本申请是分案申请,其原申请的国际申请号为pct/us2012/031639,国际申请日为2012年03月30日,中国国家申请号为201280017225.7,进入中国国家阶段的进入日为2013年10月08日,发明名称为“以水为主的电化学氢催化剂动力系统”。相关申请案的交叉参考本申请主张以下美国临时申请的优先权的权益:2011年4月5日申请的第61/472,076号;2011年5月5日申请的第61/482,932号;2011年5月13日申请的第61/485,769号;2011年5月27日申请的第61/490,903号;2011年6月17日申请的第61/498,245号;2011年7月8日申请的第61/505,719号;2011年8月5日申请的第61/515,505号;2011年9月23日申请的第61/538,534号;2011年11月14日申请的第61,559,504号;2011年12月2日申请的第61,566,225号;2011年12月21日申请的第61/578,465号;2012年1月27日申请的第61/591,532号;和2012年3月19日申请的第61/612,607号,所有所述文献均以全文引用的方式并入本文中。技术实现要素:本发明涉及一种产生电和热能中的至少一种的电化学动力系统,其包含相对于大气封闭的容器,该容器包含至少一个阴极;至少一个阳极;至少一个双极板;和于电池操作期间在单独的电子流和离子质量输送下构成分数氢(hydrino)反应物的反应物,所述反应物包含至少两种选自以下的组分:a)至少一种h2o来源;b)包含选自nh、oh、oh-、新生h2o、h2s或mnh2中的至少一种的至少一种催化剂来源或催化剂,其中n为整数且m为碱金属;和c)至少一种原子氢来源或原子氢、一或多种用于形成催化剂来源、催化剂、原子氢来源和原子氢中的至少一种的反应物;一或多种引发原子氢的催化的反应物;和载体,其中阴极、阳极、反应物和双极板的组合维持各阴极与相应阳极之间的化学电位以允许原子氢的催化传播,且该系统还包含电解系统。在一个实施方式中,该电化学动力系统的电解系统间歇电解h2o以提供原子氢来源或原子氢且使电池放电以使该循环的净能量平衡存在增益。反应物可包含至少一种选自以下的电解质:至少一种熔融氢氧化物;至少一种低共熔盐混合物;熔融氢氧化物与至少一种其它化合物的至少一种混合物;熔融氢氧化物与盐的至少一种混合物;熔融氢氧化物与卤化物盐的至少一种混合物;碱性氢氧化物(alkalinehydroxide)与碱性卤化物(alkalinehalide)的至少一种混合物;lioh-libr、lioh-lix、naoh-nabr、naoh-nai、naoh-nax和koh-kx(其中x表示卤离子)、至少一种基质和至少一种添加剂。电化学动力系统可还包含加热器。电化学动力系统的高于电解质熔点的电池温度可在至少一个选自以下的范围内:高于熔点约0至1500℃、高于熔点约0至1000℃、高于熔点约0至500℃、高于熔点约0至250℃和高于熔点约0至100℃。在实施方式中,电化学动力系统的基质包含以下中的至少一种:氧阴离子化合物、铝酸盐、钨酸盐、锆酸盐、钛酸盐、硫酸盐、磷酸盐、碳酸盐、硝酸盐、铬酸盐和锰酸盐、氧化物、氮化物、硼化物、硫族化物、硅化物、磷化物和碳化物、金属、金属氧化物、非金属和非金属氧化物;碱金属、碱土金属、过渡金属、内过渡金属和稀土金属和al、ga、in、sn、pb、s、te、se、n、p、as、sb、bi、c、si、ge和b和可形成氧化物或氧阴离子的其它元素的氧化物;至少一种氧化物,诸如碱金属、碱土金属、过渡金属、内过渡金属和稀土金属和al、ga、in、sn、pb、s、te、se、n、p、as、sb、bi、c、si、ge和b和可形成氧化物的其它元素中的一种,和一个氧阴离子,且还包含至少一个来自以下的组的阳离子:碱金属、碱土金属、过渡金属、内过渡金属和稀土金属和al、ga、in、sn和pb的阳离子;lialo2、mgo、li2tio3或srtio3;阳极材料和电解质化合物的氧化物;阳离子和电解质的氧化物中的至少一种;电解质moh(m=碱金属)的氧化物;包含以下的组的元素、金属、合金或混合物的电解质的氧化物:mo、ti、zr、si、al、ni、fe、ta、v、b、nb、se、te、w、cr、mn、hf、co和m',其中m'表示碱土金属;moo2、tio2、zro2、sio2、al2o3、nio、feo或fe2o3、tao2、ta2o5、vo、vo2、v2o3、v2o5、b2o3、nbo、nbo2、nb2o5、seo2、seo3、teo2、teo3、wo2、wo3、cr3o4、cr2o3、cro2、cro3、mno、mn3o4、mn2o3、mno2、mn2o7、hfo2、co2o3、coo、co3o4、co2o3和mgo;阴极材料的氧化物和视情况选用的电解质的氧化物;li2moo3或li2moo4、li2tio3、li2zro3、li2sio3、lialo2、linio2、lifeo2、litao3、livo3、li2b4o7、li2nbo3、li2seo3、li2seo4、li2teo3、li2teo4、li2wo4、li2cro4、li2cr2o7、li2mno4、li2hfo3、licoo2和m'o(其中m'表示碱土金属)和mgo;阳极元素或同一族元素的氧化物,和li2moo4、moo2、li2wo4、li2cro4和li2cr2o7(在mo阳极的情况下),且添加剂包含以下中的至少一种:s、li2s、氧化物、moo2、tio2、zro2、sio2、al2o3、nio、feo或fe2o3、tao2、ta2o5、vo、vo2、v2o3、v2o5、b2o3、nbo、nbo2、nb2o5、seo2、seo3、teo2、teo3、wo2、wo3、cr3o4、cr2o3、cro2、cro3、mgo、tio2、li2tio3、lialo2、li2moo3或li2moo4、li2zro3、li2sio3、linio2、lifeo2、litao3、livo3、li2b4o7、li2nbo3、li2seo3、li2seo4、li2teo3、li2teo4、li2wo4、li2cro4、li2cr2o7、li2mno3或licoo2、mno和ceo2。在电化学动力系统操作期间可发生以下反应中的至少一种:a)在放电阳极处由h2o的电解形成h和h2中的至少一种;b)在放电阴极处由h2o的电解形成o和o2中的至少一种;c)由反应混合物的反应形成氢催化剂;d)在放电期间形成分数氢以产生电能和热能中的至少一种;e)氧化oh-且与h反应以形成充当分数氢催化剂的新生h2o;f)氧化oh-成氧离子和h;g)在放电阴极处还原氧离子、氧和h2o中的至少一种;h)h和新生h2o催化剂反应以形成分数氢;和i)在放电期间形成分数氢以产生动力和热力中的至少一种。在电化学动力系统的一个实施方式中,在电池放电期间发生oh-的氧化和氧离子、氧和h2o中的至少一种的还原中的至少一个反应以产生随时间变化的电流,其超过该间歇电解的电解阶段期间随时间变化的电流。在一个实施方式中,阳极半电池反应可为oh-+2h→h2o+e-+h(1/4)其中第一h与oh-反应形成h2o催化剂和e-与第二h经h2o催化形成分数氢一起进行。在实施方式中,放电阳极半电池反应的电压为以下中的至少一种:相对于标准氢电极在针对操作温度进行热力学修正下的约1.2伏;和相对于标准氢电极和25℃,在约1.5v至0.75v、1.3v至0.9v和1.25v至1.1v中的至少一个范围内的电压,且阴极半电池反应的电压为以下中的至少一种:在针对操作温度进行热力学修正下的约0伏;和相对于标准氢电极和25℃,在约-0.5v至+0.5v、-0.2v至+0.2v和-0.1v至+0.1v中的至少一个范围内的电压。在本发明的电化学动力系统的一个实施方式中,阴极包含nio,阳极包含ni、mo、h242合金和碳中的至少一种,且双金属结包含为不同于该阳极的金属的哈斯特合金(hastelloy)、ni、mo和h242中的至少一种。电化学动力系统可包含至少一个电池叠堆,其中双极板包含隔开阳极与阴极的双金属结。在一个实施方式中,向电池供应h2o,其中h2o蒸汽压在至少一个选自以下的范围内:约0.001托至100atm、约0.001托至0.1托、约0.1托至1托、约1托至10托、约10托至100托、约100托至1000托、和约1000托至100atm,且实现至少大气压的压力差额系由包含稀有气体和n2中的至少一种的所供给的惰性气体提供。在一个实施方式中,电化学动力系统可包含水蒸汽发生器以向该系统供应h2o。在一个实施方式中,电池在充电阶段与放电阶段之间间歇转换,其中(i)充电阶段至少包含水在具相反电压极性的电极处电解,且(ii)放电阶段至少包含在所述电极的一种或两者处形成h2o催化剂;其中(i)各电池的各电极作为阴极或阳极的作用在充电阶段与放电阶段之间在来回转换中逆转,且(ii)电流极性在充电阶段与放电阶段之间在来回转换中逆转,且其中充电包含施加外加电流和电压中的至少一种。在实施方式中,外加电流和电压中的至少一种的波形包含在约0.001%至约95%范围内的工作循环;在约0.1v至10v范围内的每电池的峰值电压;约0.001w/cm2至1000w/cm2的峰值功率密度,和在约0.0001w/cm2至100w/cm2范围内的平均功率,其中外加电流和电压还包含直流电压、直流电流中的至少一种和交流电流和电压波形中的至少一种,其中波形包含在约1hz至约1000hz范围内的频率。间歇循环的波形可包含间歇循环的电解和放电阶段中的至少一种的恒定电流、功率、电压和电阻以和可变电流、功率、电压和电阻中的至少一种。在实施方式中,循环的至少一个阶段的参数包含:间歇阶段的频率在至少一个选自以下的范围内:约0.001hz至10mhz、约0.01hz至100khz、和约0.01hz至10khz;每电池的电压在至少一个选自以下的范围内:约0.1v至100v、约0.3v至5v、约0.5v至2v、和约0.5v至1.5v;每单位有效形成分数氢的电极面积的电流在至少一个选自以下的范围内:约1μacm-2至10acm-2、约0.1macm-2至5acm-2、和约1macm-2至1acm-2;每单位有效形成分数氢的电极面积的功率在至少一个选自以下的范围内:约1μwcm-2至10wcm-2、约0.1mwcm-2至5wcm-2、和约1mwcm-2至1wcm-2;每单位有效形成分数氢的电极面积的恒定电流在约1μacm-2至1acm-2的范围内;每单位有效形成分数氢的电极面积的恒定功率在约1mwcm-2至1wcm-2的范围内:时间间隔在至少一个选自以下的范围内:约10-4s至10,000s、10-3s至1000s、和10-2s至100s、和10-1s至10s;每电池的电阻在至少一个选自以下的范围内:约1mω至100mω、约1ω至1mω、和10ω至1kω;每单位有效形成分数氢的电极面积的适合负载的电导率在至少一个选自以下的范围内:约10-5至1000ω-1cm-2、10-4至100ω-1cm-2、10-3至10ω-1cm-2、和10-2至1ω-1cm-2,且放电电流、电压、功率或时间间隔中的至少一种大于该电解阶段以在该循环内产生功率或能量增益中的至少一种。可维持放电期间的电压超过防止该阳极过度腐蚀的电压。