本申请要求于2015年10月28日提交韩国知识产权局的韩国专利申请号10-2015-0150345的优先权和权益,其全部内容通过引证结合于此。
技术领域:
本发明涉及一种涂覆有选择性还原催化剂的柴油机微粒过滤器(SDPF)和包含其的废气后处理系统。更具体地,本发明涉及过滤包含在废气中的微粒物质并还原氮氧化物的SDPF,以及包含其的废气后处理系统。
背景技术:
:最近随着油价格上涨,能够提高能源效率并降低二氧化碳(CO2)排放的贫燃发动机的研究和开发已经凸显。然而,即使在废气中包含的一氧化碳(CO)和烃(HC)能够容易地使用现有后处理方法去除,贫燃发动机在废气中包含大量的氧气使得难以除去氮氧化物(NOx)。在涂覆有选择性还原催化剂的柴油机微粒过滤器(SDPF)的情况下,将选择性还原催化剂涂覆至多孔柴油机微粒过滤器(DPF),用于使从SDPF的前端供给的NH3与废气中的氮氧化物(NOx)反应,从而将NOx净化成水和N2。另外,由于SDPF用于充当过滤器,因此SDPF收集废气中的微粒物质(PM)并通过在发动机中的后喷射来提高废气的温度,使得SDPF中收集的PM能够被氧化/去除。SDPF能够分类为被动型和主动型,并且被动型柴油机微粒过滤器涂覆有氮氧化物贫NOx阱(LNT)+选择性还原催化剂。当氮氧化物LNT中收集的氮氧化物通过后注射而溶解时,NH3作为副产物产生并且废气中的NH3和过量氮氧化物在SDPF中净化。公开于该
背景技术:
部分中的上述信息仅用于增强对本发明背景的理解,而因此它可以包含不构成该国家中对本领域普通技术人员已知的现有技术的信息。技术实现要素:本发明作出努力以提供一种过滤废气中包含的微粒物质的涂覆有选择性还原催化剂的柴油机微粒过滤器,以及包含其的废气后处理系统。根据本发明一个示例性实施方式的涂覆有选择性还原催化剂的柴油机微粒过滤器包括:载体,在所述载体的前侧和后侧形成通道,所述通道包括具有敞开的入口和封闭的出口的入口通道和邻近入口通道设置并具有封闭的入口和敞开的出口的封闭通道;设置在入口通道内表面上的钙钛矿催化剂;和设置在出口通道内表面上的选择性还原催化剂,其中钙钛矿催化剂表示为La1-xAgxMnO3(本文中,0<x<1)。钙钛矿催化剂可以表示为La1-xAgxMnO3(本文中,0.2≤x≤0.8)。选择性还原催化剂可以包含选自V2O5、WO3、Cu和Fe中的至少一种作为催化组分。选择性还原催化剂可以包含V2O5-WO3/TiO2、Cu-沸石或Fe-沸石。根据本发明一个示例性实施方式的废气后处理系统包括:贫氮氧化物阱,所述贫氮氧化物阱在贫空气/燃料比环境下捕获包含在废气中的氮氧化物,在富空气/燃料比环境下分离捕获的氮氧化物并还原包含在废气中的氮氧化物或分离的氮氧化物;和设置在贫氮氧化物阱的后端并涂覆有选择性还原催化剂的柴油机微粒过滤器。在根据本发明示例性实施方式的涂覆有选择性还原催化剂的柴油机微粒过滤器(SDPF)中,入口通道中形成的钙钛矿催化剂涂覆层中包含的催化组分有效地将一氧化氮转化成二氧化氮,由此优化设置在出口通道的选择性还原催化剂涂覆层的性能。附图说明图1是根据本发明一个示例性实施方式的涂覆有选择性还原催化剂的柴油机微粒过滤器的示意性截面视图。图2是根据本发明示例性实施方式的废气后处理系统的示意图。图3是示出示例性实施方式1至4和比较例1中的钙钛矿催化剂的反应温度和一氧化氮的转化的图。图4是示出根据实验实施例1至3的废气后处理系统中氮氧化物的转化的图。