本发明涉及暖炉技术领域,具体地说涉及一种双燃料锅炉。
背景技术:
:
在我国的北方,冬天温度较低,一般利用暖气炉燃烧煤炭对暖气片或者地暖管道内的水加热,依靠热水循环实现供暖。目前,市场上的暖气炉大多采用燃料在炉膛内直接燃烧,燃烧后的烟尘进入烟管加热烟管水箱中的水,为了使炉体内部的燃料的充分燃烧,需要增大炉底进风量进行助燃,但是,在使用过程中发现“直燃”锅炉存在以下缺点:1、只有一个固体燃料室,具有不同气化或燃烧条件的多种燃料在同一个固体燃料室气化或燃烧,无法同时满足不同燃料的燃烧条件,致使各种同燃料的气化或燃烧不完全,造成原料的浪费;2、“直烧”锅炉只进行一次燃烧,未将固体燃料和气体燃料按照不同的燃烧条件进行分室燃烧,燃料燃烧不够彻底,造成燃料的浪费;3、由于燃程短,燃料燃烧过程中产生的可燃气体不能充分燃烧,这些可燃气体随着烟气排到大气中,不仅造成资源的浪费,还会污染环境;4、燃料燃烧形成的火焰体积大,仅通过炉底进风量来对燃料进行助燃,助燃效果较差,无法对火焰的内焰和中焰进行充分助燃,致使火焰燃烧不充分,且炉底进风量过大,燃料燃烧形成的灰烬随着火焰大量排出,烟气粉尘含量特别大,污染环境;5、炉体内燃烧温度一般为1100摄氏度以上,这个温度是氮氧化合物最易生成的临界温度,高温燃烧致使产生大量的氮氧化合物,危机周边人员的健康;6、烟管水箱换热面积比低,不能够有效换热,热量随着烟气大量排放,热量利用率低;7、炉盖多为单层炉盖,炉体内的火焰与炉盖直接接触,部分热量会通过炉盖散失,造成能源的浪费。
技术实现要素:
:
本发明的目的在于提供一种能够使燃料充分燃烧、提高能源利用率的双燃料锅炉。
本发明由如下技术方案实施:双燃料锅炉,其包括底座、炉体、主燃烧室、副燃烧室、炉排、储灰槽,在所述底座顶部设有所述炉体,在所述炉体外部套设有炉体水套,在所述炉体内部设有左右设置的所述主燃烧室和所述副燃烧室,所述主燃烧室和所述副燃烧室之间通过连通管连通,在所述主燃烧室顶部的炉口内部设有炉盖,在所述主燃烧室和所述副燃烧室下部均设有上下设置的所述炉排和所述储灰槽,在所述炉排上方的所述主燃烧室和所述副燃烧室侧壁上分别设有主加料口和副加料口,在所述副加料口与所述炉排之间的所述副燃烧室侧壁上设有清渣口,在所述主燃烧室侧壁上设有排烟口;所述底座为中空壳体,所述底座内部的腔体为配风室,在所述配风室侧壁上设有与所述配风室内部连通的配风口;在所述主加料口上方的所述主燃烧室上部水平固定设有换热水箱,所述换热水箱与所述炉体水套相互连通;在所述排烟口下方、所述换热水箱顶部的所述主燃烧室内部水平固定设有隔板,所述隔板与所述换热水箱顶部之间的所述主燃烧室为助燃室;在所述换热水箱下方的所述主燃烧室内部及所述副燃烧室顶部分别水平固定设有一根环形布风管,在所述布风管的内侧设有若干布风孔;在所述助燃室与所述配风室之间、每根所述布风管与所述配风室之间均连通设有送风管;在所述换热水箱内部竖直密封穿置有一根以上的导流管,所述导流管底端密封穿过所述换热水箱箱底,置于对应的所述布风管下方;所述导流管顶端依次密封穿过所述换热水箱顶部、所述隔板,置于所述隔板上方;在所述助燃室内部的所述导流管管壁上设有若干配风孔。
进一步的,所述炉排为炉条间距可调的炉排。
进一步的,在所述炉排与所述储灰槽之间的所述炉体侧壁上设有调风门。
进一步的,在所述导流管顶部设有风帽。
进一步的,在所述炉体内部竖直设有分割水套,所述分割水套与所述炉体水套相互连通;所述分割水套一侧的所述炉体内部为所述主燃烧室,所述分割水套另一侧的所述炉体内部为所述副燃烧室;在所述分割水套中部密封穿置有一根所述连通管,所述连通管一端置于所述主加料口上方的所述主燃烧室内部,所述连通管另一端置于所述副加料口上方的所述副燃烧室内部。
