本发明涉及在构成排气的排气系统的配管内收纳固定的催化转换器。
背景技术:
在各种产业界,针对降低环境影响负荷,在世界范围内进行着各种努力,其中,在汽车产业中,燃油经济性优异的汽油发动机汽车自不必说,针对混合动力车、电动车等所谓的环保车的普及及其性能的进一步提高的开发每天都在进行着。除了这样的环保车的开发以外,也积极进行着关于将从发动机排出的排气(废气)净化的排气净化催化剂的研究。该排气净化催化剂包含氧化催化剂、三元催化剂、nox吸藏还原催化剂等,在该排气净化催化剂中体现催化活性的是铂(pt)、钯(pd)、铑(rh)等贵金属催化剂,贵金属催化剂一般以被担载于由氧化铝(al2o3)等多孔质氧化物构成的载体上的状态使用。
将车辆发动机与消音器连接的排气的排气系统,一般配置有用于净化排气的催化转换器。发动机有时排出co、nox、未燃烧的hc、voc等对环境有害的物质,为了将这样的有害物质转换为能够允许的物质,通过使排气在催化转换器中流通来将co转化为co2,将nox转化为n2和o2,voc燃烧从而生成co2和h2o,所述催化转换器是将催化剂层配置于基材的孔室壁面来形成的,所述催化剂层是在载体上担载有rh、pd、pt之类的贵金属催化剂的层。
作为担载贵金属催化剂的载体,可举出ceo2-zro2固溶体(cz材料,被称为氧化铈(二氧化铈)-氧化锆系复合氧化物等),这也被称为助催化剂,是将排气中的有害成分co、nox、hc同时除去的上述三元催化剂中必需的成分,作为该助催化剂中必需的成分可举出ceo2。该ceo2根据其所处的排气中的氧分压,其氧化数变化为ce3+、ce4+,具有为了补偿电荷的过量或不足而吸放氧的功能、和储藏氧的功能(氧吸放能力(osc:oxygenstoragecapacity))。而且,为保持该三元催化剂的净化窗而能够吸收和缓和排气的气氛变动,从而保持在理论空燃比附近。
然而,从稀有金属等的材料风险的降低、和成本竞争力的观点出发,如何减少上述三元催化剂中的贵金属催化剂的使用量成为重要因素。但是,如果大幅度减少三元催化剂中的贵金属催化剂,则催化活性也大幅度降低,上述的osc性能、低温活性、高温环境下的nox净化性能等显著降低。这是由于,通过贵金属催化剂的大幅度的减少,活性点数也大幅度减少,催化反应位点大幅度减少,由此净化性能的降低变得显著。
在三元催化剂中特别采用的pt、pd、rh这些贵金属催化剂之中,rh的nox净化性能最优异,但每单位重量的市场价格最高。另外,已知rh通过担载于包含氧化铈(二氧化铈)的载体上可呈现出高的osc性能,但也已知存在下述的相反关系:载体中的氧化铈越多,作为rh的特征的nox净化性能反倒降低。因此,在三元催化剂中使用rh作为贵金属催化剂时,三元催化剂在制作方面需要使osc性能和nox净化性能这两项性能都最佳的设计方针。
在此,专利文献1涉及一种具备载体和设置于该载体上的催化剂层的排气净化用催化剂,公开了下述排气净化用催化剂:催化剂层中以混合状态含有担载有pt或pd的活性al2o3、担载有rh的ceo2-zro2-nd2o3复合氧化物、担载有rh的zro2被覆al2o3、以及粘合剂材料,zro2被覆al2o3的质量比为zro2/al2o3=5/95~15/85。
另外,专利文献2公开了一种排气净化用催化剂,其由载体基材、在该载体基材表面形成的下催化剂层、和在下催化剂层表面形成的上催化剂层构成,下催化剂层中担载有pt和pd的至少一方,上催化剂层中至少担载rh。在该排气净化用催化剂中,下催化剂层和上催化剂层都包含二氧化铈和氧化锆,摩尔比(ceo2/zro2)分别在20/80~40/60的范围,并且下催化剂层的摩尔比(ceo2/zro2)为上催化剂层的摩尔比(ceo2/zro2)以上,下催化剂层中所担载的pt和pd的至少一方仅担载于二氧化铈或包含二氧化铈的复合氧化物上,上催化剂层中所担载的rh仅担载于氧化锆或包含氧化锆的复合氧化物上。
