本发明涉及一种重油加氢催化剂及其制备方法。特别适合于重、渣油加氢脱硫和加氢脱氮、残炭及其裂化催化剂制备方法。
背景技术:
全球性石油资源的紧缺和劣质化,导致原油市场上重质原油和高硫原油的比例不断提高;同时随着我国经济的高速发展和环保法规的日益严格,市场对清洁油品需求也在急速增加。因此,重质油轻质化和优质化是当前急需解决的重要任务。加氢处理技术是解决上述问题的一种有效手段。在已有的加氢技术中,固定床技术最为成熟、应用最广泛。通常固定床渣油加氢反应中,当油品经过保护剂床层、脱金属剂床层、脱硫剂床层后,大部分金属和硫有效脱除,但余下的杂质稳定性较高,具体表现在目前工业应用的固定床重油加氢装置末反应器脱氮和脱残炭性不够理想,这对催化剂的活性和活性稳定性提出了更高要求。
多年来,加氢化剂普遍以ni(co)-mo(w)作为活性组分,氧化铝作为载体,采用浸渍法进行制备。氧化铝载体的性质在很大程度上取决于拟薄水铝石。拟薄水铝石往往具有不同的孔结构和酸性,其酸性与孔结构对于催化剂性能影响较大为了提高催化剂的加氢脱杂质活性,通常会引入p、b、f、ti、si、zr等助剂,调变催化剂载体的酸性和孔结构。但氧化铝本身的酸性较弱,助剂改性后对氧化铝酸性改善程度有限,致使催化剂脱硫、脱氮能力难以进一步提高,而分子筛虽然酸性满足要求,但存在孔道小,重油扩散能力差的问题。
cn103480390a提供了一种具有加氢催化作用的催化剂及其制备方法和应用,该催化剂含有载体、以及负载在所述载体上的至少一种第viii族金属元素和至少一种第vib族金属元素,所述载体为水合氧化铝成型物,由含有至少一种水合氧化铝、至少一种含稀土元素的化合物和至少一种纤维素醚的原料制成。根据本发明的催化剂在烃油(特别是重质烃油)的加氢脱金属反应中 显示出更高的催化活性、更好的催化稳定性和更长的使用寿命。但催化剂脱硫脱氮活性一般,难以满足要求。
cn1352227a公开了一种加氢处理催化剂及其制备方法,特别是重油加氢脱硫催化剂及其制备方法。该发明采用一种廉价的且环境友好的含钛氢氧化铝载体。通过含钛氢氧化铝和金属盐类等物料的混捏过程,促进金属分散,所有物料经混捏成可塑体后,挤条成型,经高温活化制成催化剂。制备的催化剂成型容易,酸性质适宜,同时具有优良的加氢脱硫和较好的加氢脱氮和加氢脱残炭活性。但是其采用全混捏方式制备催化剂,活性金属分散度、催化剂比表面积和孔体积提升空间都不大,进而影响催化剂的活性提高。
层状黏土是一种固体酸,是一些柱支撑的层状结构,具有二维孔道,其层间距可达5nm左右,远大于目前常用的y分子筛孔径,对重油大分子扩散及反应有利。目前现有技术中,含层状黏土催化剂只在催化裂化工艺中有所报道。
技术实现要素:
针对上述加氢处理催化剂及其制备方法所存在的问题与不足,本发明的目的是在现有技术基础上,提供一种含层状黏土的加氢催化剂的制备方法,制得的催化剂具备优异的加氢活性。
本发明提供一种重油加氢催化剂,其中,以层状黏土和含硅的氧化铝为载体,以钼、钨、镍和钴中的一种或几种为活性组分;
载体占催化剂总重量的70%-95%;活性组分以氧化物形式计占催化剂总重量的5%-30%;
载体中,硅以sio2计,sio2含量占载体重量的10-50%;所述层状黏土占载体重量的5-30%,余量为氧化铝;
载体孔容为0.40~0.90ml/g,比表面积为150~450m2/g,总酸量0.50-0.80mmol.g-1,b酸量为0.30-0.50mmol.g-1;
重油加氢催化剂孔容为0.30~0.80ml/g,比表面积为100~350m2/g。
