镀锡铜合金端子材及其制造方法与流程

文档序号:12509813阅读:1114来源:国知局
镀锡铜合金端子材及其制造方法与流程

本发明涉及一种作为使用于汽车或民用设备等的电气配线的连接的连接器用端子,尤其涉及一种作为多针连接器用的端子而有用的镀锡铜合金端子材及其制造方法。

本申请主张基于2014年9月11日申请的日本专利申请2014-185033的优先权,并将其内容援用于此。



背景技术:

镀锡铜合金端子材通过在由铜合金构成的基材上实施镀铜及镀锡之后进行回流处理,在表层的Sn类表面层的下层形成Cu-Sn合金层,被广泛地用作端子材。

近年来,例如在汽车领域电气化急速推进,电气设备的电路数随之增加,因此,所使用的连接器的小型化、多针化变得显著。若将连接器多针化,则即使每个针的插入力较小,插入连接器时连接器整体仍需要较大的力,而有可能使生产率下降。因此,尝试通过减小镀锡铜合金材的摩擦系数来降低每个针的插入力。

例如,将基材粗化,并规定Cu-Sn合金层的表面露出度(专利文献1),但存在接触电阻增大、焊料润湿性下降等问题。并且,也有规定Cu-Sn合金层的平均粗糙度(专利文献2)的技术,但存在为了进一步提升插拔性而无法使例如动摩擦系数成为0.3以下等问题。

并且,在基材上依次实施镀镍、镀铜、镀锡,并进行回流处理,而作成基材/Ni/CuSn/Sn的层结构(专利文献3),但因以防止加热时的接触电阻劣化为目的,而无法使动摩擦系数成为0.3以下。

在此,若将雌端子按压雄端子的力(接触压力)设为P、将动摩擦系数设为μ,则雄端子通常从上下两个方向被雌端子包夹,因此连接器的插入力F成为F=2×μ×P。为了减小该插入力F,有效的是减小接触压力P,但为了确保连接器嵌合时的雄、雌端子的电连接可靠性,不能一味地减小接触压力P,而需为3N左右。多针连接器中也有超过50针/连接器的连接器,但连接器整体的插入力F优选为100N以下,尽可能优选为80N以下或70N以下,因此,动摩擦系数μ需为0.3以下。

专利文献

专利文献1:日本特开2007-100220号公报

专利文献2:日本特开2007-636324号公报

专利文献3:日本专利第4319247号公报

以往,开发出了表面的摩擦阻力得到降低的端子材,但当为嵌合雄、雌端子的连接端子时,两者使用相同的材料种类的情况较少,尤其雄端子广泛使用以黄铜为基材的通用的带镀锡的端子材。因此,即使仅对雌端子使用低插入力端子材,仍存在降低插入力的效果较小等问题。



技术实现要素:

本发明是鉴于前述的课题而完成的,其目的在于提供一种对于使用通用的镀锡端子材的端子也能够降低嵌合时的插入力的镀锡铜合金端子材。

本发明人等进行了深入研究的结果,认识到如下事实:即,表层的Sn层较薄,使下层的Cu-Sn合金层仅有一小部分从该表面露出有利于降低动摩擦系数。然而,因Sn层变薄,导致电连接特性下降。因此,发现了如下事实:即,若将Cu-Sn合金层作成陡峭的凹凸形状,并将表层附近作成Sn层与Cu-Sn合金层的复合结构,则能够将Cu-Sn合金层的露出控制在限制的范围而抑制电连接特性的下降,并且位于较硬的Cu-Sn合金层之间的较软的Sn发挥润滑剂的作用而降低动摩擦系数,可获得低插入力端子材。但是,若将该低插入力端子材仅用于其中一个端子,而另一个设为通用的镀锡材时,降低摩擦系数的效果减半。其原因在于,使Cu-Sn合金层的一部分从表面露出时,从表面露出的Cu-Sn合金层与Sn层间产生阶差,较硬的Cu-Sn合金层形成凸部,因此,若仅用于其中一个端子,则会产生所谓的磨料磨损,即,切削另一个通用的镀锡材的较软的Sn类表面层。基于这种见解,采用以下解决方式。

