本发明涉及内燃机的排出气体后处理系统。本发明还涉及一种具有排出气体后处理系统的内燃机,以及用于操作此内燃机的方法。
背景技术:
在例如用于发电站中的静止内燃机中的燃烧过程期间,以及在例如用于船舶上的非静止内燃机中的燃烧过程中,产生了氮氧化物,其中这些氮氧化物通常在含硫化石燃料(诸如煤、矿煤、矿物油、重燃料油或柴油)的燃烧期间产生。出于此原因,此内燃机配备排出气体后处理系统,其用于离开内燃机的排出气体的清洁,特别是脱氮。
为了减少排出气体中的氮氧化物,从实践中了解到在排出气体后处理系统中主要采用所谓的scr催化转化器。在scr催化转化器中,氮氧化物的选择性催化还原发生,其中为了还原氮氧化物,需要氨(nh3)作为还原剂。氨或氨前体物质(诸如,例如尿素)以液体形式在scr催化转换器上游引入到排出气体中,其中氨或氨前体物质在scr催化转化器上游与排出气体相互混合。为此,根据实践,混合区段设在氨或氨前体物质的引入处与scr催化转化器之间。
尽管利用从实践中获知的包括scr催化转化器的排出气体后处理系统,排出气体后处理,具体是氮氧化物还原,可能已经成功地进行,但需要进一步改进排出气体后处理系统。具体而言,所需的是使具有此排出气体后处理系统的紧凑设计的有效排出气体后处理成为可能。
技术实现要素:
从此出发,本发明基于创造出内燃机的新型排出气体后处理系统、具有排出气体后处理系统的内燃机以及用于操作此内燃机的方法的目的。
该目的通过根据权利要求1的内燃机的排出气体后处理系统来解决。根据本发明,排出气体供应管线和排出气体排放管线连接在收纳scr催化转化器的反应器室的公共侧上,且/或其在反应器室的公共侧上延伸到反应器室中,其中在排出气体供应管线与排出气体排放管线之间形成了至scr催化转化器或反应器室的旁路,且其中关闭元件连接在旁路中。排出气体后处理系统的该实施例使得具有紧凑设计的有效排出气体后处理成为可能。围绕反应器室延伸的长旁通管线可省略。
根据有利的进一步发展方案,旁路在引入装置上游在混合区段的区域中,沿排出气体排放管线的方向从排出气体供应管线分叉。该实施例使得特别紧凑的设计和有效的排出气体后处理成为可能。
根据有利的进一步发展方案,连接到旁路上的关闭元件是关闭阀或破裂盘(burstdisc)。该实施例使得特别紧凑的设计和有效的排出气体后处理成为可能。
根据另一个有利的进一步发展方案,排出气体供应管线以下游端通入反应器室中,其中挡板元件与排出气体供应管线的该下游端相互作用,该挡板元件可关于排出气体供应管线的下游端转移。挡板元件使得甚至更紧凑的设计和甚至更有效的排出气体后处理成为可能。
根据另一个有利的进一步发展方案,排出气体排放管线至少在某些区段中优选同心地在外侧包绕排出气体供应管线,其中至scr催化转化器或反应器室的旁路形成在其中排出气体供应管线在外侧上包绕排出气体供应管线,优选与彼此同心地行进的区域中或附近。该实施例使得特别紧凑的设计和有效的排出气体后处理成为可能。
根据本发明的内燃机在权利要求11中限定。用于操作内燃机的根据本发明的方法在权利要求13和14中限定。
附图说明
本发明的优选的其它发展方案从从属权利要求和以下描述获得。本发明的示例性实施例通过附图更详细阐释,而不限于此。这里附图示出:
图1是根据本发明的具有排出气体后来处理系统的内燃机的示意性透视图;
图2是图1的排出气体后处理系统的细节;以及
图3是图2的细节。
参考标号列表
1内燃机
2排出气体增压系统
3排出气体后处理系统
4排出气体涡轮增压器
5排出气体涡轮增压器
6高压涡轮
7低压涡轮
8排出气体供应管线
9scr催化转化器
10反应器室
11排出气体排放管线
12旁路
13关闭元件
14排出气体路线