<符号描述>100:发动机110:废气管道120:贫氮氧化物阱130:涂覆有选择性还原催化剂的柴油机微粒过滤器131:载体132:钙钛矿催化剂133:选择性还原催化剂134:入口通道135:出口通道具体实施方式本发明的优点和特征和实现它们的方法将通过参照附图提及在下文中详细描述的示例性实施方式而变得清楚。然而,本发明不限于以下描述的示例性实施方式,并可以以各种方式实现,提供示例性实施方式以完成本发明并使本领域技术人员清楚本发明的范围,并且本发明仅由权利要求中描述的范围限定。类似的参考数字指示整个说明书中类似的构成要素。因此,公知的技术将在一些示例性实施方式中并不会详细描述,以避免本发明不清楚的描述。除非另有定义,否则所有本文使用的术语(包括技术和科学术语)可以与本领域那些技术人员理解的意义使用。在整个说明书中,除非明确描述为相反,否则词语“包括”和变体如“包含”或“含有”将理解为暗示包含所陈述的要素但不排除任何其它要素。此外,除非另外特别说明,否则单数术语包括复数术语。图1是涂覆有选择性还原催化剂的柴油机微粒过滤器(SDPF)的示意性截面视图。参照图1,根据本发明的示例性实施方式的SDPF130包括载体131、涂覆有钙钛矿催化剂的层(132)(下文中,称为钙钛矿催化剂涂覆层)和涂覆有选择性还原催化剂的层133(下文中,称为选择性还原催化剂涂覆层)。在载体131中,通道由前侧至后侧形成,并且通道包括入口通道134和出口通道135。入口通道134和出口通道135交替排列,并且通过入口通道134的入口进入的废气穿过载体131的壁,随后通过出口通道135的出口排出。具体地,入口通道134具有敞开的入口和封闭的出口,并且出口通道135具有封闭的入口和敞开的出口。入口通道134和出口通道135彼此相邻形成。钙钛矿催化剂涂覆层132形成在入口通道134内表面上。钙钛矿催化剂表示为La1-xAgxMnO3(本文中,0<x<1),并且这种催化剂组分将一氧化氮氧化成废气中包含的二氧化氮并将二氧化氮供给至形成在出口通道135中的选择性还原催化剂涂覆层133。本文中,选择性还原催化剂涂覆层133使用由钙钛矿催化剂涂覆层132供给的二氧化氮优化了氮氧化物的净化效率。此外,由于一氧化氮氧化成二氧化氮,微粒物质的氧化通过微粒物质和二氧化氮的反应加速。由La1-xAgxMnO3(本文中,0<x<1)表示的催化剂组分提高了低温区具体地,200℃至300℃之间的一氧化氮的转化。更具体地,钙钛矿催化剂涂覆层132可以表示为La1-xAgxMnO3(本文中,0.2≤x≤0.8)。选择性还原催化剂涂覆层133形成在出口通道135内表面上。选择性还原催化剂涂覆层133使用由钙钛矿催化剂涂覆层132供给的二氧化氮优化了氮氧化物的净化效率。具体地,选择性还原催化剂涂覆层133可以包含选自V2O5、WO3、Cu和Fe中的至少一种作为催化剂组分。更具体地,选择性还原催化剂涂覆层133可以包含V2O5-WO3/TiO2、Cu-沸石或Fe-沸石。当废气中的一氧化氮和二氧化氮的体积比在选择性还原催化剂涂覆层133中为1:1时,在200℃至350℃的低温区内氮氧化物的净化效率通过快速SCR反应而提高。在本发明的示例性实施方式中,二氧化氮(NO2)从钙钛矿催化剂涂覆层132供给至选择性还原催化剂涂覆层133,使得选择性还原催化剂涂覆层133的氮氧化物的净化效率能够提高。图2是根据本发明示例性的实施方式的废气后处理系统的示意图。参照图2,废气后处理系统包括发动机100,废气管道110,贫氮氧化物阱120,和涂覆有选择性还原催化剂的柴油机微粒过滤器130。贫氮氧化物阱120和选择性还原催化剂涂覆的柴油机微粒过滤器130按序排列在废气管道110中,并且废气通过贫氮氧化物阱120和选择性还原催化剂涂覆的柴油机微粒过滤器130进行净化并随后排放到外面。