另外,专利文献3公开了一种排气净化用催化剂,其具有催化剂基材、和包含贵金属和耐火性无机氧化物且形成于催化剂基材上的催化剂涂层。在该排气净化用催化剂中,催化剂涂层具有包含a层和b层的层结构,a层中作为贵金属包含pd和pt,其重量比为3:1~20:1,b层中作为贵金属包含rh,a层中作为耐火性无机氧化物包含(a)氧化铝、和(b)zro2的组成比为40~95质量%的铈-锆复合氧化物,(a)与(b)的重量比在1:1~1:5的范围。
此外,专利文献4公开了一种排气净化用催化剂,其在耐热性支持载体上形成有第1被覆层,在该第1被覆层上形成有第2被覆层。在该排气净化用催化剂中,第1被覆层包含担载有钯的氧化铝,第2被覆层包含共存担载有铂和铑的ce-zr系复合氧化物、和与该复合氧化物的组成不同且共存担载有铂和铑的zr-ce系复合氧化物。
在先技术文献
专利文献
专利文献1:日本专利第4217576号公报
专利文献2:日本专利第5322596号公报
专利文献3:日本专利第4838258号公报
专利文献4:日本专利第3688974号公报
技术实现要素:
专利文献1~4中公开的排气净化用催化剂,虽然应用rh作为贵金属催化剂,但并没有公开上述课题、即osc性能和nox净化性能这两种性能都最佳的排气净化用催化剂。
本发明是鉴于上述问题而完成的,其目的是提供osc性能和nox净化性能均优异的催化转换器。
为达到上述目的,本发明的催化转换器包含能流通排气的孔室结构的基材、和形成于该基材的孔室壁面的催化剂层,所述催化剂层由在所述基材中配置于排气流动方向的上游侧的上游侧催化剂层、和配置于排气流动方向的下游侧的下游侧催化剂层构成,所述上游侧催化剂层由包含al2o3-ceo2-zro2三元系复合氧化物和al2o3-zro2二元系复合氧化物的载体、和担载于该载体上的贵金属催化剂即至少rh形成,所述下游侧催化剂层由载体、和担载于该载体上的贵金属金属pd或pt形成,在所述上游侧催化剂层的所述载体中,al2o3-ceo2-zro2三元系复合氧化物/(al2o3-ceo2-zro2三元系复合氧化物+al2o3-zro2二元系复合氧化物)的质量比例为0.33以上0.5以下的范围,在所述上游侧催化剂层中,rh的75质量%以上被所述载体中的al2o3-zro2二元系复合氧化物担载。
本发明的催化转换器,具有所谓的区域涂布催化剂层,该催化剂层由在基材上配置于排气流动方向的上游侧的上游侧催化剂层、和配置于排气流动方向的下游侧的下游侧催化剂层构成。
构成上游侧催化剂层的载体,包含al2o3-ceo2-zro2三元系复合氧化物(acz材料)和al2o3-zro2二元系复合氧化物(az材料),由本发明人证实,通过al2o3-ceo2-zro2三元系复合氧化物/(al2o3-ceo2-zro2三元系复合氧化物+al2o3-zro2二元系复合氧化物)的质量比例为0.33以上0.5以下的范围,会成为osc性能和低温活性性能(nox净化性能)这两者都优异的催化转换器。
进而,由本发明人证实,通过在上游侧催化剂层中,rh的75质量%以上被载体中的al2o3-zro2二元系复合氧化物担载,会成为osc性能和nox净化性能这两者都优异的催化转换器。这是由于,针对在上游侧催化剂层中,载体中的ceo2越多,作为rh的特征的nox净化性能越降低这一课题,在载体中使不含ceo2的al2o3-zro2二元系复合氧化物担载rh的75质量%以上,由此nox净化性能的降低得到抑制。