进一步的,在所述副燃烧室内部竖直设有一块与所述连通管相对设置的挡板,所述挡板的顶端置于对应的所述布风管的下方,所述挡板的底端通过横连板与所述连通管下方的所述分割水套外壁固定连接,所述副燃烧室内的所述连通管两侧的所述分割水套外壁分别通过一块竖连板与相邻的所述挡板的侧边固定连接。
进一步的,在所述挡板和与所述挡板相对的所述分割水套外壁上分别水平固定设有若干间隔交错设置的导流板
进一步的,在所述副燃烧室顶部的所述炉口内部设有所述炉盖。
进一步的,所述炉盖为双层炉盖,所述双层炉盖包括支撑管、下炉圈、下炉盖、上炉圈、上炉盖,所述支撑管下管口置于对应的所述炉口内部,在所述支撑管下管口顶部活动设有所述下炉圈,在所述下炉圈的中心孔顶部分体设有所述下炉盖;在所述支撑管上管口顶部活动设有所述上炉圈,在所述上炉圈的中心孔顶部分体设有所述上炉盖。
进一步的,在所述支撑管外围的所述炉体顶部设有炉盖水套,所述炉盖水套分别与所述排烟水套、所述炉体水套连通。
本发明的优点:本发明所述的双燃料锅炉实现了多燃料分室燃烧,使具有不同气化、燃烧条件的燃料在两个燃烧室内进行分室燃烧,燃烧充分,可有效的提高原料的燃烧效率,避免原料的浪费;通过炉排、送风管、炉盖分别为炉体内的火焰燃烧提供助燃风,大幅减少炉底进风量,进风扰流效应显著降低,固体燃料气化燃烧形成的灰烬不易随火焰排出,烟气中粉尘含量大幅减少;尤其在主燃烧室中,实现了多段燃烧、多段返烧、多次助燃,使燃料及可燃气体充分燃烧,烟气中灰尘、一氧化碳等含量大幅降低,实现达标排放;导流管将大体积火焰分为若干股较小的火焰,内焰和中焰充分与助燃空气饱和结合,充分燃烧,大幅降低烟气中一氧化碳含量;通过换热水箱充分吸收火焰外焰热量,降低火焰燃烧温度,抑制氮氧化合物的生成;炉体水套、炉盖水套、分割水套与换热水箱结合进行换热,换热面积比高,换热效率高,大幅减少热量散失,提高能源利用率。
附图说明:
图1为本发明整体结构示意图。
图2为双层炉盖结构示意图。
图3为炉条间距可调的炉排结构示意图。
图4为本发明使用示意图。
底座1、炉体2、主燃烧室3、副燃烧室4、炉排5、框架51、炉条52、拉杆53、连接杆54、转轴55、储灰槽6、炉口7、炉盖8、支撑管81、下炉圈82、下炉盖83、上炉圈84、上炉盖85、主加料口9、副加料口10、排烟口11、分割水套12、配风室13、配风口14、换热水箱15、隔板16、助燃室17、布风管18、布风孔19、送风管20、导流管21、配风孔22、炉体水套23、排烟管25、排烟水套26、温度传感器27、控制器28、循环水泵29、集热管30、调风门31、炉盖水套32、连通管33、清渣口34、挡板35、横连板36、竖连板37、二级燃烧室38、一级燃烧室39、暖气管排40、导流板41。
具体实施方式:
如图1所示,双燃料锅炉,其包括底座1、炉体2、主燃烧室3、副燃烧室4、炉排5、储灰槽6,在底座1顶部设有炉体2,在炉体2外部套设有炉体水套23,在炉体2内部设有左右设置的主燃烧室3和副燃烧室4,在主燃烧室3和副燃烧室4顶部的炉口7内部均设有炉盖8,
