微等离子体反应器及有机废水的处理装置的制造方法
【技术领域】
[0001]本实用新型涉及污水处理技术领域,特别是涉及一种高含盐难降解有机废水的处理装置。
【背景技术】
[0002]目前,工业生产过程中排放的各类有机污水日益增多,特别是印染、造纸、石化、有机合成、医药及农药生产过程中产生的有机污水,该类污水以毒性大、盐度高、色度高、污染物浓度高、难生物降解等特点,其中难降解有机物包括多环芳烃、卤代烃、杂环类有机物、有机农药、染料、表面活性剂等,从而成为困扰当前环境治理的一大难题。这类废水虽然水量不是很大,但污染负荷很大,且该类污染物易在生物体内富集,采用传统的生化法难以达到预期的处理效果,有的甚至无法用生化方法处理。这些物质一旦进入到环境系统中必将导致严重的环境污染,并最终威胁到人类的身体健康。
[0003]目前用于处理难降性有机废水的方法有焚烧法、萃取法及湿式催化氧法。
[0004]焚烧法是处理高浓度难降解有机废水相对简单、有效的方法。该方法是在焚烧炉中添加燃料(燃料油、天然气或煤气)将有机污染物燃烧,使有机污染物得到较彻底的矿化。然而该方法存在的主要问题是燃烧会产生COx、NOx, SOx, HC1,甚至剧毒性的二噁英类物质,造成二次污染;同时,焚烧时需要大量的燃料,设备价高,处理成本昂贵。因此,这种方法逐渐被淘汰。
[0005]萃取法是采用相似相溶原理,用有机溶剂将水中的有机物萃取至有机溶剂中,达到与水相分离的目的。该工艺涉及萃取剂、被萃取物与溶剂、水相的分离。当被萃取有机物浓度高时才有回收利用价值,但是,被萃取有机物组成复杂,一般无法通过反萃得到合格的产品,必须进一步处理,过程中往往会造成二次污染。
[0006]湿式催化氧化法是以O2作为氧化剂,在高温、高压、催化剂存在下,氧化除去水中有机物,最终达到矿化的目的。该技术的工艺条件较为苛刻,需要在180°C以上,反应压力大于3.0MPa以上,甚至高达9.0MPa,且需要使用贵金属催化剂和高压反应釜,其投资大,操作和维护成本都很高。因此,该技术的应用存在一定难度。
[0007]鉴于上述方法的局限性和不足,本实用新型的目的和任务就是要解决现有技术的不足,同时降低废水的处理费用,为废水,尤其是高含盐难降解有机废水处理提供一种在常温、常压状态下,成本低、工艺简单,降解效果好的废水处理工艺和装置。
【实用新型内容】
[0008]本实用新型的目的是针对现有技术中存在的技术缺陷,而提供一种高含盐难降解有机废水的处理装置及处理方法。
[0009]为实现本实用新型的目的所采用的技术方案是:
[0010]一种微等离子体反应器,包括绝缘筒体、设置在绝缘筒体底部的气体喷头,贯穿设置在所述的绝缘筒体顶部的顶板且居中设置在所述的绝缘筒体中部的内电极,设置在所述的顶板上的进气管,以及设置在所述的绝缘筒体内表面和/或外表面上的催化剂层。
[0011]所述的绝缘筒体由氧化铝或石英制成,所述的内电极为钛管、钛丝、钛棒、钛棒、不锈钢管或不锈钢棒;所述的催化剂层为原位沉积沉淀或原位生长在所述的绝缘筒体表面的T12, CuO, MnOJ^ Fe 203的一种或者多种的复合物层。
[0012]在所述的绝缘筒体内设置有多个中心设置有与所述的内电极匹配的绝缘网板,在所述的绝缘网板上还设置有多个筛孔。
[0013]所述的绝缘筒体的外径在6-18mm,内径在4_16mm,所述的筛孔直径在0.5_2mm,筛孔的总面积占绝缘网板面积的10% -35%。
[0014]—种高含盐难降解有机废水的处理装置,其特征在于,包括反应室,供气机构以及设置在反应室内的多个所述的微等离子体反应器,以及设置在反应室内的接地电极,所述的微等离子体反应器的进气管与所述的供气机构相连通,所述的内电极和高频高压电输出连接,接地电极与接地端连接。
[0015]所述的反应室内设置有固定支撑板,在所述的固定支撑板上设置有多个与所述的绝缘筒体匹配的固定孔。
[0016]所述的固定支撑板上设置有多个0.3-3.0mm的小孔。
