本发明涉及一种用于至少含有甲烷和二氧化碳的气体流以便产生富含甲烷的气体流的膜渗透方法。
具体地,本发明涉及沼气纯化,目的是根据用于注入天然气网络内的规格产生生物甲烷。
沼气是在不存在氧气下降解有机物质(无氧发酵)、也称为甲烷化期间产生的气体。这可以是天然降解-因此在沼泽或城市废物填埋场观察到-但沼气的生产还可以产生自在专用的反应器(称为甲烷化器或蒸煮器)中的废物甲烷化。
由于其主要成分-甲烷和二氧化碳-沼气是强有力的温室气体;同时,在越来越缺乏化石燃料的背景下沼气也是重要的可再生能源。
沼气主要地含有呈根据生产方法变化的比例的甲烷(ch4)和二氧化碳(co2),而且还有呈更小比例的水、氮气、硫化氢、氧,以及还有呈痕量的其他有机化合物。
取决于所降解的有机物质和所使用的技术,组分的比例不同,但是平均地沼气作为干燥气体包含从30%至75%的甲烷,从15%至60%的co2,从0至15%的氮气,从0至5%的氧气和痕量化合物。
沼气以各种方式升级。沼气可以,在轻微的处理之后,在生产场所附近进行升级以便提供热量、电力或两者的混合物(共同产生);高含量的二氧化碳降低了其热值,增加了压缩和运输成本并且将升级它的经济优点限制于此局部使用。
沼气的更彻底的纯化使得能够更广泛地使用沼气,特别是沼气的彻底纯化使得有可能获得纯化至天然气规格并且可以替代天然气的沼气。如此纯化的沼气是“生物甲烷”。因此,生物甲烷向天然气资源补充在区域的中心处生产的可再生部分;它可以用于与化石来源的天然气完全相同的用途。它可以供应天然气网络或车辆加油站,并且它还可以被液化以便以液化天然气(lng)等的形式储存。
升级生物甲烷的方法是根据局部环境来确定的:局部能量需求,作为生物甲烷燃料升级的可能性,特别是用于分配或运输天然气的网络的附近存在。产生在一个领域工作的各种操作员(农民、制造商、政府当局)之间的协同作用,生物甲烷的生产帮助领域获得更大的能源自给自足。
给出生物甲烷的沼气的纯化主要由co2和ch4的分离组成。因此,聚合物膜代表了用于分离的完美合适的技术:的确,co2的渗透比ch4的渗透大得多。因此,存在许多使用膜的沼气纯化方法,并且这些方法相对于竞争技术(胺洗涤,水洗涤,psa)具有三个主要优点:可用性,膜的紧密度和它们的使用灵活性。尽管这种技术使得有可能实现高甲烷回收率,同时确保所生产的生物甲烷的品质,但是其具有两个主要限制:
-由于两个参数:操作压力和为了实现高产率所需的一部分渗透物的再循环程度,电力消耗相对高(即,≥0.25kwh/nm3粗沼气);
-膜的数量可能是高的(例如对于处理750nm3/h的粗沼气的4级膜,有可能使用18个组件(每个组件含有超过一百万个纤维))。
具体地,聚合物膜的固有性能(渗透性,选择性)受到限制,并且这些材料在co2与ch4之间的选择性需要相对高的操作压力和多级纯化二者,其中在压缩机的上游再循环流。此外,由于聚合物膜的性能受到罗伯逊(robeson)曲线的限制,因此选择用于限制甲烷损失的高选择性需要有限的生产率,这增加了处理给定的沼气流所需的膜的数量。
由此开始,所面临的一个问题是提供改进的沼气纯化方法,这就是说,与来自现有技术的方法相比,具有更低的电力消耗并且使用更少数量的膜。
本发明的一种解决方案是一种用于通过膜渗透来纯化包含甲烷和二氧化碳的气体流的方法,在该方法中在将该气体流引入到膜分离单元内之前,将其冷却至在0℃与-60℃之间的温度。
视情况而定,根据本发明的方法可以具有以下特征中的一项或多项:
-在引入到膜分离单元内之前,将该气体流冷却至在-20℃与-45℃之间的温度;
-所述方法包括以下连续步骤:将气体流压缩至在5与20巴之间的压力的步骤(a),将压缩过的气体流冷却至在0℃与15℃之间的温度的第一步骤(b),干燥该冷却且压缩过的气体流的步骤(c)(即,使得有可能获得≤0.1ppm的水含量),通过热交换器将由步骤(c)得到的气体流冷却至在0℃与-60℃之间的温度的第二步骤(d),通过至少一个膜级将从步骤(d)得到的气体流分离以获得富co2的渗透物和贫co2的渗余物的步骤(e),回收富甲烷的气体流的步骤(f);
-所述方法包括优选使用co2可渗透膜的在步骤(c)与步骤(d)之间的初步膜分离步骤;
-分离步骤(e)涉及各自提供贫co2的渗余物和富co2的渗透物的第一、第二和第三膜级,其中第一级接收从步骤(d)得到的气体流,该第二级接收来自该第一膜的渗余物并且第三膜接收来自该第一级的渗透物;
-回收富含甲烷的气体流的步骤(f)包括从该第二级回收渗余物的第一子步骤和将来自该第二级的渗余物再加热至0℃与20℃之间的温度的第二子步骤;