如图2所示,炉盖8为双层炉盖,所述双层炉盖包括支撑管81、下炉圈82、下炉盖83、上炉圈84、上炉盖85,支撑管81下管口置于对应的炉口7内部,在支撑管81下管口顶部活动设有下炉圈82,在下炉圈82的中心孔顶部分体设有下炉盖83;在支撑管81上管口顶部活动设有上炉圈84,在上炉圈84的中心孔顶部分体设有上炉盖85;由于炉体2内部为负压环境,炉体2外部的冷空气通过上炉盖85与上炉圈84之间的缝隙被吸入到支撑管81内部,并吸收经下炉盖83传导到支撑管81内部的热量,避免热量散失,提高能源利用率;吸热后的冷空气通过下炉盖83与下炉圈82之间的缝隙进入炉体2内部,为炉体2内的火焰燃烧提供充足的氧气;在支撑管81外围的炉体2顶部设有炉盖水套32,炉盖水套32分别与排烟水套26、炉体水套23连通;炉盖水套32内的水可充分吸收利用支撑管81内的热量,防止支撑管81内的热量散失,提高热能利用率;
在主燃烧室3和副燃烧室4下部均设有上下设置的炉排5和储灰槽6,为了调整炉排5的通风量,如图1所示,在炉排5与储灰槽6之间的炉体2侧壁上设有调风门31,通过调节调风门31的开度调节炉排5底部的进风量,即调风门31开度越大,炉排5底部的进风量越多;调风门31开度越小,炉排5底部的进风量越少;或者炉排5为如图3所示的炉条间距可调的炉排,详细结构参见专利号为CN201520110418.8所公开的一种炉条间距可调的炉排,其包括框架51、炉条52、拉杆53、连接杆54;在框架51内部均匀平行排列设有五根炉条52,每根炉条52两端分别通过一根转轴55与相邻的框架51侧壁转动连接;框架51侧壁一侧的转轴55顶端穿过框架51侧壁,置于框架51外侧;在框架51外部的每根转轴55的顶端固定设有与转轴55轴向垂直的连接杆54,均匀平行排列的连接杆54的顶端分别与拉杆53活动铰接;推拉拉杆53时,拉杆53带动连接杆54转动,连接杆54带动炉条52围绕转轴55转动,进而改变炉条52之间的间距,通过调节炉排5的炉条52间距,可以调整由炉排5进入炉体2的风量;由炉排5进入炉体2内部的空气使炉排5上的燃料在较低的氧浓度下氧化燃烧生成一氧化碳等可燃气体和火焰,大幅减少炉底进风量,进风扰流效应显著降低,燃料气化燃烧形成的灰烬不易随火焰排出,烟气中粉尘含量大幅减少;
在炉排5上方的主燃烧室3和副燃烧室4侧壁上分别设有主加料口9和副加料口10,由主加料口9向主燃烧室3内的炉排5上方加入主燃料,主燃料为煤,由副加料口10向副燃烧室4内的炉排5上方加入副燃料,副燃料为薪柴、秸秆生物质燃料、型煤,兰炭等,在副加料口10与炉排5之间的副燃烧室4侧壁上设有清渣口34,方便清理炉排5上的灰渣;
在炉体2内部竖直设有分割水套12,分割水套12与炉体水套23相互连通;分割水套12一侧的炉体2内部为主燃烧室3,分割水套12另一侧的炉体2内部为副燃烧室4;在分割水套12中部密封穿置有一根连通管33,连通管33一端置于主加料口9上方的主燃烧室3内部,连通管33另一端置于副加料口10上方的副燃烧室4内部;
在副燃烧室4内部竖直设有一块与连通管33相对设置的挡板35,挡板35的顶端置于对应的布风管18的下方,挡板35的底端通过横连板36与连通管33下方的分割水套12外壁固定连接,副燃烧室4内的连通管33两侧的分割水套12外壁分别通过一块竖连板37与相邻的挡板35的侧边固定连接;在挡板35和与挡板35相对的分割水套12外壁上分别水平固定设有若干间隔交错设置的导流板41;副燃烧室4内的火焰进入挡板35与分割水套12之间的空间内,并经由上向下一次经过各个导流板41进行多回程折流,使火焰充分燃烧,之后再经连通管33进入到换热水箱15下方的主燃烧室3内部,与主燃烧室3内的火焰混合后再次燃烧;
在主加料口9上方的主燃烧室3上部水平固定设有换热水箱15,换热水箱15将炉体2内部分为上下设置的二级燃烧室38及一级燃烧室39;换热水箱15与炉体水套23相互连通,炉体水套23内的水与换热水箱15内的水相互流通,换热水箱15内的水可充分吸收炉体2内燃料燃烧产生的热量,吸热快、换热效率高;底座1为中空壳体,底座1内部的腔体为配风室13,在配风室13侧壁上设有与配风室13内部连通的配风口14;炉体2外部的冷空气经配风口14进入配风室13内部;