[0017]一种利用所述的处理装置的污水处理方法,包括以下步骤,
[0018]I)向反应室内通入预定量的待处理污水,同时向微等离子体反应器内通入空气或氧气;
[0019]2)待处理污水充满反应室后,接通电源等离子体发生器开始工作并释放电能;
[0020]3)在微等离子体反应器中生成氧化剂,而后在微反应器的绝缘介质表面的催化剂层协同下进行高级催化氧化,待处理废水在反应室中停留预定时间后完成了有机污染物的降解并排出。
[0021]所述的待处理污水进入反应室之前还包括之前的格栅去杂和絮凝沉降过程。
[0022]通气量中氧气与待处理污水中COD值的比例为1.1-1.5。
[0023]与现有技术相比,本实用新型的有益效果是:
[0024]I)由于整个反应体系是处在低于40°C的低温和常压状态,反应室占地面积小,因此处理成本低是己有技术的30% -50% ;
[0025]2)由于等离子体的“剪刀效应”,所以有机物降解效率高,比现有技术的提高60% -85% ;
[0026]3)由于反应是在低温、常压状态下运行,所以工艺简单,操作方便,容易实现自动化生产;
[0027]4)不仅处理难降解的有机废水降解率高,而且对高浓度难降解有机废水和高含盐废水也有较明显的效果。
【附图说明】
[0028]图1所示为微等离子体反应器的结构示意图;
[0029]图2所示为固定支撑板结构示意图;
[0030]图3所示为本实用新型的高含盐难降解有机废水的处理装置的结构示意图。
【具体实施方式】
[0031]以下结合附图和具体实施例对本实用新型作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
[0032]如图1所示,本实用新型的微等离子体反应器10包括绝缘筒体1、设置在绝缘筒体底部的气体喷头2,如陶瓷微孔曝气头,贯穿设置在所述的绝缘筒体顶部的顶板3且居中设置在所述的绝缘筒体中部的内电极4,设置在所述的顶板上的进气管5,以及设置在所述的绝缘筒体内表面和外表面上的催化剂层。所述的顶板可采用聚丙烯或聚四氟乙烯材质,其与绝缘筒体螺纹紧固在一起,气体喷头固定在绝缘筒体底部,这样就构成一个相对隔水腔体,内电极的上端与顶板固定下端顶持在气体喷头上或者与之保持间距,所述的绝缘筒体由氧化招或石英制成,优选为圆柱形,所述的绝缘筒体的外径在6-18_,内径在4-16_,高为外径的1-3倍,所述的内电极为钛管、钛丝、钛棒、钛棒、不锈钢管或不锈钢棒,直径3-6mm;所述的催化剂层为原位沉积沉淀或原位生长在所述的绝缘筒体内表面和外表面的T12, CuO, MnOJ^ Fe 203的一种或者多种的复合物层。
[0033]本实用新型的微等离子体反应器采用隔水式反应腔,在进行水处理时,氧气或空气自进气管5进入绝缘筒体内部,在内电极的高频高压供电作用下产生的空气/氧气的等离子体,即活性氧原子和臭氧;并进一步在绝缘筒体中生成浓度更高、数量更多、效率更高的氧化剂,这个过程所需要的催化剂可以利用内电极,也可利用绝缘筒体内壁的催化剂层,钛材质的内电极在放电时会在表面形成二氧化钛,二氧化钛是一种很好的光催化剂;同时二氧化钛和氧化铜等氧化物有协同催化作用,即在催化剂、空气和等离子体协同作用下,在微等离子体反应器中生成大量氧化剂,其中,内电极为不锈钢的时候,主要依靠绝缘筒内外的催化剂。活性氧原子和臭氧及氧化剂通过下部的气体喷头进入废水,因为内外电极之间有一定的电场梯度,在电势/电压的驱动下,部分水可以放电产生羟基自由基(.0Η)。在绝缘筒体的外表面处及周围的废水中的难降解有机物在等离子体、绝缘筒体外侧的催化剂与氧化剂(活性氧原子、臭氧和羟基自由基)的协同作用下得以降解,同时气体在绝缘筒内放电时能产生紫外线,紫外线可以激发绝缘筒外的催化剂进行光化学反应,进一步降解水中的有机物,利用微反应器降能有效低放电电压,电压一般仅需在l_5kV,不仅能提高催化反应的处理能力,而且达到节能的效果。
[0034]进一步地,在所述的绝缘筒体内设置有多个中心设置有与所述的