在电化学动力系统的一个实施方式中,形成催化剂的反应为:o2+5h++5e-→2h2o+h(1/p);对半电池反应为:h2→2h++2e-;且总反应为:3/2h2+1/2o2→h2o+h(1/p)。可在电化学动力系统操作期间由氢形成以下产物中的至少一种:a)拉曼峰(ramanpeak)在0.23至0.25cm-1的整数倍处加上基质位移(matrixshift)在0至2000cm-1范围内的氢产物;b)红外峰在0.23至0.25cm-1的整数倍处加上基质位移在0至2000cm-1范围内的氢产物;c)x射线光电子光谱峰的能量在500至525ev范围内加上基质位移在0至10ev范围内的氢产物;d)引起高磁场masnmr基质位移的氢产物;e)相对于tms的高磁场masnmr或液体nmr位移大于-5ppm的氢产物;f)至少两个电子束发射光谱峰在200至300nm范围内而间隔在0.23至0.3cm-1的整数倍处加上基质位移在0至5000cm-1范围内的氢产物;和g)至少两个uv荧光发射光谱峰在200至300nm范围内而间隔在0.23至0.3cm-1的整数倍处加上基质位移在0至5000cm-1范围内的氢产物。本发明还涉及一种电化学动力系统,其包含氢阳极,包含氢渗透性电极;熔融盐电解质,包含氢氧化物;和o2和h2o阴极中的至少一种。在实施方式中,维持该电解质呈熔融状态和该膜呈氢渗透性状态中的至少一种的电池温度在至少一个选自以下的范围内:约25至2000℃、约100至1000℃、约200至750℃、约250℃至500℃,高于电解质熔点的电池温度在至少一个以下的范围内:高于熔点约0至1500℃、高于熔点约0至1000℃、高于熔点约0至500℃、高于熔点约0至250℃和高于熔点约0至100℃;膜厚度在至少一个选自以下的范围内:约0.0001至0.25cm、0.001至0.1cm、和0.005至0.05cm;氢气压力经维持在至少一个选自以下的范围内:约1托至500atm、10托至100atm、和100托至5atm;氢气渗透速率在至少一个选自以下的范围内:约1×10-13mols-1cm-2至1×10-4mols-1cm-2、1×10-12mols-1cm-2至1×10-5mols-1cm-2、1×10-11mols-1cm-2至1×10-6mols-1cm-2、1×10-10mols-1cm-2至1×10-7mols-1cm-2、和1×10-9mols-1cm-2至1×10-8mols-1cm-2。在一个实施方式中,电化学动力系统包含氢阳极,包含氢喷射电极(hydrogenspargingelectrode);熔融盐电解质,包含氢氧化物;和o2和h2o阴极中的至少一种。在实施方式中,维持电解质呈熔融状态的电池温度在至少一个选自以下的范围内:高于电解质熔点约0至1500℃、高于电解质熔点约0至1000℃、高于电解质熔点约0至500℃、高于电解质熔点约0至250℃和高于电解质熔点约0至100℃;每单位h2鼓泡或喷射电极的几何面积的氢气流动速率在至少一个选自以下的范围内:约1×10-13mols-1cm-2至1×10-4mols-1cm-2、1×10-12mols-1cm-2至1×10-5mols-1cm-2、1×10-11mols-1cm-2至1×10-6mols-1cm-2、1×10-10mols-1cm-2至1×10-7mols-1cm-2、和1×10-9mols-1cm-2至1×10-8mols-1cm-2;相对电极处的反应速率匹配或超出氢起反应所在的电极处的反应速率;h2o和o2中的至少一种的还原速率足以维持h或h2的反应速率,且相对电极具有足以支持充足速率的表面积和材料。本发明还涉及一种产生热能的动力系统,包含:至少一个能够承受常压、高压和低压中的至少一种的压力的容器;至少一个加热器、构成分数氢反应物的反应物,所述反应物包含:a)包含新生h2o的催化剂来源或催化剂;b)原子氢来源或原子氢;c)用于形成催化剂来源、催化剂、原子氢来源和原子氢中的至少一种的反应物;和一或多种引发原子氢的催化的反应物,其中反应在所述反应物混合和所述反应物加热中的至少一个进行时发生。在实施方式中,动力系统形成催化剂来源、催化剂、原子氢来源和原子氢中的至少一种的反应包含至少一个选自以下的反应:脱水反应;燃烧反应;路易斯酸(lewisacid)或路易斯碱(lewisbase)和布朗斯特德-洛瑞酸(bronsted-lowryacid)或布朗斯特德-洛瑞碱(bronsted-lowrybase)的反应;氧化物-碱反应;酸酐-碱反应;酸-碱反应;碱-活性金属反应;氧化-还原反应;分解反应;交换反应;和卤化物、o、s、se、te、nh3与具有至少一个oh的化合物的交换反应;包含o的化合物的氢还原反应,且h来源为在所述反应物经历反应时所形成的新生h和来自氢化物或气体来源和解离体的氢中的至少一种。本发明还涉及一种电池组或燃料电池系统,其由使氢催化反应至较低能态(分数氢)而产生电动势(emf),从而使自分数氢反应释放的能量直接转换成电,该系统包含:于电池操作期间在单独的电子流和离子质量输送下构成分数氢反应物的反应物;包含阴极的阴极隔室;包含阳极的阳极隔室;和氢来源。本发明的其它实施方式涉及一种电池组或燃料电池系统,其由使氢催化反应至较低能态(分数氢)而产生电动势(emf),从而使自分数氢反应释放的能量直接转换成电,该系统包含至少两种选自以下的组分:催化剂或催化剂来源;原子氢或原子氢来源;用于形成催化剂或催化剂来源和原子氢或原子氢来源的反应物;一或多种引发原子氢的催化的反应物;和使催化可进行的载体,其中,形成分数氢的电池组或燃料电池系统可还包括包含阴极的阴极隔室、包含阳极的阳极隔室、视情况选用的盐桥、于电池操作期间在单独的电子流和离子质量输送下构成分数氢反应物的反应物,和氢来源。在本发明的一个实施方式中,引发分数氢反应(诸如本发明的交换反应)的反应混合物和反应为通过氢反应形成分数氢来产生动力的燃料电池的基础。由于氧化还原电池的半反应(halfreaction),因此产生分数氢的反应混合物是通过电子经由外部电路迁移和经由单独的路径进行离子质量输送以形成电路所构成。产生由半电池反应的和得到的分数氢的总反应和相应反应混合物可包含本发明的热功率和分数氢化学产生的反应类型。在本发明的一个实施方式中,在通过单独的导管连接以便电子与离子在隔室之间形成电路的不同电池隔室中提供处于不同状态或条件(诸如不同温度、压力和浓度中的至少一种)下的不同反应物或相同反应物。由于分数氢反应对自一个隔室至另一隔室的质量流的依赖性,因此产生单独的隔室的电极之间的电位和动力增益或系统的热增益。质量流提供至少一个以下形成:可起反应而产生分数氢的反应混合物和允许以实质速率发生分数氢反应的条件。理想地,在无电子流和离子质量输送存在下,分数氢反应不发生或不以可观速率发生。在另一实施方式中,相较于经由电极施加的电解功率,电池产生动力和热功率增益中的至少一种。在一个实施方式中,用于形成分数氢的反应物为热再生型或电解再生型中的至少一种。本发明的一个实施方式涉及一种产生电动势(emf)和热能的电化学动力系统,其包含阴极、阳极和于电池操作期间在单独的电子流和离子质量输送下构成分数氢反应物的反应物,该系统包含至少两种选自以下的组分:a)催化剂来源或催化剂,其包含nh、oh、oh-、h2o、h2s或mnh2的组中的至少一种,其中n为整数且m为碱金属;b)原子氢来源或原子氢;c)用于形成催化剂来源、催化剂、原子氢来源和原子氢中的至少一种的反应物;一或多种引发原子氢的催化的反应物;和载体。至少一个以下条件可出现于该电化学动力系统中:a)通过反应混合物的反应形成原子氢和氢催化剂;b)一种反应物,藉助于其发生反应而使得催化有效;和c)引起催化反应的反应,其包含选自以下的反应:(i)放热反应;(ii)偶合反应;(iii)自由基反应;(iv)氧化-还原反应;(v)交换反应;和(vi)吸气剂(getter)、载体或基质辅助催化反应。在一个实施方式中,在通过单独的导管连接以便电子与离子在隔室之间形成电路的不同电池隔室中提供处于不同状态或条件下的a)不同反应物或b)相同反应物中的至少一种。内部质量流和外部电子流中的至少一种可使至少一个以下条件出现:a)形成可起反应而产生分数氢的反应混合物;和b)形成允许以实质速率发生分数氢反应的条件。在一个实施方式中,用于形成分数氢的反应物为热再生型或电解再生型中的至少一种。电能和热能输出中的至少一种可能超过自产物再生反应物所需者。本发明的其它实施方式涉及一种产生电动势(emf)和热能的电化学动力系统,其包含阴极、阳极和于电池操作期间在单独的电子流和离子质量输送下构成分数氢反应物的反应物,该系统包含至少两种选自以下的组分:a)催化剂来源或催化剂,其包含至少一种选自以下的氧物质:o2、o3、o、o+、h2o、h3o+、oh、oh+、oh-、hooh、ooh-、o-、o2-、和其经历与h物质的氧化反应以形成oh和h2o中的至少一种,其中h物质包含以下中的至少一种:h2、h、h+、h2o、h3o+、oh、oh+、oh-、hooh和ooh-;b)原子氢来源或原子氢;c)用于形成催化剂来源、催化剂、原子氢来源和原子氢中的至少一种的反应物;和一或多种引发原子氢的催化的反应物;和载体。o物质来源可包含至少一种化合物或化合物混合物,该化合物包含o、o2、空气、氧化物、nio、coo、碱金属氧化物、li2o、na2o、k2o、碱土金属氧化物、mgo、cao、sro和bao、以下的组的氧化物:cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn和w、过氧化物、碱金属过氧化物、超氧化物、碱金属或碱土金属超氧化物、氢氧化物、碱金属、碱土金属、过渡金属、内过渡金属、和第iii、iv或v族元素的氢氧化物、氢氧化合物(oxyhydroxide)、alo(oh)、sco(oh)、yo(oh)、vo(oh)、cro(oh)、mno(oh)(α-mno(oh)锰榍石和γ-mno(oh)水锰矿)、feo(oh)、coo(oh)、nio(oh)、rho(oh)、gao(oh)、ino(oh)、ni1/2co1/2o(oh)和ni1/3co1/3mn1/3o(oh)。h物质来源可包含至少一种化合物或化合物混合物,该化合物包含h、金属氢化物、lani5h6、氢氧化物、氢氧化合物、h2、h2来源、h2和氢渗透性膜、ni(h2)、v(h2)、ti(h2)、nb(h2)、pd(h2)、pdag(h2)、fe(h2)和不锈钢(ss)(诸如430ss(h2))。在另一实施方式中,电化学动力系统包含氢阳极;包含氢氧化物的熔融盐电解质;和o2和h2o阴极中的至少一种。