15端
16引入装置
17喷射圆锥
18混合区段
19侧部
20挡板元件
21管线
22侧部
23侧部。
具体实施方式
本发明涉及内燃机的排出气体后处理系统,例如,发电站中的静止内燃机,或用在船舶上的非静止内燃机,具体而言,排出气体后处理系统用在以重燃料油操作的船舶上的柴油机上。此外,本发明涉及具有此排出气体后处理系统的内燃机,以及用于操作内燃机的方法。
图1示出了具有排出气体增压系统2和排出气体后处理系统3的内燃机1的布置。内燃机可为非静止或静止内燃机,具体是非静止操作的船舶的内燃机1。离开内燃机1的缸的排出气体用于排出气体增压系统2中,以便从排出气体的热能获得机械能,来用于压缩将供应至内燃机1的填充空气。
因此,图1示出了具有排出气体增压系统或排出气体涡轮增压器系统2的内燃机1,排出气体涡轮增压器系统2包括多个排出气体涡轮增压器,即,高压侧上的第一排出气体涡轮增压器4,以及低压侧上的第二排出气体涡轮增压器5。
离开内燃机1的缸的排出气体首先经由第一排出气体涡轮增压器1的高压涡轮6流动,且在其中膨胀,其中在该过程中获得的能量用于第一排出气体涡轮增压器4的高压压缩机中,以便压缩填充空气。
在排出气体的流动方向上所见,第二涡轮增压器5布置在第一排出气体涡轮增压器4下游,已经流过第一排出气体涡轮增压器4的高压涡轮6的排出气体经由其传导,即,经由第二排出气体涡轮增压器5的低压涡轮7。在第二排出气体涡轮增压器5的低压涡轮7中,排出气体进一步膨胀,且在过程中获得的能量用于第二排出气体涡轮增压器5的低压压缩机中,以便同样压缩将供应至内燃机1的缸中的填充空气。
除包括两个排出气体涡轮增压器4和5的排出气体增压系统2之外,内燃机1包括排出气体后处理系统3,其例如为scr、ch4、hcho或氧化排出气体后处理系统。排出气体后处理系统3连接在第一压缩机5的高压涡轮6与第二排出气体涡轮增压器5的低压涡轮7之间,使得离开第一排出气体涡轮增压器4的高压涡轮6的排出气体因此首先在其到达第二排出气体涡轮增压器5的低压涡轮7的区域之前经由排出气体后处理系统3传导。
图1示出了排出气体供应管线8,经由其,从第一排出气体涡轮增压器4的高压涡轮6出发的排出气体可沿布置在反应器室10中的scr催化转化器9的方向传导。
此外,图1示出了排出气体排放管线11,其用于沿第二排出气体涡轮增压器5的低压涡轮7的方向从scr催化转化器9排放排出气体。
从低压涡轮7出发,排出气体经由管线21流动,具体是流入开口中。
通向反应器室10且因此通向定位在反应器室10中的scr催化转化器9的排出气体供应管线8,以及导引远离反应器室10且因此远离scr催化转化器9的排出气体排放管线11经由旁路12联接,关闭元件13整体结合在旁路12中。
在关闭元件13闭合的情况下,旁路12闭合,使得没有排出气体可经由其流动。相比之下,具体是在关闭元件13开启时,排出气体可经由旁路12流动,即,经过反应器室10,且因此经过定位在反应器室10中的scr催化转化器9。
图2以箭头14示出了穿过排出气体后处理系统3的排出气体的流,其中旁路12经由关闭元件13闭合,其中从图2清楚的是,排出气体供应管线8以下游端15通入反应器室10中,其中排出气体供应管线8的该端15的区域中的排出气体经历大约180°的流动偏转,其中流动偏转之后的排出气体经由scr催化转化器9传导。
排出气体后处理系统3的排出气体供应管线8配备引入装置16,经由其,还原剂可引入排气流中,具体是氨或氨前体物质,需要其以便以限定方式转化scr催化转化器9的区域中的排出气体的氮氧化物。排出气体后处理系统3的该引入装置16优选为喷射喷嘴,经由其,氨或氨前体物质喷射到排出气体供应管线8内的排出气流中。图2以圆锥17示出了还原剂喷射到排出气体供应管线8的区域中的排出气流中。