本发明的镀锡铜合金端子材,在由铜或铜合金构成的基材上的表面形成有Sn类表面层,且在该Sn类表面层与所述基材之间,从所述Sn类表面层依次形成有Cu-Sn合金层以及Ni层或Ni合金层,所述镀锡铜合金端子材中,所述Cu-Sn合金层为仅由金属间化合物合金的层,所述金属间化合物合金为Cu6Sn5合金的Cu的一部分取代为Ni的金属间化合物合金,所述Cu-Sn合金层的一部分从所述Sn类表面层的表面露出而形成多个露出部,所述Sn类表面层的平均厚度为0.2μm以上且0.6μm以下,所述Cu-Sn合金层的所述露出部相对于所述镀锡铜合金端子材的表层的表面积的面积率为1%以上且40%以下,所述Cu-Sn合金层的所述各露出部的当量圆直径的平均值为0.1μm以上且1.5μm以下,所述镀锡铜合金端子材的表面的突出峰高Rpk为0.005μm以上且0.03μm以下,动摩擦系数为0.3以下。

通过将镀锡铜合金端子材的表面的突出峰高Rpk设为0.005μm以上且0.03μm以下,将Sn类表面层的平均厚度设为0.2μm以上且0.6μm以下,将Cu-Sn合金层的露出部相对于镀锡铜合金端子材的表层的表面积的面积率设为1~40%,将Cu-Sn合金层的各露出部的当量圆直径的平均值设为0.1μm以上且1.5μm以下,能够实现镀锡铜合金端子材的动摩擦系数为0.3以下。这种情况下,因Cu的一部分取代为Ni的(Cu,Ni)6Sn5合金的存在,Cu-Sn合金层的表面形成微细的凹凸形状,而将镀锡铜合金端子材的突出峰高Rpk及Cu-Sn合金层的露出部的面积率抑制于所限制的范围。

将镀锡铜合金端子材的表面的突出峰高Rpk设为0.03μm以下的原因在于,若超过0.03μm则会产生较硬的Cu-Sn合金层切削滑动对象材料的较软的Sn层的所谓的磨料磨损,使摩擦阻力变大。将镀锡铜合金端子材的突出峰高Rpk设为0.005μm以上的原因在于,当Cu-Sn合金层从Sn类表面层的表面露出时,在Sn类表面层与Cu-Sn合金层的露出部之间会产生阶差。

将Sn类表面层的平均厚度设为0.2μm以上且0.6μm以下的原因在于,小于0.2μm时会导致焊料润湿性的下降、电连接可靠性的下降;若超过0.6μm则无法使表层形成Sn层与Cu-Sn合金层的复合结构而仅由Sn所占据,从而导致动摩擦系数增大。更优选Sn类表面层的平均厚度为0.3μm~0.5μm。

Cu-Sn合金层的露出部相对于镀锡铜合金端子材的表面积的面积率小于1%时无法使动摩擦系数成为0.3以下;若超过40%,则焊料润湿性等电连接特性会下降。更优选面积率为2%~20%。

Cu-Sn合金层的各露出部的当量圆直径的平均值小于0.1μm时,无法使Cu-Sn合金层的露出部的面积率成为1%以上;若超过1.5μm,则位于较硬的Cu-Sn合金层之间的较软的Sn无法充分发挥作为润滑剂的作用,而无法使动摩擦系数成为0.3以下。更优选当量圆直径为0.2μm~1.0μm。

另外,已知Sn类表面层,若动摩擦系数测定时的垂直载荷变小,则动摩擦系数会增大,但本发明,即使降低垂直载荷,动摩擦系数也几乎没有变化,使用于小型端子也能够发挥效果。