氢阳极可包含至少一个氢渗透性电极,诸如以下中的至少一种:ni(h2)、v(h2)、ti(h2)、nb(h2)、pd(h2)、pdag(h2)、fe(h2)和430ss(h2);可喷射h2的多孔电极;和氢化物,诸如选自以下的氢化物:r-ni、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2;和能够储存氢的其它合金、ab5(laceprndnicomnal)或ab2(vtizrnicrcomnalsn)型(其中「abx」符号是指a类型元素(laceprnd或tizr)与b类型元素(vnicrcomnalsn)的比率)、ab5型:mmni3.2co1.0mn0.6al0.11mo0.09(mm=密铈合金(mischmetal):25重量%la、50重量%ce、7重量%pr、18重量%nd)、ab2型:ti0.51zr0.49v0.70ni1.18cr0.12合金、基于镁的合金、mg1.9al0.1ni0.8co0.1mn0.1合金、mg0.72sc0.28(pd0.012+rh0.012)和mg80ti20、mg80v20、la0.8nd0.2ni2.4co2.5si0.1、lani5-xmx(m=mn、al)、(m=al、si、cu)、(m=sn)、(m=al、mn、cu)和lani4co、mmni3.55mn0.44al0.3co0.75、lani3.55mn0.44al0.3co0.75、mgcu2、mgzn2、mgni2、ab化合物、tife、tico和tini、abn化合物(n=5、2或1)、ab3-4化合物、abx(a=la、ce、mn、mg;b=ni、mn、co、al)、zrfe2、zr0.5cs0.5fe2、zr0.8sc0.2fe2、yni5、lani5、lani4.5co0.5、(ce、la、nd、pr)ni5、密铈合金-镍合金、ti0.98zr0.02v0.43fe0.09cr0.05mn1.5、la2co1ni9、feni和timn2。熔融盐可包含与至少一种其它盐的氢氧化物,该其它盐诸如选自一或多种其它氢氧化物、卤化物、硝酸盐、硫酸盐、碳酸盐和磷酸盐者。熔融盐可包含至少一种选自以下的盐混合物:csno3-csoh、csoh-koh、csoh-lioh、csoh-naoh、csoh-rboh、k2co3-koh、kbr-koh、kcl-koh、kf-koh、ki-koh、kno3-koh、koh-k2so4、koh-lioh、koh-naoh、koh-rboh、li2co3-lioh、libr-lioh、licl-lioh、lif-lioh、lii-lioh、lino3-lioh、lioh-naoh、lioh-rboh、na2co3-naoh、nabr-naoh、nacl-naoh、naf-naoh、nai-naoh、nano3-naoh、naoh-na2so4、naoh-rboh、rbcl-rboh、rbno3-rboh、lioh-lix、naoh-nax、koh-kx、rboh-rbx、csoh-csx、mg(oh)2-mgx2、ca(oh)2-cax2、sr(oh)2-srx2或ba(oh)2-bax2(其中x=f、cl、br或i)和lioh、naoh、koh、rboh、csoh、mg(oh)2、ca(oh)2、sr(oh)2或ba(oh)2和以下中的一种或多种:alx3、vx2、zrx2、tix3、mnx2、znx2、crx2、snx2、inx3、cux2、nix2、pbx2、sbx3、bix3、cox2、cdx2、gex3、aux3、irx3、fex3、hgx2、mox4、osx4、pdx2、rex3、rhx3、rux3、sex2、agx2、tcx4、tex4、tlx和wx4(其中x=f、cl、br或i)。熔融盐可包含为盐混合物电解质的阴离子所共享的阳离子;或为阳离子所共享的阴离子,且氢氧化物针对混合物中的其它盐稳定。在本发明的另一实施方式中,电化学动力系统包含[m”(h2)/moh-m'卤离子/m”']和[m”(h2)/m(oh)2-m'卤离子/m”']中的至少一种,其中m为碱金属或碱土金属,m'为如下特征的金属,其氢氧化物和氧化物为稳定性小于碱金属或碱土金属的氢氧化物和氧化物中的至少一种,或与水具有低反应性,m”为氢渗透性金属,且m”'为导体。在一个实施方式中,m'为诸如选自以下的金属:cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn、w、al、v、zr、ti、mn、zn、cr、in和pb。作为选择,m和m'可为金属,诸如独立地选自以下的金属:li、na、k、rb、cs、mg、ca、sr、ba、al、v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w。其它示例性系统包含[m'(h2)/mohm”x/m”'],其中m、m'、m”和m”'为金属阳离子或金属,x为阴离子,诸如选自氢氧根、卤离子、硝酸根、硫酸根、碳酸根和磷酸根的阴离子,且m'为h2渗透性过的。在一个实施方式中,氢阳极包含金属,诸如至少一种选自以下的金属:v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w,其可在放电期间与电解质反应。在另一实施方式中,电化学动力系统包含氢来源;能够形成oh、oh-和h2o催化剂中的至少一种且提供h的氢阳极;o2和h2o中的至少一种的来源;能够还原h2o或o2中的至少一种的阴极;碱性电解质;能够收集和再循环h2o蒸气、n2和o2中的至少一种的视情况选用的系统,和用于收集和再循环h2的系统。本发明还涉及一种包含阳极的电化学动力系统,其包含以下至少一种:金属,诸如选自以下的金属:v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w,和金属氢化物,诸如选自以下的金属氢化物:r-ni、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2,和能够储存氢的其它合金,诸如选自以下的其它合金:ab5(laceprndnicomnal)或ab2(vtizrnicrcomnalsn)型(其中「abx」符号是指a类型元素(laceprnd或tizr)与b类型元素(vnicrcomnalsn)的比率)、ab5型:mmni3.2co1.0mn0.6al0.11mo0.09(mm=密铈合金:25重量%la、50重量%ce、7重量%pr、18重量%nd)、ab2型:ti0.51zr0.49v0.70ni1.18cr0.12合金、基于镁的合金、mg1.9al0.1ni0.8co0.1mn0.1合金、mg0.72sc0.28(pd0.012+rh0.012)和mg80ti20、mg80v20、la0.8nd0.2ni2.4co2.5si0.1、lani5-xmx(m=mn、al)、(m=al、si、cu)、(m=sn)、(m=al、mn、cu)和lani4co、mmni3.55mn0.44al0.3co0.75、lani3.55mn0.44al0.3co0.75、mgcu2、mgzn2、mgni2、ab化合物、tife、tico和tini、abn化合物(n=5、2或1)、ab3-4化合物、abx(a=la、ce、mn、mg;b=ni、mn、co、al)、zrfe2、zr0.5cs0.5fe2、zr0.8sc0.2fe2、yni5、lani5、lani4.5co0.5、(ce、la、nd、pr)ni5、密铈合金-镍合金、ti0.98zr0.02v0.43fe0.09cr0.05mn1.5、la2co1ni9、feni和timn2;隔板(separator);碱性电解质水溶液;o2和h2o还原阴极中的至少一种;和空气和o2中的至少一种。电化系统可还包含电解系统,其间歇地将电池充电和放电,使得净能平衡存在增益。作为选择,电化学动力系统可包含或还包含氢化系统,其通过再氢化(rehydriding)氢化物阳极使动力系统再生。另一实施方式包含产生电动势(emf)和热能的电化学动力系统,其包含熔融碱金属阳极;β-氧化铝固体电解质(base),和包含氢氧化物的熔融盐阴极。熔融盐阴极可包含低共熔混合物(诸如表4中的一种)和氢来源(诸如氢渗透性膜和h2气体)。催化剂或催化剂来源可选自oh、oh-、h2o、nah、li、k、rb+和cs。熔融盐阴极可包含碱金属氢氧化物。系统可还包含氢反应器和金属-氢氧化物分离器,其中碱金属阴极和碱金属氢氧化物阴极是通过氢化产物氧化物和分离所得碱金属和金属氢氧化物来再生。电化学动力系统的另一实施方式包含阳极,其包含氢来源,诸如选自以下的氢来源:氢渗透性膜和h2气体和氢化物,其还包含熔融氢氧化物;β-氧化铝固体电解质(base),和阴极,其包含熔融元素和熔融卤化物盐或混合物中的至少一种。适合的阴极包含熔融元素阴极,其包含in、ga、te、pb、sn、cd、hg、p、s、i、se、bi和as的一。作为选择,阴极可为熔融盐阴极,其包含nax(x为卤离子)和以下的组中一种或多种:nax、agx、alx3、asx3、aux、aux3、bax2、bex2、bix3、cax2、cdx3、cex3、cox2、crx2、csx、cux、cux2、eux3、fex2、fex3、gax3、gdx3、gex4、hfx4、hgx、hgx2、inx、inx2、inx3、irx、irx2、kx、kagx2、kalx4、k3alx6、lax3、lix、mgx2、mnx2、mox4、mox5、mox6、naalx4、na3alx6、nbx5、ndx3、nix2、osx3、osx4、pbx2、pdx2、prx3、ptx2、ptx4、pux3、rbx、rex3、rhx、rhx3、rux3、sbx3、sbx5、scx3、six4、snx2、snx4、srx2、thx4、tix2、tix3、tlx、ux3、ux4、vx4、wx6、yx3、znx2和zrx4。产生电动势(emf)和热能的电化学动力系统的另一实施方式包含阳极,其包含li;电解质,其包含有机溶剂,和无机li电解质和lipf6中的至少一种;烯烃隔板,和阴极,其包含以下中的至少一种:氢氧化合物、alo(oh)、sco(oh)、yo(oh)、vo(oh)、cro(oh)、mno(oh)(α-mno(oh)锰榍石和γ-mno(oh)水锰矿)、feo(oh)、coo(oh)、nio(oh)、rho(oh)、gao(oh)、ino(oh)、ni1/2co1/2o(oh)和ni1/3co1/3mn1/3o(oh)。在另一实施方式中,电化学动力系统包含阳极,其包含以下中的至少一种:li、锂合金、li3mg,和li-n-h系统的物质;熔融盐电解质,和氢阴极,其包含以下中的至少一种:h2气体和多孔阴极、h2和氢渗透性膜,和金属氢化物、碱金属、碱土金属、过渡金属、内过渡金属和稀土金属氢化物之一。