本发明属于风力发电技术领域,特别是一种考虑逆变器限流特性的直驱式永磁同步风电机组控制方法。
二、
背景技术:
直驱式永磁同步风电机组(dpmsg)由风力机带动永磁同步发电机,通过“背靠背”的双pwm变流器实现频率变换,向电网输送功率。随着风力发电技术的发展,dpmsg因其结构简单、功率密度大、可靠性高,并可免除齿轮箱等优点得到广泛的应用。为了尽可能多地输送有功功率,dpmsg并网运行时常采用零d轴电流控制(zdc),即控制发电机的d轴定子电流为零。
在电网故障引起的暂态过程中,并网逆变器的网侧电压骤降,zdc控制将使逆变器电流迅速增大,无法保证逆变器电流低于安全限值,从而迫使逆变器及整个风电机组退出运行。
三、
技术实现要素:
本发明的目的在于提供一种考虑逆变器限流特性的直驱式永磁同步风电机组控制方法,用以解决电网故障导致直驱式同步风力发电机组脱网的问题。
实现本发明目的的技术解决方案为:一种考虑逆变器限流特性的直驱式永磁同步风电机组控制方法,包括如下步骤:
(1)设置逆变器输出电流限定值ilim,测量并网电流i、电压v,计算并网功率pac;
(2)在整流侧控制器的转速外环中,将逆变器电流参考值i与限定值ilim比较,若i<ilim,则根据最大功率点来确定转速参考值ω*;否则根据电流限定值ilim来确定并网功率参考值,由换流器效率确定风机的期望输出功率,进而确定风机的转速参考值ω*;
(3)采用svpwm控制整流和逆变电路,使风机运行在步骤(2)确定的转速参考值下。
进一步地,步骤(1)所述逆变器输出电流限定值ilim的范围为逆变器输出额定电流的1.2~1.5倍。
进一步地,步骤(2)所述根据电流限定值ilim来确定并网功率参考值,由换流器效率确定风机的期望输出功率,进而确定风机的转速参考值ω*,具体如下:
首先,根据期望输出功率p、风速v、桨叶半径r、空气密度ρ,计算出风能利用系数cp:
再根据公式:
计算出风能利用系数cp对应的λ,求λ的方法是:
公式(2)转换为:
公式(3)两边同时加上λ得到:
令
得到方程f(λ)=λ,
求出λ后,根据公式
已知桨叶半径r、风速v,求出风机的转速参考值ω*:
本发明与现有技术相比,其显著优点为:(1)设定电流限定值,在网侧故障条件下通过降低风力发电机的转速来控制风力发电机的输出功率,从而减小逆变器电流的大小;(2)防止触发过电流保护导致逆变器退出运行,实现直驱式永磁同步发电机在网侧故障条件下维持并网运行。
四附图说明
图1是本发明考虑逆变器限流特性的直驱式永磁同步风电机组控制方法的原理图。
图2是本发明考虑逆变器限流特性的直驱式永磁同步风电机组控制方法流程图。
图3是本发明考虑逆变器限流特性的直驱式永磁同步风电机组控制系统模型图。
图4是本发明考虑逆变器限流特性的直驱式永磁同步风电机组控制系统中注入电网的有功功率来推算风力机的转速的计算模型图。
图5是本发明的实施例中并网电流仿真曲线图。
图6是本发明的实施例中并网功率仿真曲线图。
图7是本发明的实施例中风力机转速仿真曲线图。
五具体实施方式
下面结合附图和工作原理对本发明的具体实施方式进行详细说明。
本发明的主要工作原理是在电网故障引起的暂态过程中,并网逆变器的网侧电压骤降,zdc控制将使逆变器电流迅速增大,通过转速的控制使得风力机向电网输入功率的减小,从而减小逆变器电流的大小,防止触发过电流保护导致逆变器退出运行,实现直驱式永磁同步发电机在网侧故障条件下维持并网运行。
如图1所示,本发明考虑逆变器限流特性的直驱式永磁同步风电机组控制方法,在网侧故障导致并网点电压大幅下降时,考虑并网逆变器的限流特性,调整风机转速和并网功率,以解决网侧电流急剧上升导致机组脱网的问题,具体包括如下步骤:
(1)设置逆变器输出电流限定值ilim,测量并网电流i、电压v,计算并网功率pac;