在本发明的镀锡铜合金端子材中,所述Cu-Sn合金层中的Ni含有率为1at%以上且25at%以下即可。将Ni含有率规定为1at%以上的原因在于,小于1at%时,无法形成Cu6Sn5合金的Cu的一部分取代为Ni的金属间化合物合金,而无法形成陡峭的凹凸形状;规定为25at%以下的原因在于,若超过25at%,则有Cu-Sn合金层的形状变得过于微细的倾向,若Cu-Sn合金层变得过于微细,则有无法使动摩擦系数成为0.3以下的情况。

本发明的镀锡铜合金端子材的制造方法,通过在由铜合金构成的基材上,依次实施镀镍或镀镍合金、镀铜及镀锡之后,进行回流处理,而制造在所述基材上形成有Ni层或Ni合金层、Cu-Sn合金层和Sn类表面层的镀锡铜合金端子材,所述镀锡铜合金端子材的制造方法中,将由所述镀镍或镀镍合金形成的第1镀层厚度设为0.05μm以上且1.0μm,将由所述镀铜形成的第2镀层厚度设为0.05μm以上且0.20μm以下,将由所述镀锡形成的第3镀层厚度设为0.5μm以上且1.0μm以下,所述回流处理具有:加热工序,将各镀层以20~75℃/秒的升温速度加热至240~300℃的峰值温度;一次冷却工序,达到所述峰值温度之后,以30℃/秒以下的冷却速度冷却2~15秒;及二次冷却工序,在一次冷却之后以100~300℃/秒的冷却速度冷却。

如前所述,通过对基材实施镀镍或镀镍合金,在回流处理后形成(Cu,Ni)6Sn5合金,由此,Cu-Sn合金层的凹凸变得更陡峭而能够使动摩擦系数成为0.3以下。

由镀镍或镀镍合金形成的第1镀层厚度小于0.05μm时,(Cu,Ni)6Sn5合金所含有的Ni含有率变小,无法形成陡峭的凹凸形状的Cu-Sn合金层;若超过1.0μm则难以进行弯曲加工等。另外,使Ni层或Ni合金层具有作为防止Cu从基材扩散的阻隔层的功能而提升耐热性时,由镀镍或镀镍合金形成的第1镀层厚度优选设为0.1μm以上。镀镍或镀镍合金所使用的金属并不限定于纯Ni,可以是Ni-Co或Ni-W等Ni合金。

由镀铜形成的第2镀层厚度小于0.05μm时,(Cu,Ni)6Sn5合金所含有的Ni含有率变大,Cu-Sn合金层的形状变得过于微细;若超过0.20μm,则(Cu,Ni)6Sn5合金所含有的Ni含有率变小,无法形成陡峭的凹凸形状的Cu-Sn合金层。

由镀锡形成的第3镀层厚度若小于0.5μm,则回流后的Sn类表面层会变薄而损害电连接特性;若超过1.0μm,则Cu-Sn合金层从所述Sn类表面层的表面露出的露出部的面积率会变小而难以使动摩擦系数成为0.3以下。

在回流处理中,加热工序中的升温速度若小于20℃/秒,则在直到镀锡熔融为止的期间Cu原子在Sn的晶界中优先扩散,而在晶界附近金属间化合物异常生长,因此无法形成陡峭的凹凸形状的Cu-Sn合金层。另一方面,若升温速度超过75℃/秒,金属间化合物无法充分生长,而在其后的冷却中无法获得所期望的金属间化合物合金。