本发明还涉及一种电化学动力系统,其包含电池a)至h)中的至少一种,其包含:a)(i)阳极,其包含氢渗透性金属和氢气,诸如选自以下者:ni(h2)、v(h2)、ti(h2)、fe(h2)、nb(h2);或金属氢化物,诸如选自以下的金属氢化物:lani5h6、timn2hx和la2ni9coh6(x为整数);(ii)熔融电解质,诸如选自以下的熔融电解质:moh或m(oh)2,或moh或m(oh)2与m'x或m'x2,其中m和m'为金属,诸如独立地选自以下的金属:li、na、k、rb、cs、mg、ca、sr和ba,且x为阴离子,诸如选自氢氧根、卤离子、硫酸根和碳酸根的阴离子,和(iii)阴极,其包含可与阳极相同的金属,且还包含空气或o2;b)(i)阳极,其包含至少一种金属,诸如选自以下的金属:r-ni、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn、w、al、v、zr、ti、mn、zn、cr、in和pb;(ii)电解质,其包含浓度范围为约10m至饱和的碱金属氢氧化物水溶液;(iii)烯烃隔板,和(iv)碳阴极,且还包含空气或o2;c)(i)阳极,其包含熔融naoh和氢渗透性膜,诸如ni和氢气;(ii)电解质,其包含β氧化铝固体电解质(base),和(iii)阴极,其包含熔融低共熔盐,诸如nacl-mgcl2、nacl-cacl2或mx-m'x2'(m为碱金属,m'为碱土金属,且x和x'为卤离子);d)(i)包含熔融na的阳极;(ii)电解质,其包含β氧化铝固体电解质(base),和(iii)包含熔融naoh的阴极;e)(i)阳极,其包含氢化物,诸如lani5h6;(ii)电解质,其包含浓度范围为约10m至饱和的碱金属氢氧化物水溶液;(iii)烯烃隔板,和(iv)碳阴极,且还包含空气或o2;f)(i)包含li的阳极;(ii)烯烃隔板;(ii)有机电解质,诸如包含lp30和lipf6的有机电解质,和(iv)阴极,其包含氢氧化合物,诸如coo(oh);g)(i)阳极,其包含锂合金,诸如li3mg;(ii)熔融盐电解质,诸如licl-kcl或mx-m'x'(m和m'为碱金属,x和x'为卤离子),和(iii)阴极,其包含金属氢化物,诸如选自以下的金属氢化物:ceh2、lah2、zrh2和tih2,且还包含碳黑,和h)(i)包含li的阳极;(ii)熔融盐电解质,诸如licl-kcl或mx-m'x'(m和m'为碱金属,x和x'为卤离子),和(iii)阴极,其包含金属氢化物,诸如选自以下的金属氢化物:ceh2,lah2、zrh2和tih2,且还包含碳黑。本发明还涉及一种电化学动力系统,其包含至少一种以下电池:[ni(h2)/lioh-libr/ni],其中指定为ni(h2)的氢电极包含渗透、喷射和间歇电解氢来源中的至少一种;[ptti/h2so4(约5m水溶液)或h3po4(约14.5m水溶液)/ptti]间歇电解;和[naohni(h2)/base/naclmgcl2],其中指定为ni(h2)的氢电极包含渗透氢来源。在适合的实施方式中,氢电极包含经准备而具有保护性氧化物涂层(诸如nio)的金属(诸如镍)。氧化物涂层可通过在氧化性氛围(诸如包含氧气的氛围)中阳极化或氧化来形成。本发明还涉及一种电化学动力系统,其包含至少一种以下电池:[ni(h2)/lioh-libr/ni],其中指定为ni(h2)的氢电极包含渗透、喷射和间歇电解氢来源中的至少一种;[ptti/h2so4(约5m水溶液)或h3po4(约14.5m水溶液)/ptti]间歇电解,和[naohni(h2)/base/naclmgcl2],其中指定为ni(h2)的氢电极包含渗透氢来源。本发明还涉及一种电化学动力系统,其包含电池a)至d)中的至少一种,包含:a)(i)阳极,包含指定为ni(h2)且包含渗透、喷射和间歇电解氢来源中的至少一种的氢电极;(ii)熔融电解质,诸如选自以下者:moh或m(oh)2、或moh或m(oh)2与m'x或m'x2,其中m和m'为金属,诸如独立地选自li、na、k、rb、cs、mg、ca、sr和ba的金属,且x为阴离子,诸如选自氢氧化物、卤化物、硫酸盐和碳酸盐的阴离子;和(iii)阴极,包含可与阳极相同的金属,且还空气或o2;b)(i)阳极,包含指定为ni(h2)且包含渗透、喷射和间歇电解氢来源中的至少一种的氢电极;(ii)熔融电解质,诸如lioh-libr、naoh-nabr或naoh-nai;和(iii)阴极,包含可与阳极相同的金属,且还空气或o2;c)(i)阳极,包含贵金属,诸如pt/ti;(ii)酸水溶液电解质,诸如h2so4或h3po4,浓度可分别在1至10m和5至15m范围内;和(iii)阴极,包含可与阳极相同的金属,且还空气或o2,和d)(i)阳极,包含熔融naoh和指定为ni(h2)且包含渗透氢来源的氢电极;(ii)电解质,包含β氧化铝固体电解质(base);和(iii)阴极,包含熔融低共熔盐,诸如nacl-mgcl2、nacl-cacl2或mx-m'x2'(m为碱金属,m'为碱土金属,且x和x'为卤离子)。本发明的其它实施方式涉及催化剂系统,诸如电化学电池的催化剂系统,其包含能够使得原子h呈其n=1状态以形成较低能态的氢催化剂、原子氢来源,和能够引发和传播反应以形成较低能量氢的其它物质。在某些实施方式中,本发明涉及一种反应混合物,其包含至少一种原子氢来源和至少一种催化剂或催化剂来源以支持氢催化以形成分数氢。本文对于固体和液体燃料所揭示的反应物和反应也为包含相混合物的非均质燃料的反应物和反应。该反应混合物包含至少两种选自以下的组分:氢催化剂或氢催化剂来源和原子氢或原子氢来源,其中原子氢和氢催化剂中的至少一种可通过反应混合物的反应来形成。在其它实施方式中,反应混合物还包含载体,其在某些实施方式中可具导电性,可为还原剂和氧化剂,其中至少一种反应物藉助于其经历反应使得催化有效。反应物可通过针对任何非分数氢产物加热来再生。本发明也涉及一种电源,其包含:用于催化原子氢的反应电池;反应容器;真空泵;与反应容器连通的原子氢来源;与反应容器连通的氢催化剂来源,其包含块材,原子氢来源和氢催化剂来源中的至少一种的来源,其包含反应混合物,该反应混合物包含至少一种反应物,其包含形成原子氢和氢催化剂中的至少一种的元素,和至少一种其它元素,由此自该来源形成原子氢和氢催化剂中的至少一种,至少一种其它用于引起催化的反应物;和容器加热器,由此原子氢的催化释放大于约300千焦/摩尔氢的量的能量。形成分数氢的反应可通过一或多个化学反应来活化或引发和传播。此类反应可选自例如(i)氢化物交换反应;(ii)卤素-氢交换反应;(iii)放热反应,其在某些实施方式中为分数氢反应提供活化能;(iv)偶合反应,其在某些实施方式中提供催化剂或原子氢来源中的至少一种以支持分数氢反应;(v)自由基反应,其在某些实施方式中充当分数氢反应期间来自催化剂的电子的受体;(vi)氧化还原反应,其在某些实施方式中,充当分数氢反应期间来自催化剂的电子的受体;(vi)其它交换反应,诸如阴离子交换,包括卤化物、硫化物、氢化物、砷化物、氧化物、磷化物和氮化物交换,其在一个实施方式中,有助于催化剂当自原子氢接受能量以形成分数氢时变得电离的作用;和(vii)吸气剂、载体或基质辅助分数氢反应,其可提供以下中的至少一种:(a)分数氢反应的化学环境、(b)转移电子以有助于h催化剂功能的作用、(c)经历可逆相或其它物理变化或其电子状态变化、和(d)结合较低能量氢产物以提高分数氢反应的程度或速率中的至少一种。在某些实施方式中,导电载体使活化反应可进行。在另一实施方式中,形成分数氢的反应包含在至少两种物质(诸如两种金属)之间氢化物交换和卤化物交换中的至少一种。至少一种金属可为用于形成分数氢的催化剂或催化剂来源,诸如碱金属或碱金属氢化物。氢化物交换可发生在至少两种氢化物之间、至少一种金属与至少一种氢化物之间、至少两种金属氢化物之间、至少一种金属与至少一种金属氢化物之间,和具有在两种或两种以上物质之间或涉和两种或两种以上物质的交换的其它此类组合。在一个实施方式中,氢化物交换形成混合金属氢化物,诸如(m1)x(m2)yhz,其中x、y和z为整数且m1且m2为金属。本发明的其它实施方式涉及反应物,其中活化反应和/或传播反应中的催化剂包含催化剂或催化剂来源和氢来源与材料或化合物反应形成插层化合物(intercalationcompound),其中反应物是通过移除插层物质来再生。在一个实施方式中,碳可充当氧化剂且碳可例如通过加热、使用置换剂、电解或通过使用溶剂自碱金属插层碳再生。在其它实施方式中,本发明涉及一种动力系统,其包含:(i)化学燃料混合物,其包含至少两种选自以下的组分:催化剂或催化剂来源;原子氢或原子氢来源;用于形成催化剂或催化剂来源和原子氢或原子氢来源的反应物;一或多种引发原子氢的催化的反应物;和使催化可进行的载体,(ii)至少一个包含多个反应容器的热系统,其用于逆转交换反应以自反应产物热再生燃料,其中包含自混合物反应产物形成初始化学燃料混合物的反应的再生反应是在与至少一个经历动力反应的其它反应容器联合的多个反应容器中的至少一种中进行,至少一个动力产生容器的热流至至少一个经历再生的容器以提供热再生能量,将容器嵌埋于热转移介质中以实现热流动,至少一个容器还包含真空泵和氢来源,且可还包含在较热腔室与较冷腔室之间维持温差使得物质优先累积于较冷腔室中的两个腔室,其中在较冷腔室中进行氢化物反应以形成至少一种初始反应物,使其返回较热腔室,(iii)穿过热屏障自产生动力的反应容器接受热的散热体,和(iv)动力转换系统,其可包含热机,诸如朗肯(rankine)或布累登(brayton)循环发动机、蒸汽发动机、史特林发动机(stirlingengine),其中动力转换系统可包含热电或热离子转换器。在某些实施方式中,散热体可将动力转移至动力转换系统以产生电。在某些实施方式中,动力转换系统自散热体接受热流,且在某些实施方式中,散热体包含蒸汽发生器且蒸汽流至诸如涡轮机等热机以产生电。在其它实施方式中,本发明涉及一种动力系统,其包含:(i)化学燃料混合物,其包含至少两种选自以下的组分:催化剂或催化剂来源;原子氢或原子氢来源;用于形成催化剂或催化剂来源和原子氢或原子氢来源的反应物;一或多种引发原子氢的催化的反应物;和使催化可进行的载体,(ii)用于逆转交换反应以自反应产物热再生燃料的热系统,其包含至少一个反应容器,其中包含自混合物反应产物形成初始化学燃料混合物的反应的再生反应是与动力反应一起在至少一个反应容器中进行,来自产生动力的反应的热流至再生反应物以为热再生提供能量,至少一个容器在一个区段上绝缘且在另一区段上与热传导介质接触以分别在容器的较热与较冷区段之间达成热梯度,使得物质优先累积于较冷区段中,至少一个容器还包含真空泵和氢来源,其中氢化物反应是在较冷区段中进行以形成至少一种初始反应物,使其返回较热区段,(iii)散热体,其自产生动力的反应接受经转移通过热传导介质且视情况穿过至少一个热屏障的热,和(iv)动力转换系统,其可包含热机,诸如朗肯或布累登循环发动机、蒸汽发动机、史特林发动机,其中动力转换系统可包含热电或热离子转换器,其中转换系统自散热体接受热流,在一个实施方式中,散热体包含蒸汽发生器且蒸汽流至诸如涡轮机的热机以产生电。附图说明图1为根据本发明的电池组和燃料电池和电解电池的示意图。图2为根据本发明的ciht电池的示意图。图3为根据本发明的ciht电池双极板的示意图。图4为根据本发明的三个半电池式ciht电池的示意图。图5为根据本发明的包含h2o和h2收集和再循环系统的ciht电池的示意图。具体实施方式本发明涉及用于自原子氢释放能量以形成较低能态的催化剂系统,所述较低能态中电子壳层相对于核处于更靠近的位置。将释放的能量用于动力产生,并且另外新型氢物质和化合物为所需产物。此类能态是根据经典物理定律预测且需要催化剂接受来自氢的能量以进行相应的能量释放跃迁。经典物理学得到氢原子、氢化物离子、氢分子离子和氢分子的闭型解(closed-formsolution)且预测具有分数主量子数(fractionalprincipalquantumnumber)的相应物质。使用麦克斯韦方程式(maxwell'sequation),根据边界值问题推导出电子结构,其中电子包含在跃迁期间随时间变化的电磁场的源电流,其中约束为边界n=1状态电子不能辐射能量。