本发明还提供一种重油加氢催化剂的制备方法,其是上述重油加氢催化剂的制备方法,包括如下步骤:
(1)载体的制备
a、原土分散:
将层状粘土和水混合打浆均匀,得分散好的粘土溶液;
b、混捏:
在混捏设备中加入拟薄水铝石干胶粉、助挤剂及胶溶剂溶液,混捏10-20分钟;
c、成型:
向步骤b中倒入步骤a中分散好的粘土溶液,混捏10-15min后加入铝溶胶,充分混捏成塑性,挤条成型;
d、老化:
将步骤c中挤条成型的产品在50-90℃老化1-5小时;
e、干燥与焙烧:
将步骤d中老化后的产品在100-150℃干燥2-10小时后,放入焙烧炉中在500~1100℃焙烧3~6小时,得载体;
(2)配制活性金属溶液
将钼化合物、钨化合物、镍化合物和钴化合物中的一种或几种与脱离子水或氨水混合制成活性金属溶液,以钼、钨、镍和钴中的一种或几种为活性组分;
(3)催化剂的制备
采用饱和喷浸的方法,将步骤(2)中的活性金属溶液以雾化状态喷浸于步骤(1)中所述载体上,然后在80~150℃下干燥1~8小时,最后在300~650℃空气中焙烧2~6小时,制得重油加氢催化剂。
本发明所述的重油加氢催化剂的制备方法,其中,所述层状黏土优选为具有膨胀性的单层矿物结构的蒙皂石类粘土和/或规则间层矿物结构粘土。
本发明所述的重油加氢催化剂的制备方法,其中,所述具有膨胀性的单层矿物结构的蒙皂石类粘土优选为蒙脱土、膨润土、汉克脱石和贝得石中的一种或几种;所述规则间层矿物结构粘土优选为累托石、云母-蒙皂石、海绿石-蒙皂石和绿泥石-蒙皂石中的一种或几种。
本发明所述的重油加氢催化剂的制备方法,其中,步骤b中,所述胶溶剂优选为硝酸、醋酸、甲酸或盐酸。
本发明所述的重油加氢催化剂的制备方法,其中,步骤b中,所述助挤剂优选为田青粉和/或淀粉。
本发明所述的重油加氢催化剂的制备方法,其中,步骤(1)中,所制得 载体中,硅以sio2计,sio2含量优选占载体重量的10-50%;所述层状黏土优选占载体重量的5-30%,余量为氧化铝。
本发明所述的重油加氢催化剂的制备方法,其中,步骤(3)中,优选的是,载体占催化剂总重量的70%-95%;活性组分以氧化物形式计占催化剂总重量的5%-30%;更优选的是,载体占催化剂总重量的75%-85%;活性组分以氧化物形式计占催化剂总重量的15%-25%。
本发明所述的重油加氢催化剂的制备方法,其中,步骤(3)中,焙烧温度优选为400~550℃。
本发明氧化铝载体的形状可以根据不同的要求进行改变。
本发明的有益效果:
采用本发明所提供的制备方法,制备工艺简单,保持了用常规方法制备的层状粘土具有良好的物化性能及高的热稳定性,制备出的催化剂具有良好的脱硫、脱氮及脱残炭活性,在重质油加氢领域有广泛的应用前景。
具体实施方式
以下对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和过程,但本发明的保护范围不限于下述的实施例,下列实施例中未注明具体条件的实验方法,通常按照常规条件。
实施例1
称取含硅拟薄水铝石干胶粉(sio2含量为35%)(山东星都石油化工科技股份公司生产)500g(干基),加入田菁粉15g混合均匀。把浓度为5.0w%的醋酸溶液300g加入前述物料中,混捏15分钟,加入40%浓度累托石(湖北名流累托石科技股份有限公司生产)浆液100g,混捏15分钟,加入30%浓度的ph=5-6的铝溶胶溶液120g,混捏完成后,后在单螺杆挤条机上挤成直径为2.0mm的圆柱形。在70℃老化2小时,再在110℃干燥3小时,再置入焙烧炉中,以100~200℃/小时的速度升至780℃,焙烧3小时。得载体a,其性质见表1。