在此,作为孔室结构的基材,除了由氧化镁、氧化铝和二氧化硅的复合氧化物构成的堇青石、由碳化硅等陶瓷材料构成的基材以外,也可以使用金属材料等的除了陶瓷材料以外的材料的基材。另外,关于其构成,可以应用具备下述孔室的所谓的蜂窝构造体,所述孔室是四角形、六角形、八角形等的许多的格子轮廓的孔室。
另外,“贵金属催化剂即至少rh”意味着:上游侧催化剂层中,作为贵金属催化剂具备rh、rh/pd、rh/pt、rh/pt/pd的任一种或两种以上。另外,“贵金属催化剂pd或pt”意味着:下游侧催化剂层中,作为贵金属催化剂具备pd、pt、pd/pt的任一种或两种以上。
上游侧催化剂层和下游侧催化剂层,除了两者不搭接而完全地形成一层结构的催化剂层的形态以外,也可以是上游侧催化剂层和下游侧催化剂层以它们的一部分搭接(重叠),在搭接部位,下游侧催化剂层配置于基材的表面,上游侧催化剂层配置于下游侧催化剂层的表面的形态等。就上游侧催化剂层和下游侧催化剂层两者不搭接的形态而言,可举出:相对于基材的全长,上游侧催化剂层的长度和下游侧催化剂层的长度都为50%的形态、上游侧催化剂层的长度为60%且下游侧催化剂层的长度为40%的形态等。另外,就上游侧催化剂层和下游侧催化剂层以它们的一部分搭接的形态而言,可举出:相对于基材的全长,上游侧催化剂层的长度从基材的排气入口端起算为60%,下游侧催化剂层的长度从基材的排气出口端起算也为60%,且两者的20%的长度搭接(重叠)的形态等。
另外,在本发明的催化转换器的另一实施方式中,催化转换器包含:能流通排气的孔室结构的基材、和形成于该基材的孔室壁面的催化剂层,所述催化剂层由配置于所述基材的表面的下催化剂层、和配置于该下催化剂层的表面的上催化剂层构成,所述上催化剂层由包含al2o3-ceo2-zro2三元系复合氧化物和al2o3-zro2二元系复合氧化物的载体、和担载于该载体上的贵金属催化剂即至少rh形成,所述下催化剂层由载体、和担载于该载体上的贵金属催化剂pd或pt形成,在所述上催化剂层的所述载体中,al2o3-ceo2-zro2三元系复合氧化物/(al2o3-ceo2-zro2三元系复合氧化物+al2o3-zro2二元系复合氧化物)的质量比例为0.33以上0.5以下的范围,在所述上催化剂层中,rh的75质量%以上被所述载体中的al2o3-zro2二元系复合氧化物担载。
本实施方式的催化转换器,具有下催化剂层和上催化剂层的双层结构的催化剂层,上催化剂层具有与已述的上游侧催化剂层同样的构成,下催化剂层具有与已述的下游侧催化剂层同样的构成。而且,上催化剂层与已述的上游侧催化剂层同样地最先与排气接触,下催化剂层与已述的下游侧催化剂层同样地在上催化剂层以及上游侧催化剂层与排气接触之后再与排气接触,因此具有同样的作用效果。
由于上催化剂层具有与上游侧催化剂层同样的构成,因此成为osc性能和nox净化性能这两者都优异的催化转换器。
本发明的催化转换器,优选是具有耐热冲击性优异的堇青石蜂窝载体的催化转换器,但除此以外也可以是电加热式的催化转换器(ehc:electricallyheatedconverter)。该电加热式的催化转换器,例如在蜂窝催化剂上安装一对电极,将电极通电,由此来加热蜂窝催化剂,提高蜂窝催化剂的活性,将通过该催化剂的排气无害化,通过应用于将车辆发动机与消声器连接的排气的排气系统,除了能净化通常运转时的排气,还能够在冷态时通过电加热而使催化剂活化从而对排气进行净化。
