本发明涉及带有vcr调节器(vcr:可变压缩比)的内燃机、尤其往复活塞式内燃机,所述vcr调节器实现了内燃机的燃烧室的压缩比的可变的匹配。本发明还涉及用于诊断vcr调节器的方法。
背景技术:
对于往复活塞式内燃机,存在的可能性是,通过不同的措施来设定在缸体的燃烧室中的压缩比。所述压缩比说明了在内燃机的工作节拍期间在燃烧室的最大的容积和燃烧室的最小的容积之间的比例。所述压缩比能够通过合适的、所谓的vcr调节器可变地进行匹配。
例如,从公开文件wo2014/019684中已知带有可变压缩和带有用于改变压缩比的促动单元的往复活塞式内燃机。所述促动单元具有带有可变长度的连杆、带有可变的压缩大小的活塞和/或带有可变的曲轴半径的曲轴。
此外,从公开文件de102008050827a1中已知用于内燃机的曲轴的调节装置。所述曲轴支承在调整轴承(einstelllager)中,该调整轴承经过调节轴能够调节,以便改变在缸体中的活塞的最小压缩位置和最大压缩位置之间的曲轴的位置。
从公开文件us2014/0014071中还已知用于设定在内燃机中的可变的压缩比的装置。所述装置包括用于容纳曲轴的偏心轴承机构。所述偏心轴承机构包括能够转动的偏心环,曲轴支承在该偏心环中,其中,通过所述偏心环的转动能够设定所述压缩比。
可变地设定所述压缩的可行方案影响消耗量并且由此影响废气排放。由此,按照obd法规的用于设定可变的压缩的系统是诊断相关的并且在vcr调节器处的压缩比的预设的实施必须在马达运行中得到监控。
从公开文件de19955250a1中已知对于在往复活塞式内燃机中可变地设定缸体压缩的装置进行功能监控的方法,其中,分别在操控所述装置以便改变缸体压缩之前和之后,求取马达运行参数并且将马达运行参数的两个值彼此比较。由此能够确定的是,是否出现了马达运行参数的改变,其中,马达运行参数的改变表现为对于可变地设定缸体压缩的装置的正确功能的标志。所述压缩改变能够借助运行躁动或借助从燃烧室压力传感器或扭矩传感器或进气管压力传感器所测定的参量进行确定。
技术实现要素:
根据本发明,设置了根据本发明所述的用于诊断在往复活塞式内燃机中的压缩比的可变的调节的方法以及按照本发明所述的装置和马达系统。
在优选实施例和其它实施例中给出其它的设计方案。
按照第一方面,设置了用于诊断在往复活塞式内燃机中的压缩比的可变的调节的方法,其中,依赖于废气导出系统的所测量的状态参量、尤其所测量的废气温度信号化所述压缩比的可变的调节的误差。
此外,能够设置下述的步骤:
在内燃机的预先设定的运行状态中在特定的或实时的压缩比时测量废气状态参量;
在预先设定的运行状态中对于特定的或实时的压缩比建模所述废气状态参量;并且
依赖于在所测量的废气状态参量和经建模的废气温度之间的差别信号化所述压缩比的可变的调节的误差。
作为备选方案,能够设置下述的步骤:
在预先设定的第一压缩比时和在预先设定的第二压缩比时测量所述废气状态参量;
求取在所测量的废气状态参量之间的差别;并且
依赖于在所测量的废气状态参量之间的所求取的差别,信号化压缩比的可变的调节的误差。
带有可变的压缩的设定可行方案的内燃机例如经过所谓的vcr调节器实现了燃料消耗的降低,其中换气损失通过在缸体的燃烧室中的压缩比的设定进行优化。为了获得关于所获取的机械能的尽可能最大的效率,所述压缩比在运转中的运行中、也即在普通运行中通常尽可能大地选择,也即靠近爆震极限。在运行带有可变的压缩比的内燃机时的一般目标是:如此地设定所述压缩比,使得在低的爆震倾向性时,得到尽可能好的总效率,从而内燃机消耗量最优地能够用高的运行静稳性进行运行。
为了诊断vcr调节器,上述的方法设置的是,废气温度作为废气状态参量被评估为表征从内燃机排出的燃烧废气的参量。所设定的压缩比影响进入废气导出系统中的能量输入和由此燃烧废气。带有经提高的压缩比的燃烧的效率改善因此促成了进入废气导出系统中的较低的能量输入和由此相比于较低的压缩比的较低的废气温度。
在当今的马达控制器中,一般采用模型,以便依赖于影响的马达调节参量在计算方面确定废气温度。这种废气温度模型能够关于压缩比的影响进行扩展。一般地,在排气系统中也存在温度传感器,以便测量燃烧废气的温度。由此,经过借助废气温度模型所求取的经建模的废气温度和所测量的废气温度能够彼此比较并且由此确定或核准所设定的压缩比。