贫氮氧化物阱120在贫空气/燃料比环境下捕获包含在废气中的氮氧化物,并在富空气/燃料比环境下分离捕获的氮氧化物并且还原废气中包含的氮氧化物或分离的氮氧化物。贫空气/燃料比环境指实际空气量与理论空气量的比率(λ)大于1,而富空气/燃料比环境指实际空气量与理论空气量的比率(λ)小于1。在富空气/燃料比环境下,贫氮氧化物阱120产生氨,并且氨穿过钙钛矿催化剂涂覆层132,随后吸附至选择性还原催化剂涂覆层133。在富空气/燃料比环境下,由贫氮氧化物阱120产生的氨由于钙钛矿催化剂涂覆层132中贫氧而穿过,而不是被氧化。贫氮氧化物阱120在贫空气/燃料环境下捕获包含在废气中的氮氧化物,但部分逃脱的一氧化氮在钙钛矿催化剂涂覆层132中被氧化成二氧化氮。通过钙钛矿催化剂涂覆层132并随后达到选择性还原催化剂涂覆层133的氮氧化物储存在选择性还原催化剂涂覆层133中并通过与氨反应而被除去。在涂覆有选择性还原催化剂的柴油机微粒过滤器130中收集的微粒物质被有效氧化并通过从钙钛矿催化剂涂覆层132和从钙钛矿催化剂涂覆层132有效供给的氧产生的二氧化氮而被除去。以下实施例更详细地举例说明本发明。然而,以下示例性实施方式仅是本发明的实施例,而本发明并不限于此。制备实施例:钙钛矿整料型(monolithtype)催化反应器的制备用于NO氧化性能评价的钙钛矿整料型催化反应器通过普通浸渍法利用钙钛矿涂覆堇青石基底。作为用于涂覆的堇青石载体,使用具有0.7英寸的直径和0.57英寸的高度的400cpsi单元整料(cellmonolith)。浸渍->吹气->干燥(110℃)在通过以预定的比率混合钙钛矿催化剂和蒸馏水制备的料浆上重复并在其上进行球磨,直至相对于堇青石40wt%负载于载体中。最后,涂覆的整料催化反应器在700℃的空气气氛下烧5小时,并随后通过以下评价方法进行NO氧化性能评价。评价方法:NO氧化性能评价在固定床连续流动反应器系统中进行NO氧化性能评价并且在评价时使用整料型催化反应器。注入的反应气体浓度为:NO400ppm,O28%,H2O10%以及余量N2,在评价时反应器空间速度维持在30,000h-1,并且在反应前后反应气体浓度的变化通过在线连接到反应器的FT-IR(Nicolet6700,ThermoElectronicCo.)进行分析。实施例1:钙钛矿催化剂的一氧化氮转化测试将以vol%包含NO400ppm,O28%,H2O10%以及余量N2的废气,以30,000h-1的空间速度供给至涂覆有La0.9Ag0.1MnO3催化剂的整料催化剂(整体催化剂,monolithcatalyst)。每一温度的NO转化通过上述评价方法进行测定并且测量结果在图3中示出。实施例2除了制备涂覆有La0.8Ag0.2MnO3催化剂的整料催化剂之外,实施例2通过与实施例1相同的方法进行。每一温度的NO转化通过上述评价方法进行测定并且测量结果在图3中示出。实施例3除了制备涂覆有La0.5Ag0.5MnO3催化剂的整料催化剂之外,实施例3通过与实施例1相同的方法进行。每一温度的NO转化通过上述评价方法进行测定并且测定结果在图3中示出。实施例4除了制备涂覆有La0.2Ag0.8MnO3催化剂的整料催化剂之外,实施例4通过与实施例1相同的方法进行。每一温度的NO转化通过上述评价方法进行测定并且测量结果在图3中示出。比较例1除了制备涂覆有La0.9Sr0.1MnO3催化剂的整料催化剂之外,比较例1通过与实施例1相同的方法进行。每一温度的NO转化通过上述评价方法进行测定并且测量结果在图2中示出。