如从以上的说明能够理解的那样,本发明的催化转换器,就催化剂层由上游侧催化剂层和下游侧催化剂层构成的形态而言,上游侧催化剂层具备包含al2o3-ceo2-zro2三元系复合氧化物和al2o3-zro2二元系复合氧化物的载体、和担载于载体上的贵金属催化剂即至少rh,另外,就催化剂层为下催化剂层和上催化剂层的双层结构的形态而言,上催化剂层具备包含al2o3-ceo2-zro2三元系复合氧化物和al2o3-zro2二元系复合氧化物的载体、和担载于载体上的贵金属催化剂即至少rh。而且,通过al2o3-ceo2-zro2三元系复合氧化物/(al2o3-ceo2-zro2三元系复合氧化物+al2o3-zro2二元系复合氧化物)的质量比例为0.33以上0.5以下的范围,且rh的75质量%以上被载体中的al2o3-zro2二元系复合氧化物担载,由此成为osc性能和nox净化性能这两者都优异的催化转换器。
附图说明
图1是本发明的催化转换器的示意图。
图2是将孔室的一部分放大后的图。
图3是对催化剂层的实施方式1进行说明的纵截面图。
图4是对催化剂层的实施方式2进行说明的纵截面图。
图5是对催化剂层的实施方式3进行说明的纵截面图。
图6是表示验证上催化剂层中的载体中的acz比率与osc性能以及低温活性性能的关系的实验结果的图。
图7是表示上催化剂层中的az上的rh比率和验证osc性能以及nox净化性能的实验结果的图。
附图标记说明
1…基材,2…孔室壁,3、3a、3b…催化剂层,4、4a…上游侧催化剂层,5、5a…下游侧催化剂层,4b…上催化剂层,5b…下催化剂层,10…催化转换器,fr…排气的流动方向上游侧,rr…排气的流动方向下游侧。
具体实施方式
以下,参照附图对本发明的催化转换器的实施方式进行说明。
(排气的排气系统)
首先,对本发明的催化转换器所在的排气的排气系统进行大致说明。应用本发明的催化转换器的排气的排气系统,配置有发动机、催化转换器、三元催化转换器、副消声器和主消声器,它们相互用系统管连接,在发动机中生成的排气经由系统管在各部分中流通并被排出。接着,以下对催化转换器的实施方式进行说明。
(催化转换器的实施方式)
图1是本发明的催化转换器的示意图,图2是将孔室的一部分放大后的图。另外,图3~5都是对催化剂层的实施方式进行说明的纵截面图。
图1中所示的催化转换器10,由具有多个孔室的筒状的基材1、和形成于构成孔室的孔室壁2的表面的催化剂层3(参照图2)大致构成。
在此,作为基材1的材料,可举出由氧化镁、氧化铝和二氧化硅的复合氧化物构成的堇青石、碳化硅等陶瓷材料、金属材料等的除了陶瓷材料以外的材料。
基材1由具备四角形、六角形、八角形等的许多的格子轮廓的孔室的蜂窝结构体构成,流入到基材1中的排气的流动方向上游侧(fr侧)的端部的孔室内的排气,在基材1的内部流通,在该流通过程中被净化,被净化了的排气从基材1中排气的流动方向下游侧(rr侧)的端部流出(x方向)。
接着,参照图3~5对催化剂层的实施方式进行说明。
图3中所示的催化剂层3,成为由在基材1上配置于排气的流动方向的上游侧的上游侧催化剂层4、和配置于排气的流动方向的下游侧的下游侧催化剂层5构成的区域涂布催化剂层。
在将基材1的全长设为100%时,上游侧催化剂层4的长度和下游侧催化剂层5的长度都为50%。再者,也可以是上游侧催化剂层4的长度为60%且下游侧催化剂层5的长度为40%的形态等的图示例以外的形态。
上游侧催化剂层4由包含al2o3-ceo2-zro2三元系复合氧化物(acz材料)和al2o3-zro2二元系复合氧化物(az材料)的载体、和担载于载体上的贵金属催化剂即至少rh形成。
作为贵金属催化剂至少含rh的形态,有rh、rh/pd、rh/pt、rh/pt/pd的任一种或两种以上的形态。
另一方面,下游侧催化剂层5由载体、和担载于载体上的贵金属催化剂pd或pt形成,所述载体由al2o3、ceo2-zro2(cz材料)等构成。再者,下游侧催化剂层5的载体的种类不特别限制,可以使用在通常的排气催化剂中所采用的载体。