此外,借助预先设定的废气温度模型在预先设定的运行状态中能够对于特定的或实时的压缩比来建模废气温度,其中,所述废气温度模型作为输入参量具有下述的参数中的一个或多个:点火角或点火时刻;马达转速;空气填充量;
在内燃机的缸体中的空气燃料比;废气质量流量;环境温度;
环境压力;
在排出阀中的输出端和温度传感器之间的废气的冷却率;以及
特定的或实时的压缩比。
作为备选方案,所测量的废气状态参量能够对应于在废气导出系统中的燃烧废气的拉姆达值(λ值)。
能够设置的是,执行所述方法,当满足了释放条件时,其中,所述释放条件包括下述中的一个或多个:
内燃机的温度大于预先设定的阈值温度;
内燃机在预先设定的运行点中或在预先设定的运行区域中运行,其中,尤其所述运行点通过特定的转速和/或马达负荷预先设定,或尤其所述运行区域通过特定的转速范围和/或马达负荷范围预先设定;
内燃机在静态的运行点处运行;并且
vcr调节器运行就绪。
按照另一个方面,设置了用于诊断在往复活塞式内燃机中的压缩比的可变的调节的装置,其中,所述装置构造用于实施上述的方法。
按照另一个方面,设置带有具有vcr调节器的内燃机和上述装置的马达系统。
附图说明
接下来借助附图详细阐释实施例。图示:
图1是带有内燃机的马达系统的示意性展示,该内燃机具有用于设定在缸体的燃烧室中的可变的压缩比的vcr调节器;
图2是用于图解在在示例的内燃机中的压缩比、热学的效率和等熵指数之间的相关性的图表;
图3是用于图解用于诊断在内燃机中的vcr调节器的方法的流程图;以及
图4是用于图解用于诊断在内燃机中的vcr调节器的另外的方法的流程图。
具体实施方式
图1示出了带有内燃机2的马达系统1的示意性展示,该内燃机构造为往复活塞式内燃机的形式。内燃机2能够例如构造为汽油马达或柴油马达的形式。
内燃机2具有缸体3,该缸体具有燃烧室31,在该燃烧室中以公知的方式能够移动地布置有活塞4。活塞4在其对置所述燃烧室31的侧部经过(未示出的)连杆与曲轴5耦合,从而通过在内燃机2中的燃烧节拍所促成的活塞4的往复运动转换为曲轴5的旋转运动。
内燃机2除此以外正如传统的往复活塞式内燃机那样构造。经过空气供应系统7给内燃机2提供新鲜空气,并且将燃烧废气从缸体3中经过废气导出系统8进行导出。
在废气导出系统8中能够设置例如以催化器等为形式的废气后处理单元11。在(未示出的)排出阀和废气后处理单元11之间能够布置温度传感器12,以便测量废气温度12。温度传感器12能够布置在排出阀的附近,以便降低通过环境温度的冷却的影响。作为备选方案,温度传感器也能够布置在拉姆达探测器(未示出)的位置处,从而能够实现安装的简化。
在曲轴5和在缸体3中的活塞4之间的耦合能够利用公知的vcr调节器6(vcr:可变压缩比)来设置,以便可变地设定在缸体3中的压缩比。所述压缩比对应缸体3的燃烧室31的最大容积(也即燃烧室31的容积,当活塞4位于活塞运动的下止点时)与缸体3的燃烧室31的最小容积(也即燃烧室31的容积,当活塞4位于活塞运动的上止点时)的比例。对于所有类型的vcr调节器6共同的是,在上止点处的活塞4的位置依赖于有待设定的压缩比进行改变。对于vcr调节器的特定的变体方案,在下止点处的活塞4的位置同样依赖于有待设定的压缩比。尤其,上止点越靠近燃烧室31的燃烧室顶16,则所设定的压缩比越大。
内燃机2以公知的方式通过控制单元10进行运行。附加于被设置用于运行传统的内燃机2的调节可行方案,控制单元10也能够调节vcr调节器6,从而可变地选择压缩比。
压缩比ε的可设定性的优点从内燃机的热学的效率ητη与压缩比ε的相关性中得到,如下:
在此,ε说明压缩比,该压缩比在汽油马达中通常位于8和14之间,并且κ说明混合物的等熵指数,该等熵指数对于均匀的燃烧能够以大约1.3进行呈现。由此,在将压缩比从最小值提高到最大值时,经过压缩比的整个调节区域将所述热学的效率ητη以大约10%进行提高。由此能够减小内燃机的燃料消耗。
