本发明属于光催化技术,涉及采用模板法制备棒状多孔氮化碳,选择酚醛树脂球作为模板,与三聚氰胺在惰性气氛下高温煅烧后,将得到的产物棒状碳/氮化碳复合物在空气中煅烧,最终制备得到棒状多孔氮化碳光催化剂,该催化剂拓宽了光谱响应范围,具有高效的可见光催化活性。
背景技术:
目前,随着工业化进程的不断深入,人类面临着地球环境急剧恶化和全球能源短缺等巨大挑战,尤其是水中的污染物不计其数,源头也很多,其中大部分为有机物,并且性质非常稳定,从而表现出难以降解的特质。传统的污水处理技术,技术难度大,所需费用较高,部分会形成二次污染,这一系列的缺陷都对有效处理污水处理不利。而近年来,科学家们发现,光催化材料在光照射下。可以光分解水制氢和光降解污染物,因此光催化材料在缓解能源短缺问题方面和治理环境污染问题方面有重要的应用前景。
1972年,Fujishima和Honda首次在《Nature》上报道了TiO2电极在太阳光照射下分解水产氢的现象。从此,利用太阳能光催化进行产氢、降解有机污染物的技术逐渐发展起来。半导体光催化技术由此应运而生,它是指有机物在光的作用下,以半导体为催化剂,逐步氧化成低分子中间产物,最终生成CO2、H2O及其他的离子。TiO2作为最常见的半导体已广泛用于光催化裂解水产氢以及降解有机污染物等方面,对治理环境污染有着重大的意义。但TiO2在太阳能光催化过程中表现不佳。TiO2的禁带宽度约为3-3.2eV,导致其只能利用紫外光(约占太阳光能量的5%)。因此为了有效地利用太阳光资源,研究在可见光响应下具有光催化活性的催化材料具有重要的实际意义。
近年来类石墨相氮化碳作为一种有效的新型光催化剂,含有共轭大π键,并无毒、廉价易得,具有良好的化学稳定性、热稳定性、特殊的机械、电子和光学性能,从而引起了广泛的关注。利用太阳光,g-C3N4可分解水制氢和降解有机污染物。g-C3N4可以由尿素、二胺、三聚氰胺等多种原料热聚合制备。但得到的氮化碳往往比表面积小、片状结构大,同时带隙较大(~2.7eV),激子结合能高和结晶度低,使光生电子空穴分离效率低,对可见光吸收范围窄(λ<460nm),因此太阳能利用率较低,从而光催化活性较低。因此采用各种途径和手段优化g-C3N4的化学组成、调控其半导体能带结构和表面形貌等,按照特定的实验目的对g-C3N4材料进行改性研究,从而进一步拓展g-C3N4在环境和能源领域的应用。
多孔材料具有大的比表面积和特殊的孔道结构,有利于提高g-C3N4光催化性能。近年来,关于多孔氮化碳的合成已有过报道。相对于传统的g-C3N4,科学家采用SiO2作为硬模板,合成出的多孔结构氮化碳,其光催化苯的傅克酰基化反应、光解水制氢和对醇的选择性氧化的能力有明显提高。但多孔g-C3N4合成后,为了使其呈现多孔结构需要去除SiO2硬模板,使用剧毒HF或NH4HF2,不仅步骤繁琐,且对实验人员有较大危险性。而在本发明中选择了酚醛树脂球作为模板,制备具有棒状多孔结构的g-C3N4,并且作为模板的聚合物可通过在氮化碳热聚合过程中同步去除,相比传统模板法,具有无毒、模板脱出简单方便且对孔结构影响较小的优点。
技术实现要素:
本发明的目的在于提供一种棒状多孔氮化碳光催化剂及其制备方法,该方法工艺简单、成本低廉,制备的棒状多孔氮化碳光催化剂催化活性较高。
本发明提供一种棒状多孔氮化碳光催化剂的制备方法,其特征在于:选择酚醛树脂球作为模板,与三聚氰胺在惰性气氛下高温热聚合后,将得到的产物棒状碳/氮化碳复合物再于空气中煅烧,最终制备得到棒状多孔氮化碳光催化剂。该催化剂比表面积大,光谱响应范围较宽,光生电子空穴的分离较易,具有高效的可见光催化性能,其制备包括如下步骤:
(1)制备模板酚醛树脂球:将一定量的苯酚、甲醛水溶液(37wt%)、0.1mol·L-1NaOH溶液混合,70~90℃下搅拌0.5~1h,得到低分子量的酚醛树脂。Pluronic F127溶于15mL水中加入上述溶液,混合物在70℃下搅拌2~4h。加入50mL水稀释。产生沉淀物时停止反应,静置至沉淀物溶解,将一定量溶液转至100mL高压釜中用4倍体积水稀释,100~150℃下加热5~10h。产物通过离心、水洗收集,命名为RF;
(2)棒状pg-C3N4的制备:称取2g三聚氰胺和一定量的RF球于圆底烧瓶中,向烧瓶中加入去离子水与无水乙醇的混合溶剂,在冷凝回流的条件下,将烧瓶置于60~90℃油浴锅中搅拌4~6小时,之后把容器中的溶液倒入蒸发皿中,将蒸发皿放入50~80℃的烘箱干燥。干燥后将白色晶体混合物取出,研磨至粉末状后置于坩埚盖中,之后将坩埚盖放入管式炉中。通入惰性气体,以4~7℃/min的升温速率升温至500~550℃,保持3~6h,产物为C-C3N4。再将产物在管式炉中空气条件下,以2~5℃/min的速率升温至400~500℃,保持2~5h。待管式炉自动降温至室温时取出产物,研磨至粉末,制得棒状多孔氮化碳。
本发明与现有技术相比,具有显著优点:
(1)本发明采用模板法,选择酚醛树脂球作为模板,与三聚氰胺在氮气气氛下高温热聚合后,再于空气中煅烧,制备得到棒状多孔氮化碳光催化剂,该方法在热聚合过程中同步脱除模板剂,工艺简单,易操作。
(2)本发明所制备的棒状多孔氮化碳比表面积增加,电子的捕捉位点增多,显著拓宽了g-C3N4光催化剂的光谱响应范围,带隙变窄,在光催化过程中有效加快了光催化剂表面的光生电子和空穴的分离,从而显著提高棒状多孔氮化碳光催化剂的光催化活性,所制备的棒状多孔氮化碳光催化剂光催化活性较高。
附图说明
图1 g-C3N4、C-C3N4和pg-C3N4光催化剂的X-射线衍射花样;
图2 g-C3N4、RF、C-C3N4和pg-C3N4光催化剂的扫描电子显微照片;
图3 g-C3N4和pg-C3N4光催化剂的N2吸附-脱附等温线和BJH孔径分布曲线;
图4 g-C3N4、C-C3N4和pg-C3N4光催化剂光催化性能测试
具体实施方式
本发明提供一种棒状多孔氮化碳光催化剂的制备方法,其特征在于:选择酚醛树脂球作为模板,与三聚氰胺在惰性气氛下高温热聚合后,将得到的产物棒状碳/氮化碳复合物再于空气中煅烧,最终制备得到棒状多孔氮化碳光催化剂。该催化剂比表面积大,光谱响应范围较宽,光生电子空穴的分离较易,具有高效的可见光催化性能。
本发明一种棒状多孔氮化碳光催化剂的制备方法,包括如下步骤:
(1)制备模板酚醛树脂球:将一定量的苯酚、甲醛水溶液(37wt%)、0.1mol·L-1NaOH溶液混合,70~90℃下搅拌0.5~1h,得到低分子量的酚醛树脂。Pluronic F127溶于15mL水中加入上述溶液,混合物在70℃下搅拌2~4h。加入50mL水稀释。产生沉淀物时停止反应,静置至沉淀物溶解,将一定量溶液转至100mL高压釜中用4倍体积水稀释,100~150℃下加热5~10h。产物通过离心、水洗收集,命名为RF;
