、矩形横截面、梯形横截面、三角形横截面或另一非圆形横截面。包括离散流动通道44a、44b的多个热交换管段36可使用已知技术(例如像挤出)来形成。
每个第一热交换管38和第二热交换管40具有相应的前缘46a、46b,后缘48a、48b,第一表面50a、50b,以及第二表面52a、52b (图3)。每个热交换管38、40的前缘46a、46b相对于穿过热交换器30的气流A位于其相应的后缘48a、48b的上游。
现在参考图5,热交换器30的每个管段36包括至少一个弯曲部60,以使得热交换器30具有关于气流A的多通路构型。弯曲部60大体上围绕基本上垂直于管段36的纵轴或离散流动通道44a、44b延伸的轴线形成。在示出的实施方案中,弯曲部60是带状折叠的;然而,其他类型的弯曲部在本发明的范围内。在示出的非限制性实施方案中,弯曲部60在相对的第一歧管32与第二歧管34之间的管段36的接近中点处形成。
弯曲部60至少部分地限定多个管段36中的每个的第一区段62和第二区段64。如图所示,弯曲部60可形成为使得每个管段36的第一区段62相对于第二区段64成钝角定位。可替代地或除此之外,弯曲部60还可形成为使得第一区段62布置成与第二区段64成锐角或基本上平行于第二区段64。弯曲部60允许形成具有常规的A型线圈或V型线圈形状的热交换器30。
如先前陈述的,由于其中形成的弯曲部60,热交换器30包括多通路构型。例如,在管段36的第一区段62内的第一热交换器管38和第二热交换器管40中的一个或两者可限定第一通路,并且在相同管段36或不同管段36的第二区段64内的第一热交换器管38和第二热交换器管40中的一个或两者可限定随后的通路。任何多通路流动构型都在本发明的范围内。在一个实施方案中,在相同的第一区段62或第二区段64内的第一热交换器管38和第二热交换器管40被配置成在热交换器30的制冷剂流动路径内的不同通路。
再次参考图2-4,多个第一翅片70从每个管段36的第一区段62延伸,并且多个第二翅片72从每个管段36的第二区段64延伸。在示出的非限制性实施方案中,没有翅片布置在多个管段36的弯曲部60内。多个第一翅片70和第二翅片72可以是基本上相同的,或者可替代地,可以是不同的。如图4所示,管段36的第一区段62的翅片70可与管段36一体形成,例如像在腹板42中形成并且延伸到穿过热交换器30的气流A的路径中的散热孔。
可替代地,翅片72可安装到管段36的第二区段64的表面(图3)。第一翅片70和第二翅片72可由以带状蛇形形式紧密折叠的翅片材料形成,从而提供大体上正交于扁平化管段36延伸的多个紧密间隔翅片。在图3所描绘的非限制性实施方案中,每个折叠翅片72从第一热交换管38的前缘46a延伸到相邻的第二热交换管40的后缘48b。然而,在其他实施方案中,翅片70、72可仅在管段36的宽度的一部分上延伸。
在多个管段36内的一种或多种流体与气流A之间的热交换通过热交换管36的外表面48、50发生,并且还通过翅片70、72的热交换表面发生,所述外表面48、50共同形成初级热交换表面,所述翅片70、72的热交换表面形成次级热交换表面。
现在参考图6,为了防止管段36在弯曲工艺期间变形,非导电的半刚性塑料间隔件74定位在未弯曲的热交换器30 (图2)的相邻管段36之间,具体地定位在未弯曲的热交换器30的不具有从其延伸的翅片的弯曲部分60中。当第一区段62和第二区段64布置成相对于彼此成期望的角度时,弯曲工艺完成,然后移除间隔件74。间隔件74旨在防止在弯曲部60形成之后管段36塌缩以及另外结构损失。当弯曲部朝向第一区段62和第二区段64前进时,弯曲部60包括轻微扭曲以使第一集管32和第二集管34对齐。因此,使热交换器30弯曲所需要的力显著减小,并且避免了对热交换器30的损坏。
本文所描述的使多端口挤出式(MPE)微通道热交换器30弯曲的方法导致具有减小的弯曲半径的热交换器30。因此,热交换器30可适于装配在由现有的空调和制冷系统限定的特定尺寸的包壳内。
虽然本发明已参考如附图所示的示例性实施方案进行了具体展示和描述,但本领域技术人员将认识到,可在不脱离本发明的精神和范围的情况下进行各种修改。因此,希望本公开不限于所公开的具体实施方案,而是本公开将包括落在所附权利要求书的范围内的所有实施方案。具体地,类似的原理和比率可扩展到屋顶式应用和直立柜式单元。