并且,加热工序中的峰值温度若小于240℃,则Sn无法均匀地熔融;若峰值温度超过300℃,则金属间化合物急剧地生长,Cu-Sn合金层的凹凸变大,因此不优选。

并且,在冷却工序中,通过设置冷却速度较小的一次冷却工序,使Cu原子在Sn粒内平稳地扩散,而以所期望的金属间化合物结构生长。该一次冷却工序的冷却速度若超过30℃/秒,则金属间化合物因受急剧冷却的影响而无法充分地生长,使Cu-Sn合金层无法从表面露出。冷却时间小于2秒也同样地无法使金属间化合物生长。若冷却时间超过15秒,则Cu6Sn5合金的生长会过度地进行而粗大化,根据镀铜层的厚度,在Cu-Sn合金层下形成Ni-Sn化合物层,使Ni层的阻隔性降低。该一次冷却工序适用空气冷却。

在该一次冷却工序之后,通过二次冷却工序快速冷却而以所期望的结构完成金属间化合物合金的生长。若该二次冷却工序的冷却速度小于100℃/秒,则金属间化合物加快,而无法获得所期望的金属间化合物形状。

根据本发明,由于动摩擦系数小,因此能够提供一种可兼备低接触电阻、良好的焊料润湿性与低插拔性,并且在低载荷下也有效且最适合小型端子的镀锡铜合金端子材。尤其在使用于汽车及电子部件等的端子中,在要求接合时的低插入力、稳定的接触电阻、良好的焊料润湿性的部位具有优势。

附图说明

图1为表示实施例3、比较例4、比较例10的X射线衍射图案的图表。

图2为实施例3的镀锡铜合金端子材的剖面的STEM图像。

图3为沿着图2的白线部分的EDS分析图。

图4为比较例4的镀锡铜合金端子材的剖面的STEM图像。

图5为沿着图4的白线部分的EDS分析图。

图6为比较例10的镀锡铜合金端子材的剖面的STEM图像。

图7为沿着图6的白线部分的EDS分析图。

图8为概括表示用于测定动摩擦系数的装置的主视图。

具体实施方式

说明本发明的一实施方式的镀锡铜合金端子材。

本实施方式的镀锡铜合金端子材,在由铜或铜合金构成的基材上的表面形成有Sn类表面层,且在Sn类表面层与所述基材之间,从Sn类表面层依次形成有Cu-Sn合金层以及Ni层或Ni合金层。

基材若由铜或铜合金构成,则其组成并不特别限定。

Ni层或Ni合金层为由纯Ni、Ni-Co或Ni-W等Ni合金构成的层。

Cu-Sn合金层为仅由金属间化合物合金的层,所述金属间化合物合金为Cu6Sn5合金的Cu的一部分取代为Ni的金属间化合物合金,所述Cu-Sn合金层的一部分从Sn类表面层的表面露出而形成多个露出部。

这些层如后所述,通过在基材上依次实施镀镍、镀铜、镀锡并进行回流处理而形成,在Ni层或Ni合金层上形成有Cu-Sn合金层。

在该镀锡铜合金端子材中,重要的是从表面露出的Cu-Sn合金层呈微细且与Sn类表面层的阶差较小而呈平滑,将由Cu-Sn合金层的露出部及Sn类表面层形成的镀锡铜合金端子材的表面的突出峰高Rpk设为0.005μm以上且0.03μm以下。突出峰高Rpk为以JISB0671-2定义的、位于粗糙度曲线的芯部上的突出峰的平均高度,可通过利用激光显微镜进行测定来求得。

Sn类表面层的平均厚度为0.2μm以上且0.6μm以下,Cu-Sn合金层的一部分(露出部)从该Sn类表面层的表面露出。而且,形成为露出部相对于镀锡铜合金端子材的表面积的面积率为1%以上且40%以下,Cu-Sn合金层的各露出部的当量圆直径的平均值为0.1μm以上且1.5μm以下。