在排出气体的流动方向上所见的位于引入装置16下游且在scr催化转化器9上游的排出气体后处理系统3的区段称为混合区段。具体而言,排出气体供应管线8在引入装置16上游提供混合区段18,其中排出气体可在scr催化转化器9上游与还原剂混合。
如所述,排出气体供应管线8和排出气体排放管线11可经由旁路12联接,以便传导经过反应器室10的排出气体,且因此以打开的旁路12经过scr催化转化器9。这里,提供了排出气体供应管线8和排出气体排放管线11连接到收纳scr催化转化器9的反应器室10的公共侧19上,且/或在反应器室10的该公共侧19上延伸到反应器室10中。由于此,围绕收纳scr催化转化器9的反应器室10延伸的排出气体供应管线8与排出气体排放管线11之间的长旁通管线可省略。因此,旁路12可体现为短而紧凑,使得具有紧凑设计的有效排出气体后处理成为可能。
如从图2清楚那样,排出气体供应管线8在反应器室10的下侧19上延伸到其中,其中排出气体供应管线8的下游端15通入位于与下侧19相对的其顶侧23附近的反应器室10中。排出气体排放管线11连接到反应器室10的下侧19上,且在某些区段中在外侧同心地径向包围排出气体供应管线8,即,在反应器室10外侧行进到其下侧19附近的区域中。图2的示例性实施例中的旁路12形成在定位于其中排出气体排放管线11同心地包绕排出气体供应管线8的区域附近的区域中。由此紧凑设计是可能的。与此相比,还有可能的是,旁路12形成在其中排出气体排放管线11在外侧同心地包绕排出气体供应管线8的区域中。
如已经阐释那样,关闭元件13连接或整体结合在旁路12中。根据第一版本,连接到旁路12中的关闭元件13可体现为关闭阀,其优选取决于操作情形打开或关闭。具体在包括此排出气体后处理系统3的内燃机例如在冷启动操作模式中操作时,和/或具体在需要内燃机的突然动态负载增大时,关闭元件13优选打开,以便绕过scr催化转化器9来在冷启动中加热排出气体涡轮增压器的涡轮,且以便安全地处理在动态负载变化期间或动态负载需求期间生成的排出气体量。
根据本发明的另一个备选方案,连接在旁路12中的关闭元件13可体现为破裂盘。相比于关闭阀,此破裂盘在打开期间被破坏,因此在打开之后不可再闭合。具体而言,当关闭阀13体现为破裂盘时,其具体取决于排出气体供应管线8中的压力与排出气体排放管线11中的压力之间的压差打开。例如,当排出气体供应管线8中由于动态负载需求而压力突然增大时,取决于压力增大,破裂盘被破坏且因此打开。此外,破裂盘可分配至未示出的装置,以便打开破裂盘,此装置例如可为压缩的空气装置,其为了打开破裂盘,将压缩的空气引导到其上。用于打开破裂盘的装置还可机械地打开破裂盘。
排出气体供应管线8以下游端15通入反应器室10中。排出气体供应管线8的该下游端配备挡板元件20,其可关于排出气体供应管线8的下游端15转移。
在所示示例性实施例中,挡板元件20关于通入反应器室10中的排出气体供应管线8的端15线性地转移。挡板元件20关于排出气体供应管线8的下游端15是可转移的,以便关闭下游端15处的排出气体供应管线8或打开下游端15处的排出气体供应管线8。具体是在挡板元件20关闭下游端15处的排出气体供应管线8时,旁路12的关闭元件13优选地打开,以便然后将排出气体完全传导经过scr催化转化器9或经过收纳scr催化转化器9的反应器室10。具体是在挡板元件20打开排出气体供应管线8的下游端15时,旁路12的关闭元件13可完全闭合或至少部分地打开。