(2)棒状pg-C3N4的制备:称取2g三聚氰胺和一定量的RF球于圆底烧瓶中,向烧瓶中加入去离子水与无水乙醇的混合溶剂,在冷凝回流的条件下,将烧瓶置于60~90℃油浴锅中搅拌4~6小时,之后把容器中的溶液倒入蒸发皿中,将蒸发皿放入50~80℃的烘箱干燥。干燥后将白色晶体混合物取出,研磨至粉末状后置于坩埚盖中,之后将坩埚盖放入管式炉中。通入惰性气体,以4~7℃/min的升温速率升温至500~550℃,保持3~6h,产物为C-C3N4。再将产物在管式炉中空气条件下,以2~5℃/min的速率升温至400~500℃,保持2~5h。待管式炉自动降温至室温时取出产物,研磨至粉末,制得棒状多孔氮化碳。
为了更好的理解本发明,下面结合实例进一步阐明本发明的内容,但本发明的内容不局限于下面所给出的实例。
实施方实例1:本发明一种棒状多孔氮化碳光催化剂的制备方法,包括以下步骤:
(1)制备模板酚醛树脂球:将一定量的苯酚、2.1mL甲醛水溶液(37wt%)、15mL 0.1mol·L-1NaOH溶液混合,90℃下搅拌0.5h,得到低分子量的酚醛树脂。Pluronic F127溶于15mL水中加入上述溶液,混合物在70℃下搅拌4h。加入50mL水稀释。产生沉淀物时停止反应,静置至沉淀物溶解,将18mL溶液转至100mL高压釜中用56mL水稀释,130℃下加热8h。产物通过离心、水洗收集,命名为RF;
(2)棒状pg-C3N4的制备:称取2g三聚氰胺和一定量的RF球于圆底烧瓶中,向烧瓶中加入去离子水与无水乙醇的混合溶剂,在冷凝回流的条件下,将烧瓶置于70℃油浴锅中搅拌6小时,之后把容器中的溶液倒入蒸发皿中,将蒸发皿放入50~80℃的烘箱干燥。干燥后将白色晶体混合物取出,研磨至粉末状后置于坩埚盖中,之后将坩埚盖放入管式炉中。通入氮气,以7℃/min的升温速率升温至500℃,保持3h,产物为C-C3N4。再将产物在管式炉中空气条件下,以2℃/min的速率升温400℃,保持3h。待管式炉自动降温至室温时取出产物,研磨至粉末,制得棒状多孔氮化碳。
图1为g-C3N4、C-C3N4和pg-C3N4样品的XRD衍射花样。为了研究得到的C-C3N4和pg-C3N4的物相结构的变化,采用了XRD对样品进行了表征。纯相的氮化碳的XRD谱图中,存在两处特征衍射峰,分别为27.4°和13.1°。制备的C-C3N4和pg-C3N4样品在27.4°和13.1°处衍射峰,分别为氮化碳的(002)晶面和(100)晶面,以27.4°附近的特征峰的强度最强。并利用XRD的图谱数据,根据拉布格方程计算氮化碳的层间距,结果得出层间距为0.326nm,为类石墨结构的层内堆积。另一个衍射峰为13.2°处,属于类石墨结构的层间堆积,也是melon类物质的特征峰,对应3-s-三嗪结构的氮孔间距为d=0.670nm。除了2θ为27.4°和13.1°附近出现两处出现了衍射峰外,并没有其它杂峰,证明了制备出的氮化碳为纯相。图2为样品的扫描电镜图。图2a是根据传统方法制备出的g-C3N4,其表面显得光滑圆润,并没有很多明显的褶皱和突起。并且可以观察到其表面为明显的片状结构,并且不同大小的片状相互聚集堆砌在一起形成了较大的块状结构。图2b是所制备的RF球模板,制备出的聚合物微球都呈现大小相近的球型,直径在100-150nm之间。以RF球为模板,制备多孔氮化碳光催化剂前躯体,先在氮气气氛中煅烧得到样品,如图2c所示,所制备C-C3N4的形状与传统方法制备出的g-C3N4相比发生了改变,由原来的片层状结构变成了明显的棒状,棒的直径大约在100nm左右,这表明制备的棒状C-C3N4在RF球为模板下已经成功制备。图2d为在氧气中进一步煅烧去除聚合物模板后制备的棒状多孔pg-C3N4,从图中依然可以看出棒状结构,表面凹凸不平,出现了一下孔洞,猜测这种形貌大大增加了pg-C3N4光催化剂的比表面积,可以使其和染料的接触面积增多,对染料的吸附降解作用效果会有大大的提高,由此可以快速的使有机染料发生脱色的现象。