这种结构的镀锡铜合金端子材,通过存在有仅由(Cu,Ni)6Sn5合金构成的Cu-Sn合金层,而形成为表层较硬的Cu-Sn合金层与较软的Sn类表面层的复合结构,其中,所述(Cu,Ni)6Sn5合金中的Cu的一部分取代为Ni。该较硬的Cu-Sn合金层的一部分(露出部)从Sn类表面层略微露出而形成为多个露出部,存在于各露出部的周围的较软的Sn发挥润滑剂的作用,而实现0.3以下的较低的动摩擦系数。由于相对于镀锡铜合金端子材的表面积,该Cu-Sn合金层的各露出部的面积率为1%以上且40%以下的被限制的范围,因此不会损害Sn类表面层所具有的优良的电连接特性。

这种情况下,将Cu-Sn合金层中的Ni含有率设为1at%以上且25at%以下。将Ni含有率规定为1at%以上的原因在于,小于1at%时,无法形成Cu6Sn5合金的Cu的一部分取代为Ni的金属间化合物合金,而无法形成陡峭的凹凸形状;规定为25at%以下的原因在于,若超过25at%,则有Cu-Sn合金层的形状变得过于微细的倾向,若Cu-Sn合金层变得过于微细,则有无法使动摩擦系数成为0.3以下的情况。

将Sn类表面层的平均厚度设为0.2μm以上且0.6μm以下的原因在于,小于0.2μm时会导致焊料润湿性的下降、电连接可靠性的下降;若超过0.6μm则无法使表层形成Sn层与Cu-Sn合金层的复合结构而仅由锡所占据,从而导致动摩擦系数增大。更优选Sn类表面层的平均厚度为0.3μm~0.5μm。

端子材的表面的Cu-Sn合金层的露出部的面积率小于1%时无法使动摩擦系数成为0.3以下;若超过40%,则焊料润湿性等电连接特性会下降。更优选面积率为2%~20%。

Cu-Sn合金层的各露出部的当量圆直径的平均值小于0.1μm时,无法使露出部的面积率成为1%以上;若超过1.5μm,则位于较硬的Cu-Sn合金层之间的较软的锡(Sn)无法充分发挥作为润滑剂的作用,而无法使动摩擦系数成为0.3以下。更优选当量圆直径为0.2μm~1.0μm。

并且,已知Sn类表面层,若动摩擦系数测定时的垂直载荷变小则动摩擦系数会增大,但本发明的产品,即使降低垂直载荷,动摩擦系数也几乎没有变化,使用于小型端子也能够发挥效果。

其次,关于该端子材的制造方法进行说明。

作为基材,准备由铜或Cu-Ni-Si类等铜合金构成的板材。通过对该板材进行脱脂、酸洗等处理而使表面清洁之后,依次实施镀镍、镀铜、镀锡。

镀镍只要使用通用的镀镍浴即可,例如能够使用以硫酸(H2SO4)与硫酸镍(NiSO4)为主成分的硫酸浴。将镀浴的温度设为20℃以上且50℃以下、电流密度设为1~30A/dm2以下。将由该镀镍形成的镀镍层的膜厚(第1镀层厚度)设为0.05μm以上且1.0μm以下。其原因在于,第1镀层厚度小于0.05μm时,(Cu,Ni)6Sn5合金所含有的Ni含有率变小,无法形成陡峭的凹凸形状的Cu-Sn合金层;若第1镀层厚度超过1.0μm则难以进行弯曲加工等。

镀铜只要使用通用的镀铜浴即可,例如能够使用以硫酸铜(CuSO4)及硫酸(H2SO4)为主成分的硫酸铜浴。将镀浴的温度设为20~50℃、电流密度设为1~30A/dm2以下。将由该镀铜形成的镀铜层的膜厚(第2镀层厚度)设为0.05μm以上且0.20μm以下。其原因在于,第2镀层厚度小于0.05μm时,(Cu,Ni)6Sn5合金所含有的Ni含有率变大,Cu-Sn合金层的形状变得过于微细;若第2镀层厚度超过0.20μm,则(Cu,Ni)6Sn5合金所含有的Ni含有率变小,无法形成陡峭的凹凸形状的Cu-Sn合金层。