具体是在挡板元件20打开排出气体供应管线8的下游端15时,挡板元件20关于排出气体供应管线8的下游端15的相对位置具体取决于穿过排出气体供应管线8的排出气体质量流,和/或排出气体供应管线8中的排出气体的排出气体温度,和/或经由引入装置16引入排出气流中的还原剂的量。具有排出气体供应管线8的释放的下游端15的挡板元件20的另一个功能在于存在于排出气流中的液体还原剂的任何微滴都到达挡板元件20,在该处,它们被截住且雾化,以便避免液体还原剂的此微滴到达scr催化转化器9的区域。通过挡板元件20关于具有打开的下游端15的排出气体供应管线8的下游端15的位置,具体也可确定在挡板元件20的区域中的排出气体供应管线8的下游端15的区域中偏转的排出气体是沿位于径向内侧的区段的方向上传导或操纵更强,或是沿位于径向外侧的scr催化转化器9的区段的方向上传导或操纵更强。
根据优选实施例,在下游端15的区域中的排出气体供应管线8是扩张的漏斗状物体来形成扩散器。由于此,在下游端15的区域中的排出气体供应管线8的流动截面增大,其中如具体从图2中清楚那样,可提供的是,在排出气体的流动方向上所见,在排出气体供应管线8的下游端15上游,排出气体供应管线8的流动截面开始减小。因此,图2示出了排出气体的流动方向所见的在引入装置16下游用于还原剂的排出气体供应管线8的流动截面最初是大致恒定的,但然后开始逐渐成锥形,且最终在下游端15的区域中扩张。在此情况下,排出气体供应管线8的下游端15处的流动截面的这样扩张优选经由比排出气体供应管线8最初经由其在下游端15的上游成锥形的区段更短的排出气体供应管线8的区段来实现。
挡板元件20优选在经历形成用于排出气体的流动引导件的面对排出气体供应管线8的一侧22上成钟状弯曲。因此,从图3清楚的是,在挡板元件20的径向内区段处的面对排出气体供应管线8的下游端15的挡板元件20的一侧22具有比其径向外区段上更短的到排出气体供应管线8的下游端15的距离。挡板元件20在排出气体供应管线8的下游端15的方向上相对于侧22的中心中的排出气体的流动方向拉进或弯曲。
在图1的内燃机1的情况中,排出气体后处理系统3定位成竖立在排出气体增压系统2上方。至内燃机1的缸的通路是开放的,但排出气体涡轮增压器4和5的可及性是有限的。然而,反应器室10可在排出气体涡轮增压器4,6上需要维护操作时简单地拆卸。
相比于图1中所示的排出气体增压系统2上方的排出气体后处理系统3的竖立布置,在排出气体增压系统2旁边的排出气体后处理系统3的倾斜90°的水平布置也是可能的,然而其中在此水平布置中,布置的长度增大。然而,内燃机1和排出气体增压系统2然后可用,而无对于不需要拆卸反应器室10的维护操作的限制。
此外,本发明涉及一种用于操作具有上述排出气体后处理系统3的内燃机1的方法。具体是在内燃机在冷启动操作模式中操作时,和/或由内燃机提供的力矩在动态负载需求的意义上动态地增大时,和/或具体在排出气体后处理系统3(具体是scr催化转化器9)阻塞时,连接到旁路12中的关闭元件13自动地打开,以便然后将排出气体传导经过scr催化转化器9或经过收纳scr催化转化器9的反应器室10。在冷启动期间,排出气体的热能可使用,以便例如将低压涡轮快速加热至操作温度,而不必首先加热冷ega系统。当需要来自内燃机的动态负载时,可防止排出气体拥塞且因此排出气体供应管线8中的过高排出气体压力。
在本发明的优选实施例中,其中挡板元件20分配至排出气体供应管线8的下游端15,旁路12具体在分配至排出气体供应管线8的下游端15的挡板元件20关闭排出气体供应管线8时经由关闭元件13自动地打开。相比之下,具体在挡板元件20打开排出气体供应管线8时,旁路12在冷启动操作模式外和动态负载需求外,经由关闭元件13至少部分地闭合,优选地完全闭合。