图3为氮气吸附-脱附实验的测试,是为了可以具体地对产物的比表面积大小和孔的结构特征进行分析。P/P0在0.5~1.0范围内,迟滞环为H3型。图3a传统方法制备的氮化碳的比表面积为11.0817m2/g,且孔径较大。而图3b是通过模板法制备出来的多孔氮化碳,其比表面积为154.4323m2/g,且从插图的孔径分布曲线可以看出,样品的孔径分布较为均一,集中分布在3-6nm左右。证明了模板法制备的氮化碳的比表面积大,催化活性位点多,能够与染料充分接触,从而光催化活性得到很大提高。图4为在可见光下,评价制备的样品光催化活性。选择10mg/L的RhB稀溶液作为模拟有机污染物,传统方法制备的g-C3N4和中间产物C-C3N4的光催化活性较低。而制备的棒状pg-C3N4光催化性能优越,可在40min几乎完全降解RhB,这是由于棒状pg-C3N4具有较大比表面积和均一的孔道结构,从而在反应过程中增加了与有机染料的接触面积,进而提高了棒状pg-C3N4的光催化活性。
实施实例2:本发明一种棒状多孔氮化碳光催化剂的制备方法,包括以下步骤:
(1)制备模板酚醛树脂球:将一定量的苯酚、2.1mL甲醛水溶液(37wt%)、15mL 0.1mol·L-1NaOH溶液混合,80℃下搅拌1h,得到低分子量的酚醛树脂。Pluronic F127溶于15mL水中加入上述溶液,混合物在70℃下搅拌3h。加入50mL水稀释。产生沉淀物时停止反应,静置至沉淀物溶解,将18mL溶液转至100mL高压釜中用56mL水稀释,100℃下加热10h。产物通过离心、水洗收集,命名为RF;
(2)棒状pg-C3N4的制备:称取2g三聚氰胺和一定量的RF球于圆底烧瓶中,向烧瓶中加入去离子水与无水乙醇的混合溶剂,在冷凝回流的条件下,将烧瓶置于80℃油浴锅中搅拌5小时,之后把容器中的溶液倒入蒸发皿中,将蒸发皿放入50~80℃的烘箱干燥。干燥后将白色晶体混合物取出,研磨至粉末状后置于坩埚盖中,之后将坩埚盖放入管式炉中。通入惰性气体,以6℃/min的升温速率升温至550℃,保持6h,产物为C-C3N4。再将产物在管式炉中空气条件下,以5℃/min的速率升温450℃,保持5h。待管式炉自动降温至室温时取出产物,研磨至粉末,制得棒状多孔氮化碳。
实施实例3:本发明一种棒状多孔氮化碳光催化剂的制备方法,包括如下步骤:
(1)制备模板酚醛树脂球:将一定量的苯酚、2.1mL甲醛水溶液(37wt%)、15mL 0.1mol·L-1NaOH溶液混合,85℃下搅拌1h,得到低分子量的酚醛树脂。Pluronic F127溶于15mL水中加入上述溶液,混合物在70℃下搅拌4h。加入50mL水稀释。产生沉淀物时停止反应,静置至沉淀物溶解,将18mL溶液转至100mL高压釜中用56mL水稀释,90℃下加热7h。产物通过离心、水洗收集,命名为RF;
(2)棒状pg-C3N4的制备:称取2g三聚氰胺和一定量的RF球于圆底烧瓶中,向烧瓶中加入去离子水与无水乙醇的混合溶剂,在冷凝回流的条件下,将烧瓶置于90℃油浴锅中搅拌4小时,之后把容器中的溶液倒入蒸发皿中,将蒸发皿放入50~80℃的烘箱干燥。干燥后将白色晶体混合物取出,研磨至粉末状后置于坩埚盖中,之后将坩埚盖放入管式炉中。通入惰性气体,以4℃/min的升温速率升温至540℃,保持4h,产物为C-C3N4。再将产物在管式炉中空气条件下,以5℃/min的速率升温500℃,保持4h。待管式炉自动降温至室温时取出产物,研磨至粉末,制得棒状多孔氮化碳。