作为用于形成镀锡层的镀浴,只要使用通用的镀锡浴即可,例如能够使用以硫酸(H2SO4)与硫酸锡(SnSO4)为主成分的硫酸浴。将镀浴的温度设为15~35℃、电流密度设为1~30A/dm2。将由该镀锡形成的镀锡层的膜厚(第3镀层厚度)设为0.5μm以上且1.0μm以下。第3镀层厚度若小于0.5μm,则回流后的Sn类表面层会变薄而损害电连接特性;若第3镀层厚度超过1.0μm,则Cu-Sn合金层从端子材的表面露出的露出部的面积率会变小而难以使动摩擦系数成为0.3以下。

实施各电镀处理之后,进行加热来进行回流处理。

回流处理为具有如下工序的处理:加热工序,在形成有CO还原性气氛环境的加热炉内,将电镀后的处理材(基材)以20~75℃/秒的升温速度加热3~15秒至240~300℃的峰值温度;一次冷却工序,达到该峰值温度之后,以30℃/秒以下的冷却速度冷却2~15秒;及二次冷却工序,在一次冷却之后以100~300℃/秒的冷却速度冷却0.5~5秒。一次冷却工序通过空气冷却来进行,二次冷却工序通过使用10~90℃的水的水冷却来进行。

通过在还原性气氛环境下进行该回流处理,防止在镀锡表面生成熔融温度较高的锡氧化物皮膜,而能够以更低的温度且更短的时间进行回流处理,并更容易制作所期望的金属间化合物结构。并且,通过将冷却工序设为两个阶段,并设置冷却速度较小的一次冷却工序,使Cu原子在Sn粒内平稳地扩散,而以所期望的金属间化合物结构生长。而且,通过在此后进行快速冷却来停止金属间化合物合金的生长,而能够在所期望的结构上固定化。

以高电流密度电沉积的Cu与Sn稳定性较低,在室温下也会发生合金化或晶粒粗大化,而难以通过回流处理作成所期望的金属间化合物结构。因此,优选在电镀处理之后迅速进行回流处理。具体而言,需要在15分钟以内,优选在5分钟以内进行回流。电镀后的放置时间过短虽然不会造成问题,但在通常的处理线上,从结构考虑约为1分钟后。

实施例

(雌端子试样)

将板厚0.25mm的铜镍硅类(Cu-Ni-Si类)铜合金板作为基材,依次实施镀镍、镀铜、镀锡,再进行回流处理而制作各雌端子试样用的试料。镀镍、镀铜及镀锡的电镀条件在实施例、比较例中均相同,示为如表1。表1中,Dk为阴极的电流密度,ASD为A/dm2的简称。

[表1]

实施了电镀处理后,回流处理在进行完最后的镀锡处理的1分钟后进行,并以各种条件进行了加热工序、一次冷却工序、二次冷却工序。将各试验条件及所获得的各试料的镀层的厚度总结于表2。

[表2]

关于回流后的这些试料,测定Sn类表面层的平均厚度、(Cu,Ni)6Sn5合金中的Ni含有率、Cu6Sn5合金以外的合金层的存在、突出峰高Rpk、Cu-Sn合金层的露出部在Sn类表面上的面积率、露出部的当量圆直径的平均值,并且评价了动摩擦系数、焊料润湿性、光泽度、电可靠性(接触电阻)。

利用精工电子纳米科技有限公司(エスアイアイ·ナノテクノロジー株式会社)制萤光X射线膜厚计(SFT9400)测定了Sn类表面层的厚度。首先测定回流后的试料的总Sn类表面层的厚度之后,对例如Leybold Co.,Ltd.(レイボルド株式会社)制的L80等纯Sn进行蚀刻并在由不腐蚀Cu-Sn合金层的成分构成的电镀被膜剥离用的蚀刻液浸渍数分钟,由此去除Sn类表面层,使其下层的Cu-Sn合金层露出并测定换算成纯Sn的Cu-Sn合金层的厚度之后,将(总Sn类表面层的厚度-换算成纯Sn的Cu-Sn合金层的厚度)定义为Sn类表面层的厚度。