由h原子的解预测的反应涉和自另外的稳定原子氢转移谐振、非辐射性能量至能够接受能量以形成能态低于在先认为可能的能态的氢的催化剂。特定而言,经典物理学预测原子氢会经历与以下的催化反应:某些原子、准分子、离子和双原子氢化物,其提供净焓为原子氢势能eh=27.2ev的整数倍的反应,其中eh为一哈崔(hartree)。基于已知电子能级可鉴别的特定物质(例如he+、ar+、sr+、k、li、hcl,和nah、oh、sh、seh、h2o、nh(n=整数))需要与原子氢一起存在以催化该过程。反应包括非辐射性能量转移,接着为q·13.6ev连续发射或q·13.6ev转移至h以形成极热的激发态h和能量低于对应于分数主量子数的未反应原子氢的氢原子。也即,在关于氢原子的主能级的式中:n=1,2,3,...(2)其中ah为氢原子的玻尔半径(bohrradius)(52.947pm),e为电子电荷量值,且εo为真空电容率,分数量子数:替代氢激发态的芮得伯方程式(rydbergequation)中的熟知参数n=整数且表示称为「分数氢」的较低能态氢原子。接着,类似于具有麦克斯韦方程式的分析解的激发态,分数氢原子也包含电子、质子和光子。然而,后者的电场增加对应于能量解吸收的结合而非如在激发态随着能量吸收而减弱中心场,且由此产生的分数氢的光子-电子相互作用为稳定的而非辐射性的。氢的n=1状态和氢的状态为非辐射性的,但两种非辐射状态之间的跃迁,比如n=1至n=1/2,经由非辐射性能量转移为可能产生的。氢为由方程式(1)和(3)给出的稳定状态的特例,其中氢或分数氢原子的相应半径由以下得出:其中p=1,2,3…。为使能量守恒,必须自氢原子转移以下单位的能量至催化剂:m·27.2ev,m=1,2,3,4,....(5)和使半径转变为催化剂反应包括两个能量释放步骤:非辐射性能量转移至催化剂,接着当半径减小至相应稳定的最终状态时的另外的能量释放。据信当净反应焓与m·27.2ev较为紧密地匹配时催化速率增大。已发现净反应焓在m·27.2ev的±10%、优选为±5%内的催化剂适用于大多数应用。在将分数氢原子催化至较低能态的情况下,以与分数氢原子的势能相同的因子对m·27.2ev(方程式(5))的反应焓作相对论校正。因此,一般反应由以下给出:cat(q+r)++re-→catq++m·27.2ev(8)且总反应为q、r、m和p为整数。具有氢原子半径(对应于分母中的1)和等于质子的(m+p)倍的中心场,且为半径为h的的相应稳定状态。当电子经历自氢原子半径至此距离的半径的径向加速时,能量以特征光发射或第三体动能的形式释放。发射可呈边缘在[(p+m)2-p2-2m]·13.6ev或和延伸至较长波长的极紫外线连续辐射的形式。除辐射的外,可发生谐振动能转移以形成快h。随后此类快h(n=1)原子通过与背景h2碰撞而激发,接着发射相应h(n=3)快原子可引起巴尔麦α发射(balmerαemission)变宽。作为选择,快h为充当催化剂的h或分数氢的直接产物,其中接受谐振能量转移与势能而非电离能有关。能量守恒产生动能对应于前一情况下的势能的一半的质子,和在后一情况下处于基本上静止的催化剂离子。快质子的h复合辐射引起巴尔麦α发射变宽,此与符合过度动力平衡的热氢的存量(inventory)不成比例。在本发明中,诸如分数氢反应、h催化、h催化反应、当提及氢时的催化、氢形成分数氢的反应和分数氢形成反应等术语均指诸如以下的反应:由方程式(5)定义的催化剂的方程式(6-9)的反应,其中形成氢状态的原子h具有由方程式(1)和(3)得出的能级。当提及可将h催化至具有由方程式(1)和(3)得出的能级的h状态或分数氢状态的反应混合物时,诸如分数氢反应物、分数氢反应混合物、催化剂混合物、用于分数氢形成的反应物、产生或形成较低能态氢或分数氢的反应物的相应术语也可互换使用。本发明的催化性较低能量氢跃迁需要可呈未经催化的原子氢的势能27.2ev的整数m倍的吸热化学反应形式的催化剂,其自原子h接受能量以引起跃迁。吸热催化剂反应可为自诸如原子或离子的物质电离一或多个电子(例如对于li→li2+,m=3)且可还包含键裂与自一或多种初始键搭配物电离一或多个电子的协同反应(例如对于nah→na2++h,m=2)。he+因为其以54.417ev(为2·27.2ev)电离所以满足催化剂准则—焓变量等于27.2ev的整数倍的化学或物理过程。整数数目的氢原子也可充当27.2ev焓的整数倍的催化剂。氢原子h(1/p)p=1,2,3,...137可经历由方程式(1)和(3)给出的朝向较低能态的还跃迁,其中一个原子的跃迁由一或多个以谐振和非辐射方式接受m·27.2ev且伴随有势能对换的其它h原子所催化。关于由m·27.2ev谐转-振动移至h(1/p')所诱导的h(1/p)跃迁至h(1/(p+m))的一般总方程由以下表示:h(1/p')+h(1/p)→h+h(1/(p+m))+[2pm+m2-p'2+1]·13.6ev(10)氢原子可充当催化剂,其中分别对于一、二和三个原子m=1、m=2和m=3,从而充当另一种的催化剂。当极快h与分子碰撞形成2h时,二原子催化剂2h的速率可能较高,其中两个原子自碰撞搭配物的第三氢原子谐振式和非辐射式接受54.4ev。通过同一机制,两个热h2的碰撞提供3h以充当第四者的3·27.2ev的催化剂。与预测一致,观察到在22.8nm和10.1nm下的euv连续谱、反常的(>100ev)巴尔麦α线变宽、高度激发的h状态、产物气体h2(1/4),和大能量释放。h(1/4)基于其多极性和其形成的选择规则为优选分数氢状态。因此,在形成h(1/3)的情况下,跃迁至h(1/4)可根据方程式(10)由h催化而快速发生。类似地,h(1/4)为对应于方程式(5)中的m=3、大于或等于81.6ev的催化剂能量的优选状态。在此情况下,朝向催化剂的能量转移包含形成方程式(7)的h*(1/4)中间物的81.6ev和来自中间物衰变的27.2ev的整数。举例而言,焓为108.8ev的催化剂可通过自122.4ev的h*(1/4)衰变能量接受81.6ev和27.2ev来形成h*(1/4)。95.2ev的剩余衰变能量释放至环境中以形成优选状态h(1/4),其接着反应形成h2(1/4)。适合催化剂可因此提供m·27.2ev的正的净反应焓。也即,催化剂自氢原子谐振式接受非辐射性能量转移且将能量释放至环境中以实现朝向分数量子能级的电子跃迁。由于非辐射性能量转移,因此氢原子变得不稳定且发射其它能量直至其达成具有由方程式(1)和(3)给出的主能级的较低能量非辐射性状态为止。因此,催化自氢原子尺寸相应减小(rn=nah)的氢原子释放能量,其中n由方程式(3)给出。举例而言,h(n=1)至h(n=1/4)的催化释放204ev,且氢半径自ah减小至催化剂产物h(1/p)也可与电子反应形成分数氢氢化物离子h-(1/p),或两个h(1/p)可反应形成相应的分子分数氢h2(1/p)。特别是,催化剂产物h(1/p)也可与电子反应形成结合能为eb的新的氢化物离子h-(1/p):其中p=大于1的整数,s=1/2,h为普朗克常数杠(planck'sconstantbar),μo为真空磁导率(permeabilityofvacuum),me为电子质量,μe为由给出的折合电子质量,其中mp为质子质量,ao为玻尔半径,且离子半径为根据方程式(11),氢化物离子的计算电离能为0.75418ev,且实验值为6082.99±0.15cm-1(0.75418ev)。分数氢氢化物离子的结合能可由x射线光电子光谱法(xps)测量。高磁场位移nmr峰为存在相对于普通氢化物离子半径减小且质子反磁性遮蔽增大的较低能态氢的直接证据。位移由量级p的两个电子和质子场的反磁性的贡献之和得出(millsgutcp方程式(7.87)):其中第一项适用于h-(p=1)和h-(1/p)(p=大于1的整数),且α为精细结构常数。预测的分数氢氢化物峰相对于普通氢化物离子异常地朝向高磁场位移。在一个实施方式中,峰在tms的高磁场。相对于tms的nmr位移可大于关于单独或构成化合物的普通h-、h、h2或h+中的至少一种所知的nmr位移。位移可大于以下中的至少一种:0ppm、-1ppm、-2ppm、-3ppm、-4ppm、-5ppm、-6ppm、-7ppm、-8ppm、-9ppm、-10ppm、-11ppm、-12ppm、-13ppm、-14ppm、-15ppm、-16ppm、-17ppm、-18ppm、-19ppm、-20ppm、-21ppm、-22ppm、-23ppm、-24ppm、-25ppm、-26ppm、-27ppm、-28ppm、-29ppm、-30ppm、-31ppm、-32ppm、-33ppm、-34ppm、-35ppm、-36ppm、-37ppm、-38ppm、-39ppm和-40ppm。相对于裸质子的绝对位移的范围(其中tms位移相对于裸质子为约-31.5)可为-(p29.9+p22.74)ppm(方程式(12)),大约在以下至少一种的范围内:±5ppm、±10ppm、±20ppm、±30ppm、±40ppm、±50ppm、±60ppm、±70ppm、±80ppm、±90ppm和±100ppm。相对于裸质子的绝对位移的范围可为-(p29.9+p21.59×10-3)ppm(方程式(12)),大约在以下至少一种的范围内:约0.1%至99%、1%至50%和1%至10%。在另一个实施方式中,固体基质(诸如如naoh或koh的氢氧化物的基质)中分数氢物质(诸如分数氢原子、氢化物离子或分子)的存在引起基质质子朝向高磁场位移。基质质子(诸如naoh或koh的质子)可交换。在一个实施方式中,位移可引起基质峰在相对于tms约-0.1ppm至-5ppm范围内。nmr测定可包含魔角旋转1h核磁谐振光谱术(mas1hnmr)。h(1/p)可与质子反应且两个h(1/p)可反应,分别形成h2(1/p)+和h2(1/p)。氢分子离子和分子电荷和电流密度函数、键距和能量在非辐射约束下由椭球坐标中的拉普拉斯算符(laplacian)求解。在长椭球体分子轨域的各焦点具有+pe的中心场的氢分子离子的总能et为其中p为整数,c为真空中的光速,且μ为折合核质量。在长椭球体分子轨域的各焦点具有+pe的中心场的氢分子的总能为氢分子h2(1/p)的键解离能ed为相应氢原子的总能与et之间的差ed=e(2h(1/p))-et(16)其中e(2h(1/p))=-p227.20ev(17)ed系由方程式(16-17)及(15)得出:ed=-p227.20ev-et=-p227.20ev-(-p231.351ev-p30.326469ev)=p24.151ev+p30.326469ev(18)h2(1/p)可由x射线光电子光谱术(xps)鉴别,其中除电离电子以外的电离产物可为诸如包含两个质子和电子、h原子、分数氢原子、分子离子、氢分子离子和h2(1p)+的可能者中的至少一种,其中能量可因基质而位移。催化产物气体的nmr提供h2(1/p)的理论预测化学位移的确定性测试。一般而言,归因于电子明显更接近核的椭圆坐标中的分率半径,h2(1/p)的1hnmr谐振经预测在h2的高磁场。h2(1/p)的预测位移由量级p的两个电子和光子磁场的反磁性的贡献的和给出(millsgutcp方程式(11.415-11.416)):其中第一项适用于h2(p=1)和h2(1/p)(p=大于1的整数)。