在排烟口11下方、换热水箱15顶部的主燃烧室3内部水平固定设有隔板16,隔板16与换热水箱15顶部之间的主燃烧室3为助燃室17;在换热水箱15下方的主燃烧室3内部及副燃烧室4顶部分别水平固定设有一根布风管18,在助燃室17与配风室13之间、每根布风管18与配风室13之间均连通设有送风管20;配风室13内的冷空气经送风管20分别进入到布风管18和助燃室17内部,在此过程中冷空气分别吸收主燃烧室3、副燃烧室4内部的热量温度逐渐升高成为高温空气,在到达布风管20和助燃室17时基本与炉体2内部的环境温度度相同;在布风管18的内侧设有若干布风孔19,布风管18内的高温空气经布风孔19均匀的分布到对应的主燃烧室3、副燃烧室4内部,起到助燃返烧的作用;在换热水箱15内部竖直密封穿置有三根导流管21,在导流管21顶部设有风帽24,导流管21底端密封穿过换热水箱15箱底,置于对应的布风管18下方;导流管21顶端依次密封穿过换热水箱15顶部、隔板16,置于隔板16上方;在助燃室17内部的导流管21管壁上设有若干配风孔22,一级燃烧室39内的大体积火焰经导流管21分成若干股体积较小的火焰后进入到二级燃烧室38进行二次燃烧,在此过程中助燃室17内部的高温空气经配风孔22进入导流管21内,与导流管21内体积较小的火焰的内焰和中焰充分混合,起到助燃的作用,使隔板16上方的火焰充分燃烧;在主燃烧室3侧壁上设有排烟口11;
本发明应用于供暖时,需要在排烟口11上连接排烟管25,排烟管25可以为翅片式高效换热烟管(其具体结构可参见申请号为CN201520110372.X的专利文献),或如图4所示在排烟管25外壁上套设有排烟水套26,通过排烟水套26对排烟管25内的烟气余热进行吸收利用;排烟水套26与炉体水套23连通,排烟水套26内的水与炉体水套23内的水相互流通;为了防止热量散失,可在排烟水套26、炉体水套23、炉盖水套32外壁上设置保温层;排烟管25内部设有5根集热管30,集热管30两端分别穿过排烟管25管壁,置于排烟水套26内部;集热管30可提高排烟管25内烟气的余热利用率;在排烟水套26侧壁上设有温度传感器27,在排烟水套26外壁上固定设有控制器28,温度传感器27与控制器28的输入端连接,控制器28的输出端与循环水泵29连接,循环水泵29的出水口通过管路与炉体水套23的进水口连通,循环水泵29的进水口与暖气管排40的回水管连通,暖气管排40的进水口通过管路与排烟水套26的出水口连通;通过温度传感器27可以实时检测排烟水套26内的循环水的温度,并将检测到的温度信息发送到控制器28,控制器28将接收到的温度传感器27发来的温度信号与控制器28预设的温度值进行对比,当温度传感器27检测到排烟水套26内的循环水温度到达设定的温度值时,控制器28箱循环水泵29发送信号,循环水泵29开始工作,将暖气管排40内的循环水泵如到炉体水套23内,而排烟水套26、炉盖水套32、换热水箱15及炉体水套23内的水顺次经排烟水套26出水口排出进入到暖气管排40内部,直至温度传感器27检测到排烟水套26内的循环水温度低于控制器28设定的温度值时,循环水泵29停止工作,控制器28根据温度传感器27检测到的排烟水套26内的循环水温度来控制循环水泵29的启闭,进而控制循环水的自动循环。