等熵指数依赖于空气燃烧混合物的气体分子的自由度。从而,此外被吸取的空气的水份额和在被吸取的空气和燃料之间的比例(一般通过拉姆达值说明)起一定作用。尤其,在多原子的分子的高的份额的情况中,等熵指数还强烈地依赖于温度,因为多原子的分子的旋转自由度和振动自由度在较高的温度中才被较强地激励。由此,得到了热学的效率ητη作为压缩比ε以及参数:例如进气温度、进气湿度和空气燃料比λ的函数。图2例如示出了对于不同的等熵指数κ的热学的效率ητη依赖于压缩比ε的走势。
由于依赖于压缩比的热学的效率,废气温度在压缩比改变时改变。尤其,在最小的压缩比与最大的压缩比之间的废气温度的变化能够计为80-150°c之间。
由于效率与压缩比的相关性,此压缩比对于废气排放也是相关的。由此,vcr调节器同样处于用于机动车的排放法规的要求下并且必须规律地被检测其功能有效性。另外,设置了诊断方法,正如在图3的流程图中所示那样。
在步骤s1中首先检查:是否满足用于执行vcr调节器的诊断的释放条件。作为释放条件能够检查下述方面中的一个或多个:
内燃机的温度大于预先设定的阈值温度。由此确保:所述诊断仅在内燃机热运行时被实施。
内燃机在特定的运行点中或在特定的运行区域中运行,该运行区域通过特定的转速、马达负荷等预先设定。
内燃机在静态的运行点处运行,也即马达动态为0或较小。这能够例如被确保,办法是:马达转速梯度小于预先设定的梯度阈值。
vcr调节器运行就绪。
废气温度传感器运行就绪。
如果满足所述一个或多个释放条件(选择:是),则所述方法以步骤s2继续进行,否则(选择:否)跳回到步骤s1。
在步骤s2中,测量废气温度,例如借助在废气导出系统中的温度传感器12进行。
在步骤s3中,借助废气温度模型从运行参量中求取废气温度,从运行参量中建模废气温度是已知的并且对于当前的方法关于压缩比的影响被扩展。例如,废气温度模型能够以特性图为形式可供使用,下述参量中的一个或多个作为输入参量进入所述特性图中:
点火角或点火时刻;
马达转速;
空气填充量;
在缸体中的拉姆达值或空气燃料比;
废气质量流量;
环境温度;
环境压力;
在排出阀中的输出端和温度传感器12之间的废气的冷却;
压缩比,该压缩比被预先设定用于通过vcr调节器6进行设定;和
车辆速度。
尤其,能够足够的是,废气温度借助废气温度模型利用输入参量:废气质量流量、压缩比和马达转速来计算。这实现了带有大约10-30℃的准确性的废气温度的建模。
在步骤s4中,将所测量的废气温度和经建模的废气温度进行比较。
在步骤s5中检查:是否所测量的废气温度以大于预先确定的公差值偏离于经建模的废气温度。如果是这种情况(选择:是),则在步骤s6中信号化vcr调节器的误差。否则(选择:否),跳回到步骤s1。
在图4中展示了用于图解用于执行诊断vcr调节器6的另外的方法的流程图。
在步骤s11中首先正如在步骤s1中那样检查:是否满足用于执行vcr调节器的诊断的释放条件。
如果满足所述一个或多个释放条件(选择:是),则所述方法以步骤s12继续进行,否则(选择:否)跳回到步骤s11。
在步骤s12中,设定了预先确定的第一压缩比。
在步骤s13中,测量在预先确定的第一压缩比时的废气温度,例如借助在废气导出系统中的温度传感器12进行测量。
在步骤s14中,压缩比被调节到预先确定的第二压缩比。
在步骤s15中,测量在预先确定的第二压缩比时的废气温度。
在步骤s16中,例如借助预先设定的特性图或预先设定的废气温度改变最小值,把在第一和第二压缩比之间的差别配设给废气温度的期待的改变,在压缩比以大于预先确定的量(差、商)进行改变时,该废气温度改变最小值预先给定了废气温度的期待的最小的改变。
如果在步骤s17中确定:在所测量的废气温度之间的差别小于预先设定的废气温度改变最小值(选择:是),则能够诊断有误的压缩比调节,并且这在步骤s18中相应地作为vcr调节器6的误差进行信号化。否则(选择:否),跳回到步骤s1。
所述诊断方法能够被实施为主动诊断,其中,相应于该诊断方法的要求,所述压缩比规律地、周期地或在预先设定的时刻改变。作为备选方案所述诊断方法也能够被实施为被动诊断,其中,由马达控制器造成的压缩比的改变被用于执行诊断。
作为对借助废气温度进行的vcr调节器6的功能有效性的检查的备选方案,也能够经过其它的依赖于压缩而被影响的马达参量、例如pid怠速调节器的积分份额来进行检查。怠速调节器的积分份额能够依赖于马达拖曳转矩进行改变。拖曳转矩能够被压缩比和随之被改变的压缩功影响。