在Cu-Sn合金层中,关于(Cu,Ni)6Sn5合金中的Ni含有率,以基于剖面STEM图像的观察及EDS分析的面分析确定合金的位置,并以点分析求出(Cu,Ni)6Sn5合金中的Ni的含有率。关于Cu6Sn5合金以外的合金层的有无,以基于剖面STEM图像的观察及EDS分析的面分析确定出合金的位置,并通过深度方向的线分析求出Cu6Sn5合金以外的合金层的有无。并且,除剖面观察外,关于更广范围的Cu6Sn5合金以外的合金层的有无,通过浸渍于镀锡被膜剥离用的蚀刻液而去除Sn类表面层,使其下层的Cu-Sn合金层露出后,测定使用CuKα线的X射线衍射图案来判断。测定条件如下:

荷兰帕纳科公司(PANalytical)制:MPD1880HR

使用管球:Cu Kα线

电压:45kV

电流:40mA

利用基恩士公司(株式会社キーエンス)制激光显微镜(VK-X200),以物镜150倍(测定视角96μm×72μm)的条件,由在长边方向取5点、在短边方向取5点共计10点测定的Rpk的平均值来求出了表面的突出峰高Rpk。

将表面氧化膜去除后,通过扫描离子显微镜观察100×100μm的区域来求出了Cu-Sn合金层的露出部的面积率及当量圆直径。在测定原理上,由于将存在于从最表面至20nm左右的深度区域的Cu6Sn5合金成像为白色,因此使用图像处理软件计算各个白色区域的面积,算出了白色区域的面积相对于测定区域的总面积的比率作为Cu-Sn合金层的露出部的面积率。

并且,将具有与各露出部(白色区域)的面积同等面积的圆的直径作为各露出部的当量圆直径,算出了其平均值。当量圆直径是指,在粒径分布的测定中,对于粒子形状不规则的粒子,将换算成具有与观察到的该粒子的面积同等面积的圆的直径的值视为粒子的直径。

(动摩擦系数测定用雄端子试样)

以板厚0.25mm的铜合金板(C2600、Cu:70质量%-Zn:30质量%)作为基材,依次实施镀铜、镀锡,再进行回流处理而制作雄端子试样用的试料。回流后的Sn类表面层的厚度为0.6μm,无Cu-Sn合金层的露出。

使用该雄端子试样与以表2的各条件所制作的各雌端子试样来测定了动摩擦系数。将各试料作成板状的雄端子试样与呈内径1.5mm的半球状的雌端子试样,模拟嵌合型的连接器的雄端子与雌端子的接点部,利用Trinity-Lab Inc.(株式会社トリニティーラボ)制的摩擦测定机(μV1000),测定两个试样间的摩擦力并求出了动摩擦系数。

根据图8的说明,在水平的基台11上固定雄端子试样12,在其上方载置雌端子试样13的半球凸面使电镀面彼此接触,对雌端子试样13通过砝码14施加500gf的载荷P而按压了雄端子试样12。在施加该载荷P的状态下,通过测压元件15测定了将雄试样12以滑动速度80mm/分钟在由箭号所示的水平方向拉伸10mm时的摩擦力F。由该摩擦力F的平均值Fav与载荷P求出动摩擦系数(=Fav/P)。

关于焊料润湿性,将各试料切成宽度10mm的试料,使用松脂类活性助焊剂以弧面状沾锡(Meniscograph)法测定了过零时间(将试料浸渍于焊料浴温230℃的Sn-37%Pb焊料中,以浸渍速度2mm/sec、浸渍深度2mm、浸渍时间10sec的条件测定)。将焊料过零时间为3秒以下评价为良,将超过3秒的情况评价为不良。