称取150g,吸水率为1.10ml/g的上述载体,按饱和吸收溶液量喷浸165ml含38.6g钼酸铵(含moo382m%)和34.10g硝酸镍(含nio25.2m%) 的氨水溶液。在喷浸设备中均化5分钟后,在60℃下干燥2小时,取出后120℃下干燥3小时,再在500℃空气中焙烧3小时,制得催化剂。编号为c-1。
实施例2
称取含硅拟薄水铝石干胶粉(sio2含量为10%)(山东星都石油化工科技股份公司生产)500g(干基),加入田菁粉15g混合均匀。把浓度为8w%的醋酸溶液200g加入前述物料中,混捏10分钟,加入40%浓度膨润土(克莱恩红山膨润土有限公司生产)浆液200g,混捏12分钟,加入50%浓度的ph=5-6的铝溶胶溶液120g,混捏完成后,然后在单螺杆挤条机上挤成直径为2.0mm的四叶草型。在120℃干燥3小时,再置入焙烧炉中,以100~200℃/小时的速度升至880℃,焙烧3小时。得载体b,其性质见表1。
称取150g,吸水率为1.10ml/g上述载体,喷浸50ml含38.6g钼酸铵(含moo382m%)和34.1g硝酸钴(含coo25.2m%,北京化学试剂公司)的氨水溶液,在喷渍过程中度匀速滴入115ml浓度为15%的氨水溶液于浸溶液中并搅拌均匀,边滴入边喷浸,15分钟喷浸完。在喷浸设备中均化10分钟后,在120℃下干燥5小时,再在500℃空气中焙烧4小时,制得催化剂。编号为c-2。其性质如表4所示。
实施例3
称取实施例2拟薄水铝石干胶粉500g(干基),加入田菁粉18g混合均匀。把浓度为4w%的硝酸溶液200g加入前述物料中,混捏15分钟,加入10%浓度蒙脱土浆液300g,混捏20分钟,加入60%浓度的ph=5-6的铝溶胶溶液100g,混捏完成后,然后在单螺杆挤条机上挤成直径为2.0mm的四叶草型。在120℃干燥3小时,再置入焙烧炉中,以100~200℃/小时的速度升至880℃,焙烧3小时。得载体c,其性质见表1。
称取150g,吸水率为1.10ml/g上述载体,喷浸50ml含10.45g偏钨酸铵(含wo382m%,北京化学试剂公司)和8.55g硝酸镍(含nio25.2m%)的氨水溶液,在喷浸过程中匀速滴入135ml浓度为15%的氨水溶液于溶液中并搅拌均匀,边滴入边喷浸,12分钟喷浸完。在喷浸设备中均化10分钟后,取出在120℃下干燥8小时,再在500℃空气中焙烧5小时,制得催化剂。编 号为c-3。
实施例4
称取实施例2拟薄水铝石干胶粉500g(干基),加入田菁粉15g混合均匀。把浓度为8w%的醋酸溶液200g加入前述物料中,混捏15分钟,加入30%浓度膨润土和累托石浆液300g(膨润土和累托石按重量1:1比例加入),混捏10分钟,加入50%浓度的ph=5-6的铝溶胶溶液120g,混捏完成后,然后在单螺杆挤条机上挤成直径为2.0mm的四叶草型。在120℃干燥3小时,再置入焙烧炉中,以100~200℃/小时的速度升至880℃,焙烧3小时。得载体d,其性质见表1。
称取150g,吸水率为1.10ml/g上述载体,喷浸82.5ml含60.55g偏钨酸铵(含wo382m%,北京化学试剂公司)和46g硝酸镍(含nio25.2m%)的水溶液,10分钟喷浸完。在喷浸设备中均化10分钟后,在60℃下干燥2小时,取出后120℃下干燥3小时,再在500℃空气中焙烧3小时,制得催化剂。编号为c-4。
实施例5