作为贵金属催化剂包含pd或pt的形态,有pd、pt、pd/pt的任一种或两种以上的形态。
在上游侧催化剂层4中,关于包含al2o3-ceo2-zro2三元系复合氧化物(acz材料)和al2o3-zro2二元系复合氧化物(az材料)的载体,acz材料/(acz材料+az材料)的质量比例在0.33以上0.5以下的范围。进而,在上游侧催化剂层4中,rh的75质量%以上被载体中的az材料担载。
由后述的实验结果证实,通过acz材料/(acz材料+az材料)的质量比例在0.33以上0.5以下的范围,成为osc性能和低温活性性能(nox净化性能)这两者都优异的催化转换器10。
进而证实,通过rh的75质量%以上被载体中的az材料担载,成为osc性能和nox净化性能这两者都优异的催化转换器10。其根据如下:针对在上游侧催化剂层4中,载体中的ceo2越多,作为rh的特征的nox净化性能越降低这一课题,使载体中不含ceo2的az材料担载rh的75质量%以上,由此nox净化性能的降低得到了抑制。
另一方面,图4所示的催化剂层3a中,上游侧催化剂层4a具有基材1的全长的60%的长度,下游侧催化剂层5a也具有基材1的全长的60%的长度,因此它们的20%的长度搭接,在搭接部位,下游侧催化剂层5a配置于基材1的表面,上游侧催化剂层4a配置于下游侧催化剂层5a的表面。
此外,图5所示的催化剂层3b,由配置于基材1表面的下催化剂层5b、和配置于下催化剂层5b的表面的上催化剂层4b构成。
而且,上催化剂层4b具有与已述的上游侧催化剂层4、4a同样的构成,下催化剂层5b具有与已述的下游侧催化剂层5、5a同样的构成。
由于上催化剂层4b具有与上游侧催化剂层4、4a同样的构成,因此成为osc性能和nox净化性能这两者都优异的催化转换器。
(验证上催化剂层中的载体中的acz比率与osc性能以及低温活性性能的关系的实验、验证上催化剂层的az上的rh比率和osc性能以及nox净化性能的关系的实验以及这些实验的结果)
本发明人采用以下方法制作催化剂浆液和催化转换器,并进行耐久试验,来进行催化转换器的性能评价,由此来规定上催化剂层中的载体中的acz比率的最佳范围、和上催化剂层中的az上的rh比率的最佳范围。关于催化剂层,制作了以下表1所示的实施例1、2、比较例1~3这5种、和表2所示的实施例3、4、比较例4~6这5种,并制作具备各催化剂层的催化转换器从而实施了耐久试验。
(关于催化剂层的制作方法)
首先,使用硝酸pd调制了将pd担载于al2o3上的pt/al2o3(材料1)。该担载方法应用了含浸法。接着,一边搅拌一边向蒸馏水中投入材料1、ceo2-zro2二元系复合氧化物(cz材料)、硫酸ba、al2o3系粘合剂,调制出悬浮了的浆液1。进而,将调制出的浆液1向基材流入,用吹风机吹去不需要的部分,由此在基材的壁面涂布了材料。该时,制备出涂布材料相对于基材容量,pd为0.2g/l、材料1为25g/l、cz材料为30g/l、硫酸ba为2.5g/l的pd层。最后,用保持为120℃的干燥机进行了2小时的水分飞散后,用电炉进行了500℃、2小时的烧成。
同样地,使用硝酸rh调制了将rh担载于az材料上的rh/az材料(材料2)。接着,一边搅拌一边向蒸馏水中投入材料2、acz材料、al2o3、al2o3系粘合剂,调制出悬浮了的浆液2。进而,将调制出的浆液2向基材流入,用吹分机吹去不需要的部分,由此在基材的壁面涂布了材料。该时,制备出涂布材料相对于基材容量,rh为0.12g/l、材料2和acz材料成为表1的比例、al2o3为20g/l的rh层。最后,用保持为120℃的干燥机进行了2小时的水分飞散后,用电炉进行了500℃、2小时的烧成。