实验绝对h2气相谐振位移-28.0ppm与预测的绝对气相位移-28.01ppm(方程式(20))相当吻合。预测的分子分数氢峰相对于普通h2异常地朝向高磁场位移。在一个实施方式中,峰在tms的高磁场。相对于tms的nmr位移可大于关于单独或构成化合物的普通h-、h、h2或h+中的至少一种所知的nmr位移。位移可大于以下中的至少一种:0ppm、-1ppm、-2ppm、-3ppm、-4ppm、-5ppm、-6ppm、-7ppm、-8ppm、-9ppm、-10ppm、-11ppm、-12ppm、-13ppm、-14ppm、-15ppm、-16ppm、-17ppm、-18ppm、-19ppm、-20ppm、-21ppm、-22ppm、-23ppm、-24ppm、-25ppm、-26ppm、-27ppm、-28ppm、-29ppm、-30ppm、-31ppm、-32ppm、-33ppm、-34ppm、-35ppm、-36ppm、-37ppm、-38ppm、-39ppm和-40ppm。相对于裸质子的绝对位移的范围(其中tms位移相对于裸质子为约-31.5)可为-(p28.01+p22.56)ppm(方程式(20)),在约以下至少一种的范围内:±5ppm、±10ppm、±20ppm、±30ppm、±40ppm、±50ppm、±60ppm、±70ppm、±80ppm、±90ppm和±100ppm。相对于裸质子的绝对位移的范围可为-(p28.01+p21.49×10-3)ppm(方程式(20)),在约以下至少一种的范围内:约0.1%至99%、1%至50%、和1%至10%。氢型分子h2(1/p)的υ=0至υ=1跃迁的振动能evib为evib=p20.515902ev(21)其中p为整数。氢型分子h2(1/p)的j至j+1跃迁的旋转能erot为其中p为整数且i为惯性矩。对气体中和捕捉于固体基质中的电子束受激分子观察h2(1/4)的旋振发射(ro-vibrationalemission)。旋转能的p2依赖性由核间距离的逆p依赖性和对惯性矩i的相应影响引起。经预测的h2(1/p)的核间距离2c'为h2(1/p)的旋转能和振动能中的至少一种可由电子束激发发射光谱术、拉曼光谱术(ramanspectroscopy)和傅里叶变换红外(fouriertransforminfrared,ftir)光谱术中的至少一种来测量。h2(1/p)可捕捉于基质中以便测量,诸如捕捉于moh、mx和m2co3(m=碱金属;x=卤离子)基质中的至少一种。催化剂据预测,he+、ar+、sr+、li、k、nah、nh(n=整数)和h2o因为其满足催化剂准则—焓变量等于原子氢势能27.2ev的整数倍的化学或物理过程,所以可充当催化剂。特定而言,如下提供催化系统:将t个电子自原子各自电离至连续能级,使得t个电子的电离能之和为约m·27.2ev,其中m为整数。一个这样的催化系统包括锂原子。锂的第一和第二电离能分别为5.39172ev和75.64018ev。li至li2+的双电离(t=2)反应因而具有81.0319ev(等于3·27.2ev)的净反应焓。li2++2e-→li(m)+81.0319ev(25)且总反应为其中方程式(5)中m=3。在催化期间放出的能量比向催化剂损失的能量大得多。释放的能量大于常规化学反应。举例而言,当氢气和氧气经历燃烧以形成水时,已知的水的生成焓为每个氢原子δhf=-286kj/mole或1.48ev。相比之下,经历达到的催化步骤的各(n=1)普通氢原子净释放40.8ev。此外,可发生其它催化跃迁:等。一旦催化开始,分数氢即在称为歧化的过程中进一步自催化,其中h或h(1/p)充当另一h或h(1/p')(p可等于p')的催化剂。某些分子也可用以实现h跃迁以形成分数氢。一般而言,包含氢的化合物(诸如mh,其中m为除氢外的元素)充当氢来源和催化剂来源。如下提供催化反应:使m-h键断裂加上将t个电子自原子m各自电离至连续能级,使得键能与t个电子的电离能的和为约m·27.2ev,其中m为整数。一个这样的催化系统包括氢化钠。nah的键能为1.9245ev,且na的第一和第二电离能分别为5.13908ev和47.2864ev。因为nah键能加上na至na2+的双电离(t=2)为54.35ev(2·27.2ev),所以基于此类能量,nah分子可充当催化剂和h来源。协同催化剂反应由以下给出:na2++2e-+h→nah+54.35ev(29)且总反应为在m=2的情况下,催化剂nah的产物为h(1/3),其快速起反应而形成h(1/4),接着形成分子分数氢h2(1/4)作为优选状态。特定而言,在高氢原子浓度的情况下,由h(1/3)(p=3)→h(1/4)(p+m=4)(以h作为催化剂(p'=1;m=1))的方程式(10)给出的进一步跃迁可较快:因为p=4量子态的多极性大于赋予h(1/4)较长理论寿命以供进一步催化的四极,所以相应分子分数氢h2(1/4)和分数氢氢化物离子h-(1/4)为与观察结果一致的优选最终产物。因为氦的第二电离能为54.417ev(等于2·27.2ev),所以氦离子可充当催化剂。在此情况下,54.417ev自原子氢以非辐射方式转移至he+,其经谐振电离。电子衰变至n=1/3状态,同时还释放54.417ev,如方程式(33)中所给出。催化反应为he2++e-→he++54.417ev(34)且总反应为其中具有氢原子半径和等于质子3倍的中心场且为半径为h的1/3的相应稳定状态。因为电子经历自氢原子半径至1/3此距离的半径的径向加速度,所以能量以特征光发射或第三体动能的形式释放。如对于当高能分数氢中间物衰变时的此跃迁反应所预测,观察到特征连续发射在22.8nm(54.4ev)下起始且持续至较长波长。已通过在氦与氢脉冲放电时记录的euv光谱观察到发射。作为选择,与对应于高动能h的异常巴尔麦α线变宽的观察结果一致,可发生形成快h的谐振动能转移。氢和分数氢可充当催化剂。氢原子h(1/p)p=1,2,3,...137可经历由方程式(1)和(3)给出的朝向较低能态的跃迁,其中一个原子的跃迁由以谐振和非辐射方式接受m·27.2ev且伴随有势能对换的第二者所催化。由m·27.2ev谐转-振动移至h(1/p')所诱导的h(1/p)跃迁至h(1/(m+p))的总体一般方程由方程式(10)表示。因此,氢原子可充当其中m=1、m=2和m=3分别对于一、二和三个原子的催化剂,充当另一种的催化剂。仅当h密度较高时,二或三原子催化剂情况的速率将会较可观。但,高h密度并不罕见。容许2h或3h充当第三或第四者的能量受体的高氢原子浓度可在若干情况下达成,所述若干情况诸如为因温度及重力驱动的密度而在太阳和星星表面、在承载多个单层的金属表面,和在高度解离等离子体(尤其为压缩氢等离子体)中。另外,当两个h原子因热h与h2碰撞而出现时易于达成三体h相互作用。此事件可通常在具有大量极快h的等离子体中发生。此由原子h发射的异常强度所证实。在此类情况下,可经由多极偶合自氢原子至足够邻近(通常几埃)的两个其它氢原子发生能量转移。接着,三个氢原子之间的反应(由此两个原子以谐振和非辐射方式自第三氢原子接受54.4ev,使得2h充当催化剂)由以下给出:且总反应为因为方程式(37)的中间物等同于方程式(33)的中间物,所以预测连续发射与以he+作为催化剂时的连续发射相同。朝向两个h的能量转移引起催化剂激发态抽运,且如由方程式(36-39)所给出和通过谐振动能转移(如在he+作为催化剂的情况下)直接产生快h。对于氢等离子体也观察到22.8nm连续辐射、h激发态抽运和快h,其中2h充当催化剂。分别由方程式(32-35)和方程式(36-39)给出的氦离子与2h催化剂反应两者的预测产物为h(1/3)。在高氢原子浓度的情况下,由方程式(10)给出的h(1/3)(p=3)朝向h(1/4)(p+m=4)的进一步跃迁(以h作为催化剂(p'=1;m=1))可较快,如方程式(31)所给出。预测次要连续带自随后he+催化产物(方程式(32-35))快速跃迁至状态而出现,其中原子氢自接受27.2ev。也观察此30.4nm连续谱。类似地,当ar+充当催化剂时,观察其预测91.2nm和45.6nm连续谱。也观察预测的快h。在涉及直接跃迁至状态的另一h原子催化剂反应中,两个热h2分子碰撞且解离,使得三个h原子充当第四者的3·27.2ev的催化剂。接着,四个氢原子之间的反应(由此三个原子以谐振和非辐射方式自第四氢原子接受81.6ev,使得3h充当催化剂)由以下给出:且总反应为预测归因于方程式(40)的中间物的极紫外线连续辐射带在122.4ev(10.1nm)下具有短波长截止值且延伸至较长波长。此连续谱带以实验证实。一般而言,通过接受m·27.2ev而使h跃迁至得到连续谱带,其具有由以下给出的短波长截止值和能量且延伸至大于相应截止值的波长。实验观察10.1nm、22.8nm和91.2nm连续谱的氢发射系列。i.分数氢具有由以下给出的结合能的氢原子:(其中p为大于1,优选为2至137的整数)为本发明的h催化反应的产物。原子、离子或分子的结合能(也称为电离能)为自原子、离子或分子移除一个电子所需的能量。具有方程式(46)中给出的结合能的氢原子在下文中称作「分数氢原子」或「分数氢」。半径(其中ah为普通氢原子的半径且p为整数)的分数氢的符号为具有半径ah的氢原子在下文中称作「普通氢原子」或「正常氢原子」。普通原子氢的特征在于其结合能为13.6ev。分数氢通过使普通氢原子与适合催化剂反应而形成,其净反应焓为:m·27.2ev(47)其中m为整数。据信当净反应焓与m·27.2ev较为紧密地匹配时催化速率增大。已发现净反应焓在m·27.2ev的±10%、优选为±5%内的催化剂适用于大多数应用。此催化自氢原子尺寸相应减小(rn=nah)的氢原子释放能量。举例而言,h(n=1)至h(n=1/2)的催化释放40.8ev,且氢半径自ah减小至如下提供催化系统:将t个电子自原子各自电离至连续能级,使得t个电子的电离能之和为约m·27.2ev,其中m为整数。上文给出(方程式(6-9)的此类催化系统的另一实例包括铯。铯的第一和第二电离能分别为3.89390ev和23.15745ev。cs至cs2+的双电离(t=2)反应因而具有27.05135ev的净反应焓,其等于方程式(47)中的m=1。cs2++2e-→cs(m)+27.05135ev(49)且总反应为另一催化系统包括钾金属。钾的第一、第二和第三电离能分别为4.34066ev、31.63ev、45.806ev。k至k3+的三重电离(t=3)反应因而具有81.7767ev的净反应焓,其等同于方程式(47)中的m=3。k3++3e-→k(m)+81.7426ev(52)且总反应为作为能源,在催化期间放出的能量比向催化剂损失的能量大得多。释放的能量大于常规化学反应。举例而言,当氢气和氧气经历燃烧以形成水时,已知的水的生成焓为每个氢原子δhf=-286千焦/摩尔或1.48ev。相比的下,经历催化的各(n=1)普通氢原子净释放40.8ev。此外,可发生其它催化跃迁:等。一旦催化开始,分数氢即在称为歧化的过程中进一步自催化。此机制类似于无机离子催化的机制。但由于焓与m·27.2ev的较佳匹配,因此分数氢催化的反应速率应高于无机离子催化剂的反应速率。表1中给出能够提供约m·27.2ev(其中m为整数)的净反应焓以产生分数氢(由此t个电子自原子或离子电离)的氢催化剂。