由图3就能够知晓,实施例1至4中制备的钙钛矿催化剂具有一氧化氮的优异转化,并且特别地,在低温区200℃至300℃具有更优异的转化。实验实施例1:氮氧化物去除实验以vol%包含NO400ppm,O28%,H2O10%以及余量N2的废气以60,000h-1的空间速度在250℃下供给至以20/30筛目制备的1.1ccLa0.5Ag0.5MnO3催化剂。通过的废气与反应气体一起加入使得整个反应气变成NH3500ppm,NOx500ppm,O25.6%,H2O10%以及余量的N2,以100,000h-1的空间速度流入以20/30筛目制备的0.95ccV2O5-WO3/TiO2选择性还原催化剂中。测定通过选择性还原催化剂的废气的氮氧化物(NOx)的转化并且测量结果在图4中示出。实验实施例2在选择性还原催化剂的前阶段未设置La0.5Ag0.5MnO3催化剂,而仅设置了V2O5-WO3/TiO2选择性还原催化剂。以vol%包含NH3500ppm,NO500ppm,O25%,H2O10%以及余量N2的废气以100,000h-1的空间速度供给至选择性还原催化剂。测定通过选择性还原催化剂的废气的氮氧化物(NOx)的转化并且测定结果在图4中示出。实验实施例3在选择性还原催化剂的前阶段未设置La0.5Ag0.5MnO3催化剂,而仅设置V2O5-WO3/TiO2选择性还原催化剂。以vol%包含NH3500ppm,NO250ppm,NO2250ppm,O25%,H2O10%以及余量N2的废气以100,000h-1的空间速度供给至选择性还原催化剂。测定通过选择性还原催化剂的废气的氮氧化物(NOx)的转化并且测定结果在图4中示出。在废气中,在氧浓度5%O2中的氮氧化物的转化和在氧浓度5.6%O2中的氮氧化物转化彼此相当。如图4中所示,在选择性还原催化剂的前阶段包含La0.5Ag0.5MnO3催化剂的废气后处理系统的氮氧化物的转化可以具有优异的氮氧化物转化并可以获得与一氧化氮和二氧化氮体积比控制为1:1的实验实施例3大致相同的转化。具体地,氮氧化物的转化在200℃至300℃的低温区更优异。微粒物质的再生实验使用柴油发动机在12分钟和60分钟维持于DPF前阶段温度分别为350℃和640℃的条件下之后测定PM的净化性能。评价设计配置了DOC+DPF系统,DOC催化剂使用涂覆有具有贵金属比2Pt/1Pd的催化剂的整料催化剂,涂覆有贵金属催化剂的DPF具有1Pt/1Pd贵金属比,La0.5Ag0.5MnO3催化剂、Ag/CeO2催化剂分别用于进行对比评价。实验实施例4:微粒物质再生涂覆有具有1Pt/1Pd贵金属催化剂的DPF测定微粒物质再生结果并且测定的结果排列于以下表1中。实验实施例5涂覆有La0.5Ag0.5MnO3催化剂的DPF测定微粒物质再生结果并且测定的结果排列于以下表中。实验实施例6涂覆有Ag/CeO2催化剂的DPF测定微粒物质再生结果并且测定的结果排列于以下表1中。(表1)350℃下的再生640℃下的再生实验实施例420%70%实验实施例530%69%实验实施例617%64%如上述表1中所示,在实验实施例4中,可以证实,在350℃和640℃的温度下再生率相等或优异,并且特别地,再生比率在350℃的区域内是优异的。由于NO在根据本发明的示例性实施方式的柴油机微粒过滤器中被氧化成NO2,可以证实,微粒物质通过微粒物质与NO2的反应而被氧化。本发明并不限于上述实施例而是可以按照不同的各种形式制备并可以理解的是,本发明所属
技术领域:
的普通技术人员可以实施本发明其它详细的形式而不改变本发明的技术思想或基本特征。因此,应该理解的是,以上提及的实施方式并非限制性的,而在所有方面都是示例性的。当前第1页1 2 3