总结以上,构成表1所示的比较例1~3、实施例1、2的各双层催化剂中,下催化剂层(pd层)为pd(0.2g/l)/al2o3(25g/l)+cz材料(30g/l)+硫酸ba(2.5g/l),上催化剂层(rh层)为rh(0.12g/l)/az材料(xg/l)+acz材料(yg/l)+al2o3(20g/l),rh层的az材料(xg/l)和acz材料(yg/l)在各实施例和比较例中成为表1所示的值。
表1
另一方面,关于实施例3、4、比较例4~6的制作,下催化剂层(pd层)是采用与实施例1、2和比较例1~3同样的制作方法制作的。
接着,使用硝酸rh调制了将rh担载于az材料上的rh/az材料(材料2)、将rh担载于acz材料上的rh/acz材料(材料3)。再者,实施例3、4、比较例4~6中的rh的担载比例如表2所示。
然后,一边搅拌一边向蒸馏水投入材料2、材料3、al2o3、al2o3系粘合剂,调制出悬浮了的浆液3。进而,将调制出的浆液3向基材流入,用吹风机吹去不需要的部分,由此在基材的壁面涂布了材料。该时,制备出涂布材料相对于基材容量,rh为0.12g/l、材料2为52.5g/l、材料3为52.5g/l、al2o3为20g/l的rh层。最后,用保持为120℃的干燥机进行了2小时的水分飞散后,用电炉进行了500℃、2小时的烧成。
总结以上,构成表2所示的比较例4~6、实施例3、4的各双层催化剂中,下催化剂层(pd层)为pd(0.2g/l)/al2o3(25g/l)+cz材料(30g/l)+硫酸ba(2.5g/l),上催化剂层(rh层)为rh(xg/l)/az材料(52.5g/l)+rh(0.12-xg/l)/acz材料(52.5g/l)+al2o3(20g/l),rh层的az材料所担载的rh(xg/l)和acz材料所担载的rh(0.12-xg/l)在各实施例和比较例中为表2所示的值。
表2
(关于耐久试验)
在v型8缸4.3升汽油发动机的排气系统中安装各催化转换器,将催化剂床温设为1000℃,以在1分钟中包含反馈、燃油切断、浓、稀的条件进行了50小时的耐久试验。
(关于评价方法)
关于低温活性,将劣化了的催化转换器安装于排气系统,使进入气体温度以20℃/分钟升温,用净化率成为50%时的温度进行了评价。另外,关于稳态浓nox净化性能,将劣化了的催化转换器安装于排气系统,用使进入的气体气氛持续a/f浓时的nox排出量进行了评价。而且,关于osc性能,将劣化了的催化转换器安装于排气系统,将进入的气体气氛以a/f浓、稀进行切换,根据相对于切换的催化剂后面的传感器的行为算出osc。
将验证上催化剂层中的载体中的acz比率与osc性能以及低温活性性能的关系的实验结果示于图6,将验证上催化剂层中的az上的rh比率与osc性能以及nox净化性能的关系的实验结果示于图7。
由图6证实,在实施例1与实施例2之间的范围、即acz材料/(acz材料+az材料)的质量比例为0.33以上0.5以下的范围中,osc性能和低温活性性能都良好。根据该实验结果,在上催化剂层的载体中,acz材料/(acz材料+az材料)的质量比例规定为0.33以上0.5以下的范围。
另一方面,由图7证实,在实施例3与实施例4之间的范围、即rh的75质量%以上(100质量%以下)的范围中,osc性能和nox净化性能都良好。根据该实验结果,在上催化剂层中,载体中的az材料所担载的rh的比率规定为75质量%以上。
以上利用附图对本发明的实施方式进行了详细说明,但具体的构成并不限定于该实施方式,即使有不脱离本发明的主旨的范围内的设计变更等,这些设计变更也包含在本发明中。