利用日本电色工业株式会社(日本電色工業株式会社)制的光泽度计(型号:PG-1M),按照JIS Z 8741,以入射角60度测定了光泽度。

为了评价电可靠性,在大气中,160℃下加热500小时,并测定了接触电阻。测定方法按照JIS-C-5402,通过4端子接触电阻试验机(山崎精机研究所(山崎精機研究所)制:CRS-113-AU),以滑动式(1mm)测定0至50g的载荷变化-接触电阻,以载荷为50g时的接触电阻值进行了评价。

将这些测定结果、评价结果示于表3。

[表3]

由该表3明确可知,在实施例中动摩擦系数均为0.3以下,较小,焊料润湿性良好,光泽度也高且外观良好,接触电阻也显示出10mΩ以下。尤其通过镀镍形成了厚度0.1μm以上的镀镍层的实施例1至4及7、8,均显示出4mΩ以下的较低接触电阻。

相对于此,比较例1、3、5、7、9、12中,由于Cu-Sn合金层的露出部的面积率小于1%,因此动摩擦系数为0.3以上。比较例2、6中,由于露出部的面积率超过40%,因此焊料润湿性、光泽度差。比较例4中,由于Cu6Sn5合金中不含Ni,且能够确认到Cu3Sn合金的存在,因此露出部的当量圆直径的平均值超过1.5μm,因此,动摩擦系数超过0.3。

比较例8、11由于偏离回流条件,Rpk超过0.03μm而产生磨料磨损,因此动摩擦系数超过0.3。比较例10由于偏离回流条件,因此形成了Ni3Sn4合金,结果Ni层的阻隔性下降且接触电阻超过9mΩ。

图1为实施例3与比较例4、10的25°至46°的X射线衍射图案。比较这些图形可知,实施例3仅检测出了基材的Cu、底镀层的Ni及Cu6Sn5合金的峰,但比较例10在31.7°附近检测出了Ni3Sn4合金的峰,比较例4在37.8°附近检测出了Cu3Sn合金的峰。并且,实施例3与比较例10中,由于Cu6Sn5合金的峰向高角度侧位移,可知Cu6Sn5合金中的Cu的一部分被取代为Ni。

图2及图3为实施例3的试料的剖面STEM图像与EDS分析结果,(a)为Ni层、(b)为由(Cu,Ni)6Sn5合金构成的Cu-Sn合金层、(c)为锡层。

图4、图5为比较例4的剖面STEM图像与EDS分析结果,(a)为Ni层、(b)为Cu3Sn合金层、(c)为(Cu,Ni)6Sn5合金层、(d)为锡层。

图6、图7为比较例10的剖面STEM图像与EDS线分析结果,(a)为Ni层、(b)为(Ni,Cu)3Sn4合金层、(c)为(Cu,Ni)6Sn5合金层、(d)为锡层。

比较这些照片及图表可知,实施例中,在Ni层与锡层之间仅形成仅由含有Ni的Cu6Sn5合金((Cu,Ni)6Sn5合金)构成的Cu-Sn合金层。另一方面,比较例4中,可知在Cu6Sn5合金层与Ni层的界面形成Cu3Sn合金层,且Cu6Sn5合金中不含Ni,Cu-Sn合金层的凹凸也较粗糙且平缓。并且,比较例10中,可知在含有Ni的Cu6Sn5合金层与Ni层的界面形成有含Cu的Ni3Sn4合金层。

产业上的可利用性

由于动摩擦系数小,因此能够提供一种可兼备低接触电阻、良好的焊料润湿性及低插拔性,并且在低载荷下也有效且最适合小型端子的镀锡铜合金端子材。尤其在使用于汽车及电子部件等的端子中,在要求接合时的低插入力、稳定的接触电阻、良好的焊料润湿性的部位具有优势。

符号说明

11-基台,12-雄端子试样,13-雌端子试样,14-砝码,15-测压元件。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1