工作原理:从主加料口9、副加料口10分别向主燃烧室3、副燃烧室4内部加入燃料,置于对应的炉排5上方,引燃燃料,调整由炉排5进入炉体2的风量,利用通过炉排5的一次助燃风使炉排5上的燃料泛氧气化,进行一次燃烧,炉排5上的燃料一次燃烧后产生含有不完全燃烧的可燃气体;
其中,副燃烧室4内的不完全燃烧的可燃气体随着火焰上升至副燃烧室4顶部后向下折流,并与由对应炉盖8、布风管18排出的空气混合返烧,返烧后的火焰进入挡板35、连板36与竖连板37之间的空间内,并经导流板41多次折流,充分燃烧后经连通管33进入换热水箱15下方的主燃烧室3内;
而主燃烧室3随着火焰上升至换热水箱15下方一级燃烧室39内,在此过程中,配风室13内的冷空气经送风管20进入换热水箱15下方的布风管18内,并经布风孔19向外排入到换热水箱15下方的炉体2内部,与含有不完全燃烧可燃气体的火焰逆流混合,形成一次返烧,一次返烧后的火焰中扔携带有部分没有完全燃烧的可燃气体;一次返烧后的火焰及经连通管33送来的副燃烧室4的返烧后的火焰经导流管21进入隔板16上方的二级燃烧室38内部,在此过程中,配风室13内的冷空气经送风管20进入到助燃室17内,并经配风孔22进入导流管21,与导流管21内火焰中的可燃气体混合助燃,使由导流管21排出的火焰在二级燃烧室38内部进行二次燃烧;在此过程中,部分冷空气依次通过上炉盖85与上炉圈84之间的缝隙、下炉盖83与下炉圈82之间的缝隙向下进入到二级燃烧室38内部,与二次燃烧后的火焰逆流混合进行二次返烧,使没有完全燃烧的可燃气体进一步燃烧,提高燃料及可燃气体的燃烧率,提高能源利用率,减少有害气体的排放;二次返烧后产生的烟气经排烟口11、排烟管25排出。
在上述燃烧过程中,通过炉排5、送风管20、炉盖8分别为炉体2内的火焰燃烧提供助燃风进,大幅减少炉底进风量,进风扰流效应显著降低,固体燃料气化燃烧形成的灰烬不易随火焰排出,烟气中粉尘含量大幅减少;通过炉体水套23与炉体2换热,降低炉体2内部环境温度,通过炉盖水套32吸收炉体2顶部热量,防止热量由炉盖8散失,通过换热水箱15充分吸收火焰外焰热量,降低火焰燃烧温度,抑制氮氧化合物的生成;炉体水套23、炉盖水套32与换热水箱15结合进行换热,换热面积比高,换热效率高,热量随着烟气排放大幅降低;
综上所述,本发明所述的双燃料锅炉通过分割水套12将炉体2内部分为主燃烧室3和副燃烧室4两个燃烧室,使具有不同气化、燃烧条件的燃料在两个燃烧室内进行分室燃烧,燃烧充分,可有效的提高原料的燃烧效率,避免原料的浪费;
通过调节炉排5底部的进风量可对燃料进行一次助燃,而换热水箱15将炉体2内部分为上下设置的二级燃烧室38及一级燃烧室39,一级燃烧室39内的大体积火焰经导流管21分成若干股体积较小的火焰,一级燃烧室39内火焰撞击换热水箱15箱底后发生折流与布风管18排出的二次助燃风混合焰进行一次返烧,而助燃室17内的风通过导流管21上的配风孔22进入导流管21后可充分与其内部的火焰混合,起到三次助燃的作用,空气通过独特的双层炉盖进入二级燃烧室38与其内部的火焰进行四次助燃形成二次返烧,本发明所述的双燃料锅炉实现了多燃料分炉燃烧,尤其在主燃烧室3中实现了多段燃烧、多段返烧、多次助燃,使燃料及可燃气体充分燃烧,烟气中灰尘、一氧化碳等含量大幅降低,实现达标排放。
如果在本发明所述的双燃料锅炉的基础上做出如下修改:将分割水套12、炉体水套23、排烟水套26、炉盖水套32去掉,将换热水箱15改为隔板;修改后的锅炉同样具有可以使燃料燃烧充分、烟气中灰尘少、能源利用率高的优点,可直接用于取暖,同样在本发明的保护范围内。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。