(2)在整流侧控制器的转速外环中,将逆变器电流参考值i与限定值ilim比较,若i<ilim,则根据最大功率点来确定转速参考值ω*;否则根据电流限定值ilim来确定并网功率参考值,由换流器效率确定风机的期望输出功率,进而确定风机的转速参考值ω*;
(3)采用svpwm控制整流和逆变电路,使风机运行在所寻最佳转速下的方法为:通过改变svpwm的调制度和占空比控制整流和逆变电路,使风机运行在步骤(2)确定的转速参考值下。
当网侧故障使得逆变器电流快速上升时,由于降低了风机的转速参考值ω*,风机的输出功率减小;同时逆变器电流受到限制,不会触发过电流保护,使风电机组能够在低电压下维持并网运行。
实施例
本发明是一种考虑逆变器限流特性的直驱式永磁同步风电机组控制方法。结合图1,本发明实例的控制方法包括以下步骤:
1、初始化各参数,风力机参数:风速v=12m/s,桨叶半径r=31m,最佳叶尖速比λopt=8,桨距角β=0,空气密度ρ=1.225kg/m3;直驱式风力发电机参数:定子电阻rs=0.010307ω,横轴电感ld=2*10-4h,纵轴电感lq=2*10-4h,磁链ψf=1.029,极对数p=196;电容参数:电容:c=0.22f,电容电压udc=1400v;电网参数:电压um=380v,频率f=60hz。电流限定值ilim=4800a。
2、整流器的控制方式是采用速度外环和电流内环双闭环控制方式。外环的速度参考值为ω*,将ω*与实际电机速度相比较,偏差量经过pi调节器得到有功电流的参考值
3、逆变器的控制方式是采用直流电压外环和电流内环双闭环控制方式。在直流电压外环中,由直流侧的电压实际值udc与参考电压信号
4、根据图2所示,电压降低时限制并网电流的控制流程是:在完成系统参数设置后,测量电网电压ed、eq和电流idg、iqg,根据功率公式pac=edidg+eqiqg,计算出并网功率。在模型运行时间0.02s的时,引入电压降落故障,电压降低到额定值的60%,故障持续到1s。判断并网电流设定值是否超过限定值,如果没有超过限定值,则按照最佳叶尖速比求得的转速ω1运行;如果超过限定值,引入电流限幅环节,根据功率公式计算出iqg=4800a情况下的电网功率,通过效率推算出风力机发出的有功功率,再根据有功功率推断出发电机的目标转速ω2。最后,通过pwm整流器和逆变器的控制实现转速控制,通过转速控制实现功率的控制,通过功率控制实现电流的控制。步骤2中转速参考值ω*就是转速目标值ω1或ω2。
5、在0.02s时刻引入电压降落的故障,则风机在0~0.02s的目标转速为额定转速ω1,0.02~1s期间的目标转速为ω2。风机的控制系统模型如图3所示。该模型判断电流设定值是否超过限定值,如果没有超过,则按照最佳叶尖速比求得转速目标值ω1;如果超过限定值,则将电流iqg的设定值限制为4800a,再根据功率公式计算出iqg=4800a情况下的并网功率,通过换流器效率推算出风力机发出的有功功率,再根据有功功率推断出发电机的目标转速ω2。
通过注入电网的有功功率来推算风力机的转速的方法如图4所示,其工作原理是:
首先,根据期望输出功率p、风速v、桨叶半径r、空气密度ρ,计算出风能利用系数cp:
再根据公式:
计算出风能利用系数cp对应的λ,求λ的方法是:
公式(2)转换为:
公式(3)两边同时加上λ得到:
令
得到方程f(λ)=λ,
求出λ后,根据公式
已知桨叶半径r、风速v,求出风机的转速参考值ω*:
图4即为该式对应的计算模型框图。
6、根据以上的步骤1~5,可以得到系统仿真波形。图5是并网电流仿真曲线图;图6是并网有功功率仿真曲线图;图7是风力机转速仿真曲线图。由上可知,通过转速的控制使得风力机向电网输入功率减小,从而减小了逆变器电流的大小,防止触发过电流保护导致逆变器退出运行,实现了直驱式永磁同步发电机在网侧故障条件下维持并网运行。