第一行给出的原子或离子经电离以提供第十行给出的m·27.2ev的净反应焓,其中在第十一行给出m。参与电离的电子与电离电位(也称为电离能或结合能)一起给出。原子或离子的第n个电子的电离电位由ipn表示且由crc给出。也即例如li+5.39172ev→li++e-和li++75.6402ev→li2++e-。第一电离电位ip1=5.39172ev和第二电离电位ip2=75.6402ev分别在第二和第三行给出。li双电离的净反应焓如第十行给出为81.0319ev,和如第十一行给出的等式(5)中的m=3。表1.氢催化剂本发明的分数氢氢化物离子可通过电子来源与分数氢反应来形成,分数氢也即为结合能是约的氢原子,其中且p为大于1的整数。分数氢氢化物由h-(n=1/p)或h-(1/p)表示:分数氢氢化物离子不同于包含普通氢原子核和两个电子的结合能为约0.8ev的普通氢化物离子。后者在下文称作「普通氢化物离子」或「正常氢化物离子」。分数氢氢化物离子包含氢原子核(包括氕、氘或氚),和两个不可区分的电子,其结合能如方程式(57-58)所示。分数氢氢化物离子的结合能可由下式表示:结合能其中p为大于1的整数,s=1/2,π为pi(π),h为普朗克常数杠,μo为真空磁导率,me为电子质量,μe为由给出的折合电子质量,其中mp为质子质量,ah为氢原子半径,ao为玻尔半径,且e为基本电荷。半径由以下给出:表2中展示随p而变的分数氢氢化物离子h-(n=1/p)的结合能,其中p为整数。表2.随p而变(方程式(57))的分数氢氢化物离子h-(n=1/p)的代表性结合能。a方程式(58)b方程式(57)根据本发明,提供一种分数氢氢化物离子(h-),其根据方程式(57-58)的结合能大于普通氢化物离子对于p=2直至23的结合(约0.75ev),且小于对于p=24(h-)的结合。对于方程式(57-58)的p=2至p=24,氢化物离子结合能分别为3、6.6、11.2、16.7、22.8、29.3、36.1、42.8、49.4、55.5、61.0、65.6、69.2、71.6、72.4、71.6、68.8、64.0、56.8、47.1、34.7、19.3和0.69ev。本文也提供包含新型氢化物离子的示例性组合物。也提供包含一或多种分数氢氢化物离子和一或多种其它元素的示例性化合物。此种化合物称作「分数氢氢化物」。普通氢物质的特征在于以下结合能:(a)氢化物离子,0.754ev(「普通氢化物离子」);(b)氢原子(「普通氢原子」),13.6ev;(c)双原子氢分子,15.3ev(「普通氢分子」);(d)氢分子离子,16.3ev(「普通氢分子离子」);和(e)22.6ev(「普通三氢分子离子」)。在本文中,参考氢形式,「正常」与「普通」为同义词。根据本发明的另一实施方式,提供一种化合物,其包含至少一种结合能增加的氢物质,诸如(a)结合能为约诸如在约0.9至1.1倍的范围内的氢原子,其中p为2至137的整数;(b)结合能约为结合能诸如在约0.9至1.1倍结合能的范围内的氢化物离子(h-),其中p为2至24的整数;(c)(d)结合能为约诸如在约0.9至1.1倍的范围内的三分数氢(trihydrino)分子离子其中p为2至137的整数;(e)结合能为约诸如在约0.9至1.1倍的范围内的二分数氢,其中p为2至137的整数;(f)结合能为约诸如在约0.9至1.1倍的范围内的二分数氢分子离子,其中p为整数,优选为2至137的整数。根据本发明的另一实施方式,提供一种化合物,其包含至少一种结合能增加的氢物质,诸如(a)总能为约诸如在约0.9至1.1倍的范围内的二分数氢分子离子,其中p为整数,h为普朗克常数杠,me为电子质量,c为真空中的光速,且μ为降低的核质量;和(b)总能为约诸如在约0.9至1.1倍的范围内的二分数氢分子,其中p为整数且ao为玻尔半径。根据本发明的一个实施方式(其中化合物包含带负电的结合能增加的氢物质),该化合物还包含一或多种阳离子,诸如质子、普通或普通本文提供一种制备包含至少一个分数氢氢化物离子的化合物的方法。此类化合物在下文中称作「分数氢氢化物」。该方法包含使原子氢与净反应焓为约的催化剂反应,其中m为大于1的整数,优选为小于400的整数,以产生结合能为约的结合能增加的氢原子,其中p为整数,优选为2至137的整数。另一催化产物为能量。可使结合能增加的氢原子与电子来源反应以产生结合能增加的氢化物离子。可使结合能增加的氢化物离子与一或多个阳离子反应以产生包含至少一个结合能增加的氢化物离子的化合物。新型氢物质组合物可包含:(a)至少一种具有以下结合能的中性、正或负的氢物质(在下文中为「结合能增加的氢物质」),(i)大于相应普通氢物质的结合能,或(ii)大于任何氢物质在相应普通氢物质不稳定或观察不到(因为在环境条件(标准温度和压力,stp)下普通氢物质的结合能小于热能,或为负)时的结合能;和(b)至少一种其它元素。本发明的化合物在下文中称作「结合能增加的氢化合物」。在此背景下,「其它元素」是指除结合能增加的氢物质外的元素。因此,其它元素可为普通氢物质,或除氢以外的任何元素。在一组化合物中,其它元素和结合能增加的氢物质为中性。在另一组化合物中,其它元素和结合能增加的氢物质带电,使得其它元素提供其余电荷以形成中性化合物。前一组化合物的特征在于分子和配位结合;后一组化合物的特征在于离子键结。也提供包含以下的新型化合物和分子离子:(a)至少一种具有以下总能的中性、正或负的氢物质(在下文中为「结合能增加的氢物质」),(i)大于相应普通氢物质的总能,或(ii)大于任何氢物质在相应普通氢物质不稳定或观察不到(因为在环境条件下普通氢物质的总能小于热能,或为负)时的总能;和(b)至少一种其它元素。氢物质总能为自氢物质移除所有电子的能量和。根据本发明的氢物质的总能大于相应普通氢物质的总能。根据本发明具有增加的总能的氢物质也称作「结合能增加的氢物质」,但具有增加的总能的氢物质的一些实施方式可能具有小于相应普通氢物质的第一电子结合能的第一电子结合能。举例而言,p=24的方程式(57-58)的氢化物离子的第一结合能小于普通氢化物离子的第一结合能,而p=24的方程式(57-58)的氢化物离子的总能比相应普通氢化物离子的总能大得多。本文也提供包含以下的新型化合物和分子离子:(a)复数种具有以下结合能的中性、正或负的氢物质(在下文中为「结合能增加的氢物质」),(i)大于相应普通氢物质的结合能,或(ii)大于任何氢物质在相应普通氢物质不稳定或观察不到(因为在环境条件下普通氢物质的结合能小于热能,或为负)时的结合能;和(b)视情况选用的一种其它元素。本发明的化合物在下文中称作「结合能增加的氢化合物」。结合能增加的氢物质可通过使一或多种分数氢原子与电子、分数氢原子、含有以下至少一种的化合物中的一种或多种反应来形成:所述结合能增加的氢物质,和至少一种除结合能增加的氢物质外的其它原子、分子或离子。也提供包含以下的新型化合物和分子离子:(a)复数种具有以下总能的中性、正或负的氢物质(在下文中为「结合能增加的氢物质」),(i)大于普通分子氢的总能,或(ii)大于任何氢物质在相应普通氢物质不稳定或观察不到(因为在环境条件下普通氢物质的总能小于热能,或为负)时的总能;和(b)视情况选用的一种其它元素。本发明的化合物在下文中称作「结合能增加的氢化合物」。在一个实施方式中,提供一种包含至少一种选自以下的结合能增加的氢物质的化合物:(a)根据方程式(57-58)的结合能对于p=2直至23大于且对于p=24小于普通氢化物离子的结合(约0.8ev)的氢化物离子(「结合能增加的氢化物离子」或「分数氢氢化物离子」);(b)结合能大于普通氢原子的结合能(约13.6ev)的氢原子(「结合能增加的氢原子」或「分数氢」);(c)第一结合能大于约15.3ev的氢分子(「结合能增加的氢分子」或「二分数氢」);和(d)结合能大于约16.3ev的分子氢离子(「结合能增加的分子氢离子」或「二分数氢分子离子」)。在本发明中,结合能增加的氢物质和化合物也称为低能量氢物质和化合物。分数氢包含结合能增加的氢物质或等同之低能量氢物质。在一个实施方式中,naoh为再生循环中的nah来源。naoh与na反应形成na2o和nah如下:naoh+2na→na2o+nah(-44.7千焦/摩尔)(61)放热反应可驱动nah(g)形成。因此,nah分解成na或金属可充当形成催化剂nah(g)的还原剂。在一个实施方式中,使作为产生nah催化剂的反应(诸如由方程式(61)给出的反应)的产物而形成的na2o与氢来源反应形成naoh,其可还充当nah催化剂来源。在一个实施方式中,在原子氢存在下自方程式(61)的产物再生naoh的反应为na2o+1/2h→naoh+naδh=-11.6千焦/莫耳naoh(62)nah→na+h(1/3)δh=-10,500千焦/莫耳h(63)和nah→na+h(1/4)δh=-19,700千焦/莫耳h(64)因此,来自诸如na金属或nah等来源与原子氢来源或原子氢的少量naoh和na充当nah催化剂的催化来源,该nah催化剂又经由多个再生反应(诸如由方程式(61-64)给出的反应)循环而形成高产率的分数氢。由方程式(62)给出的反应可通过使用用于自h2形成原子h的氢解离体而增强。适合解离体包含至少一个来自贵金属、过渡金属、pt、pd、ir、ni、ti,和这些元素/载体的组的成员。反应混合物可包含nah或nah来源和naoh或naoh来源,且可还包含以下中的至少一种:还原剂,诸如碱土金属,诸如mg,和载体,诸如碳或碳化物,诸如tic、yc2、tisic2和wc。反应可在对反应物和产物呈惰性的容器(诸如ni、ag、镀ni、镀ag或al2o3容器)中进行。在一个实施方式中,koh为再生循环中的k和kh来源。koh与k反应形成k2o和kh,如下:koh+2k→k2o+kh(+5.4千焦/摩尔)(65)在kh形成期间,发生分数氢反应。在一个实施方式中,使k2o与氢来源反应形成koh,其可还充当根据方程式(65)的反应物。在一个实施方式中,在原子氢存在下自方程式(65)再生koh的反应为k2o+1/2h2→koh+kδh=-63.1千焦/莫耳koh(66)kh→k+h(1/4)δh=-19,700千焦/莫耳h(67)因此,来自诸如k金属或kh的来源与原子氢来源或原子氢的少量koh和k充当催化剂的kh来源的催化来源,该催化剂又经由多个再生反应(诸如由方程式(65-67)给出的反应)循环而形成高产率的分数氢。由方程式(66)给出的反应可通过使用用于自h2形成原子h的氢解离体而增强。适合解离体包含至少一个来自贵金属、过渡金属、pt、pd、ir、ni、ti,和这些元素/载体的组的成员。反应混合物可包含kh或kh来源和koh或koh来源,且可还包含以下中的至少一种:还原剂和载体,诸如碳、碳化物或硼化物,诸如tic、yc2、tisic2、mgb2和wc。在一个实施方式中,载体为非反应性的或与koh具有低反应性。反应混合物可还包含至少一种koh掺杂载体,诸如r-ni、koh和kh。d.其它mh型催化剂及反应一般而言,表3a中给出如下提供的用于产生分数氢的mh型氢催化剂:m-h键断裂加上t个电子自原子m各自电离至连续能级,使得t个电子的键能与电离能的和为约m·27.2ev,其中m为整数。各mh催化剂系在第一行给出且相应m-h键能在第二行给出。