称取实施例2拟薄水铝石干胶粉500g(干基),加入田菁粉15g混合均匀。把浓度为8w%的醋酸溶液200g加入前述物料中,混捏10分钟,加入20%浓度膨润土和累托石浆液300g(膨润土和累托石按重量1:2比例加入),混捏20分钟,加入30%浓度的ph=5-6的铝溶胶溶液100g,混捏完成后,然后在单螺杆挤条机上挤成直径为2.0mm的四叶草型。在120℃干燥3小时,再置入焙烧炉中,以100~200℃/小时的速度升至1050℃,焙烧3小时。得载体e,其性质见表1。
称取150g,吸水率为1.10ml/g上述载体,喷浸82.5ml含60.55g偏钨酸铵(含wo382m%,北京化学试剂公司)的水溶液,15分钟喷浸完。在喷浸设备中均化10分钟后,在60℃下干燥2小时,取出后120℃下干燥3小时,再在500℃空气中焙烧3小时,制得催化剂。编号为c-5。
对比例1
称取含硅拟薄水铝石干胶粉(sio2含量为35%)500g(干基),加入田菁粉15g混合均匀,把浓度为3.0w%的醋酸溶液500g加入前述物料中,混捏35分钟,后在单螺杆挤条机上挤成直径为2.0mm的圆柱形。在70℃老化2小时,再在110℃干燥3小时,再置入焙烧炉中,以100~200℃/小时的速度升至780℃,焙烧3小时。得载体f,其性质见表1。
称取150g,吸水率为1.10ml/g的上述载体,按饱和吸收溶液量喷浸165ml含38.6g钼酸铵(含moo382m%)和34.10g硝酸镍(含nio25.2m%)的氨水溶液。在喷浸设备中均化5分钟后,在60℃下干燥2小时,取出后120℃下干燥3小时,再在500℃空气中焙烧3小时,制得催化剂。编号为c-6。
对比例2
称取拟薄水铝石干胶粉(山东星都石油化工科技股份公司生产)500g(干基),加入田菁粉15g混合均匀。把浓度为5.0w%的醋酸溶液280g加入前述物料中,混捏15分钟,加入40%浓度累托石(湖北名流累托石科技股份有限公司生产)浆液100g,混捏12分钟,加入30%浓度的ph=5-6的铝溶胶溶液120g,混捏完成后,后在单螺杆挤条机上挤成直径为2.0mm的圆柱形。在70℃老化2小时,再在110℃干燥3小时,再置入焙烧炉中,以100~200℃/小时的速度升至780℃,焙烧3小时。得载体g,其性质见表1。
称取150g,吸水率为1.10ml/g的上述载体,按饱和吸收溶液量喷浸165ml含38.6g钼酸铵(含moo382m%)和34.10g硝酸镍(含nio25.2m%)的氨水溶液。在喷浸设备中均化5分钟后,在60℃下干燥2小时,取出后120℃下干燥3小时,再在500℃空气中焙烧3小时,制得催化剂。编号为c-7。
与实施例1相同的方法挤条、干燥和焙烧。得载体d
表1载体性质
由表1可知,与对比例载体e相比,本发明实施例载体a、b、c和d,酸量较多,尤其是b酸量较多;与而对比例载体f相比,载体a、b、c和d总酸量和b酸量有所增加,但幅度较小。
表2催化剂物性
实施例8
本实施例为催化剂c-1稳定性试验,并与c-6、c-7稳定性进行对比。在100ml三反小型固定床加氢装置上进行评价。为方便比较,一反二反装填相同的前置剂,c-1、c-6、c-7装填于三反。评价原料油为中东减渣,性质如表3所示。
表3试验原料油主要性质
评价条件如表4所示。
表4工艺条件
相对脱氮率、脱硫率和脱残炭率是以c-1催化剂运转500小时的脱氮率、脱硫率和脱残炭率为1.00作基准比较而得。催化剂活性和稳定性对比结果列于表5。由表5可以看出,随着运转的延长,催化剂c-1的相对残炭脱除率和脱氮率均明显高于c-6、c-7;相对残炭脱硫率略高于c-6、c-7所以,表明按本发明方法制得的催化剂脱硫、脱氮及脱残炭活性和稳定性优于常规方法得到的催化剂c-6、c-7,尤其是脱残炭和脱氮活性优势明显。
表5催化剂活性和稳定性对比实验