-将来自该第二级的渗余物再加热并且然后送至液化单元;
-来自该第二级的渗余物的再加热通过交换器进行;
-在步骤(e)之后,回收来自该第二级的渗透物和来自该第三级的渗余物,然后在交换器中将它们再加热至在0℃与20℃之间的温度并且然后在压缩步骤(a)之前将它们与待纯化的气体流混合;
-将来自该第二级的渗透物和来自该第三级的渗余物在交换器中再加热至不同的温度;
-在步骤(e)之后,在将来自该第三级的渗透物送至排放口或排放处理系统之前将其再加热至在0℃与20℃之间的温度;
-在步骤(e)之后,在将来自该三级的渗透物送到液化单元之前将其再加热。
将由ch4(45%-65%)、co2(35%-55%)、o2(0-5%)和n2(0-5%)构成并充分彻底地干燥(即,直到获得-5℃的露点)以便防止系统中的水冻结的粗制沼气(纯化其杂质(nh3、h2s、voc))压缩至在5与20巴之间。然后通过包含冰水的空气加热器和/或交换器将其冷却至在0℃与15℃之间的温度。在最终干燥之后,或者它直接进入交换器,在其中它被冷却至在0℃与-60℃之间的温度,或者该交换器之前是在0℃与15℃之间的第一膜级。然后将该冷却过的气体以并行或串联方式送至一个或多个膜级。每个组件产生称为渗余物的富甲烷馏分和称为渗透物的富co2馏分。最富含甲烷(大于90%ch4)的气体流被称为生物甲烷。将其送至交换器,在该交换器中将其再加热至在0℃与20℃之间的温度。最贫甲烷的气体流(在0与10%ch4之间)进入交换器,在该交换器中它被再加热到在0℃与20℃之间并且然后被送到排放口或排放处理系统。将由膜组件产生的其他气体流送到交换器或将它们再加热到在0℃与20℃之间,并且然后再循环到压缩机的上游。另一种有利的构型是在足够冷的温度下取出离开交换器的一个或多个流以实现热整合,例如用于粗制沼气的预冷却。
该方法使得有可能实现90%与99.99%之间的甲烷产率,并且生产生物甲烷,对于该生物甲烷,甲烷纯度大于97%。使得有可能实现该方法的热自给自足的压缩机的排出压力是在5与15巴之间。
本发明的另一个主题是一种用于通过膜渗透来纯化包含甲烷和二氧化碳的气体流的设备,所述设备包括:交换器,该交换器使得有可能将该气体流冷却至在0℃与-60℃之间的温度;以及在该交换器的下游的膜分离单元。
优选地,该交换器使得有可能将该气体流冷却至在-20℃与-45℃之间的温度。
根据本发明的设备优选在该气体流的流动方向上包括:
-(a)压缩机,其使得有可能将该气体流压缩至在5与20巴之间,
-(b)冷却装置,其使得有可能将该气体流冷却至在0℃与15℃之间的温度,
-(c)干燥器,其使得有可能干燥该冷却且压缩过的气体流,以便获得具有小于0.1ppm的水含量的气体流,
-(d)交换器,其使得有可能将该气体流冷却至在0℃与-60℃之间的温度,
-(e)分离单元,其包含至少一个对二氧化碳更可渗透的膜级,该膜级使得有可能分离离开该交换器的气体流。
现在将借助于图1更详细地描述本发明,图1是根据本发明的设备的图。
在5℃和0.1巴表压的压力下,将用水饱和的含有43.6%co2、54.6%ch4、0.8%n2和0.2%o2的粗沼气1与包含66.6%co2的再循环流24混合。然后将流2送至压缩机3,在冷却至5℃之前,在该压缩机中将其压缩至9.6巴表压。冷却后,在分离器中除去水,然后将气体再加热至15℃。然后将气体流6送到干燥器7。含有51.2%co2的干燥气体流8然后通过交换器,在该交换器中将其冷却至-30℃。冷却过的气体流进入第一膜状态,在那里它被分离成两个馏分。渗余物12贫co2并且含有不超过30%的co2;将其送至第二膜级。渗透物16富含co2并且含有90%的co2;将其送至第三膜级。第二膜级进而产生两个馏分,贫到1.3%co2的流14、和富集到73%co2的流15。第三膜级也产生两个馏分,贫到38%co2的流18、和富集到99.3%co2的流19。将富co2的流19在交换器9中从-30℃再加热到25℃,并且然后送到排放口。称为生物甲烷的流14包含粗沼气1中包含的99.5%的甲烷,并且被再加热至13.4℃,并且然后被送至其最终用途(注入网络内、或用于车辆的燃料气体)。将流15和18加热至13.4℃,混合并送至压缩机3的上游。
与根据现有技术的在环境温度下的类似方法相比,此方法使得有可能减少膜的数量和比电力消耗,以及如果需要的话减少操作压力。这是下表所示出的:
取决于所需的应用,生物甲烷流和/或排放口流可以在低于环境温度的温度下产生,以便被送至液化单元,从而降低后者的电力消耗。