第一行给出的mh物质的原子m经电离以提供m·27.2ev的净反应焓,在第二行添加键能。催化剂的焓在第八行给出,其中m在第九行给出。参与电离的电子与电离电位(也称为电离能或结合能)一起给出。举例而言,nah的键能1.9245ev在第二行给出。原子或离子的第n个电子的电离电位由ipn表示且由crc给出。也即例如na+5.13908ev→na++e-和na++47.2864ev→na2++e-。第一电离电位ip1=5.13908ev和第二电离电位ip2=47.2864ev分别在第二和第三行给出。nah键断裂和na双电离的净反应焓如第八行给出为54.35ev,和如第九行中给出的方程式(47)中的m=2。bah键能为1.98991ev且ip1、ip2和ip3分别为5.2117ev、10.00390ev和37.3ev。bah键断裂和ba三重电离的净反应焓如第八行给出为54.5ev,和如第九行中给出的方程式(47)中的m=2。srh键能为1.70ev且ip1、ip2、ip3、ip4和ip5分别为5.69484ev、11.03013ev、42.89ev、57ev和71.6ev。srh键断裂和sr电离为sr5+的净反应焓如第八行给出为190ev,和如第九行中给出的方程式(47)中的m=7。另外,h可与表3a中给出的mh催化剂的各h(1/p)产物反应以形成具有相对于如由示例性方程式(31)给出的单独mh的催化剂反应产物增加一个(方程式(10))的量子数p的分数氢。表3a.能够提供约m·27.2ev的净反应焓的mh型氢催化剂(能量以ev表示)在其它实施方式中,表3b中给出如下提供的用于产生分数氢的mh-型氢催化剂:将电子转移至受体a、m-h键断裂加上t个电子自原子m各自电离至连续能级,使得包含mh与a的电子亲和力(ea)差异的电子转移能量、m-h键能和t个电子自m电离的电离能的和为约m·27.2ev,其中m为整数。各mh-催化剂、受体a、mh的电子亲和力、a的电子亲和力和m-h键能分别在第一、第二、第三和第四行中给出。参与电离的mh的相应原子m的电子与电离电位(也称为电离能或结合能)一起在后续行中给出且催化剂的焓和相应整数m在最后一行给出。举例而言,oh和h的电子亲和力分别为1.82765ev和0.7542ev,使得电子转移能量为1.07345ev,如第五行给出。oh键能为4.4556ev,如第六行给出。原子或离子的第n个电子的电离电位由ipn指定。也即例如o+13.61806ev→o++e-和o++35.11730ev→o2++e-。第一电离电位ip1=13.61806ev和第二电离电位ip2=35.11730ev分别在第七和第八行给出。电子转移反应、oh键断裂和o双电离的净焓如第十一行给出为54.27ev,和如第十二行给出的方程式(47)中的m=2。另外,h可与表3b中给出的mh催化剂的各h(1/p)产物反应以形成具有相对于如由示例性方程式(31)给出的单独mh的催化剂反应产物增加一个(方程式(10))的量子数p的分数氢。在其它实施方式中,如下提供用于形成分数氢的h的催化剂:使负离子电离,使得其ea加上一或多个电子的电离能的和为约m·27.2ev,其中m为整数。作为选择,可将负离子的第一电子转移至受体,接着再电离至少一个电子,使得电子转移能量加上一或多个电子的电离能的和为约m·27.2ev,其中m为整数。电子受体可为h。表3b.能够提供约m·27.2ev的净反应焓的mh-型氢催化剂(能量以ev表示)在其它实施方式中,如下提供用于产生分数氢的mh+型氢催化剂:自可带负电的供体a转移电子、m-h键断裂和t个电子自原子m各自电离至连续能级,使得包含mh与a的电离能差异的电子转移能量、m-h键能和t个电子自m电离的电离能的和为约m·27.2ev,其中m为整数。在一个实施方式中,诸如原子、离子或分子的物质充当催化剂以使得分子氢经历朝向分子分数氢h2(1/p)(p为整数)的跃迁。与h的情况类似,催化剂自h2接受能量,其在此情况下可为约m48.6ev,其中m为如millsgutcp中给出的整数。可通过直接催化h2而形成h2(1/p)的适合示例性催化剂为o、v和cd,其分别在对应于m=1、m=2和m=4的催化反应期间形成o2+、v4+和cd5+。能量可以热或光或电形式释放,其中反应包含半电池反应。在一个实施方式中,催化剂包含诸如原子、带正电或带负电的离子、带正电或带负电的分子离子、分子、准分子、化合物或其任何组合,处于能够接受m·27.2ev(m=1,2,3,4,....)(方程式(5)的能量的基态或激发态的任何物质。据信当净反应焓与m·27.2ev较为紧密地匹配时催化速率增大。已发现具有在m·27.2ev±10%、优选为±5%内的净反应焓的催化剂适于大部分应用。在将分数氢原子催化至较低能态的情况下,以与分数氢原子的势能相同的因子对m·27.2ev(方程式(5))的反应焓作相对论校正。在一个实施方式中,催化剂谐振和非辐射地接受来自原子氢的能量。在一个实施方式中,所接受的能量使催化剂势能的量值减少约自原子氢转移的量。由于最初束缚电子的动能守恒,所以可产生高能离子或电子。至少一个原子h充当至少一个另一原子h的催化剂,其中受体的27.2ev势能由自所催化的供体h原子转移27.2ev而抵消。受体催化剂h的动能可以快质子或电子形式保存。另外,在催化h中形成的中间态(方程式(7))随连续能量以辐射或第三体中诱导的动能形式发射而衰减。此类能量释放可在ciht电池中产生电流。在一个实施方式中,分子或带正电或带负电的分子离子中的至少一种充当自原子h接受约m27.2ev的催化剂,其中分子或带正电或带负电的分子离子的势能量值减少约m27.2ev。举例而言,millsgutcp中给出的h2o的势能为自原子h接受m·27.2ev且分子势能量值减少相同能量的分子可充当催化剂。举例而言,关于h2o的势能,催化反应(m=3)为2h++o++3e-→h2o+81.6ev(71)且总反应为其中具有氢原子半径和等于质子4倍的中心场,且为半径为h的1/4的相应的稳定状态。当电子经受自氢原子半径至1/4该距离的半径的径向加速度时,能量以特征发光形式或第三体动能形式释放。基于自0℃冰变成100℃水的汽化热的10%能量变化,沸水中每水分子的h键的平均数为3.6。因此,在一个实施方式中,h2o在化学上必须以具适合活化能的分离分子形式形成以充当催化剂来形成分数氢。在一个实施方式中,h2o催化剂为新生h2o。在一个实施方式中,nh、o、no、o2、oh和h2o(n=整数)中的至少一种可充当催化剂。h和oh(作为催化剂)的产物可为h(1/5),其中催化剂焓为约108.8ev。h和h2o(作为催化剂)的反应的产物可为h(1/4)。分数氢产物可还反应至更低状态。h(1/4)和h(作为催化剂)的产物可为h(1/5),其中催化剂焓为约27.2ev。h(1/4)和oh(作为催化剂)的产物可为h(1/6),其中催化剂焓为约54.4ev。h(1/5)和h(作为催化剂)的产物可为h(1/6),其中催化剂焓为约27.2ev。h2o中的键涉及o的两个外层电子。因为h2o的势能为81.87ev且h2o的o原子的第三电离能为54.9355ev,所以h2o可接受3×27.2ev的势能和对应于所得o2+还电离为o3+的2×27.2ev。因此,h2o也可催化h形成h(1/6),对应于催化剂焓为5×27.2ev,以及催化h形成h(1/4),对应于催化剂焓为3×27.2ev。电池[naohni(h2)/base/mgcl2-nacl封闭电池]的氢阳极产物的固体质子nmr显示大-3.91ppm单重态1hmasnmr峰对应的于阳极处由oh-与h反应所形成的h2o催化剂的分数氢产物。类似于h2o,millsgutcp中给出的胺官能团nh2的势能为-78.77719ev。由crc,自各对应δhf计算的nh2反应形成knh2的δh为(-128.9-184.9)千焦/摩尔=-313.8千焦/摩尔(3.25ev)。由crc,自各对应δhf计算的nh2反应形成nanh2的δh为(-123.8-184.9)千焦/摩尔=-308.7千焦/摩尔(3.20ev)。由crc,自各对应δhf计算的nh2反应形成linh2的δh为(-179.5-184.9)千焦/摩尔=-364.4千焦/摩尔(3.78ev)。因此,可由充当h催化剂用于形成分数氢的碱金属胺化物mnh2(m=k、na、li)接受的净焓分别为约82.03ev、81.98ev和82.56ev(在方程式(5)中,m=3),对应于胺基的势能和由胺基形成胺化物的能量的和。分数氢产物(诸如分子分数氢)可引起通过诸如masnmr的方法所观察到的高磁场基质位移。类似于h2o,millsgutcp中给出的h2s官能团的势能为-72.81ev。该势能的抵消也会消除与3p壳层杂化相关的能量。7.49ev的该杂化能量由氢化物轨道半径与初始原子轨道半径的比率乘以壳层总能量而给出。另外,因形成两个1.10ev的s-h键所致的s3p壳层的能量变化纳入催化剂能量中。因此,h2s催化剂的净焓为81.40ev(在方程式(5)中,m=3)。h2s催化剂可由mhs(m=碱金属)通过以下反应形成:2mhs→m2s+h2s(73)该可逆反应可形成呈活性催化状态的h2s,该状态为产物h2s的过渡状态,其可催化h形成分数氢。反应混合物可包含形成h2s和原子h来源的反应物。分数氢产物(诸如分子分数氢)会引起通过诸如masnmr的方法所观察到的高磁场基质位移。此外,原子氧为一种具有两个半径相同且均等于原子氢的玻尔半径的不成对电子的特别原子。当原子h充当催化剂时,接受27.2ev的能量,使得充当另一种的催化剂的各电离h的动能为13.6ev。类似地,o的两个电子各自可随13.6ev动能转移至o离子而电离,使得oh的o-h键断裂以和随后两个外部不成对电子电离的净焓为80.4ev,在表3中所给出。在oh-电离成oh期间,可发生还反应成h(1/4)和o2++2e-的能量匹配,其中所释放的204ev能量贡献给ciht电池的动力。反应如下给出:且总反应为其中方程式(5)中m=3。动能也可保存于热电子中。观测到在水蒸气等离子体中有h粒子数反转现象证明了此机制。分数氢产物(诸如分子分数氢)会引起由诸如masnmr的方法观察到的高磁场基质位移。本发明中给出鉴别分子分数氢产物的其它方法(诸如ftir、拉曼和xps)。在氧或包含氧的化合物参与氧化或还原反应的一个实施方式中,o2可充当催化剂或催化剂来源。氧分子的键能为5.165ev,且氧原子的第一、第二和第三电离能分别为13.61806ev、35.11730ev和54.9355ev。反应o2→o+o2+、o2→o+o3+和2o→2o+提供分别约2、4和1倍eh的净焓,且包含通过自h接受此类能量以使得分数氢形成来形成分数氢的催化剂反应。ix.燃料电池和电池组图1中展示燃料电池和电池组400的实施方式。包含固体燃料或非均相催化剂的分数氢反应物包含相应电池半反应的反应物。因具有催化分数氢跃迁的独特属性而可启用催化剂诱导的分数氢跃迁(ciht)电池。本发明的ciht电池为氢燃料电池,其由使氢催化反应至较低能态(分数氢)而产生电动势(emf)。因此,其充当将自分数氢反应释放的能量直接转化为电的燃料电池。由于氧化还原电池的半反应,因此产生分数氢的反应混合物通过电子经由外部电路迁移和经由单独的路径进行离子质量输送以形成电路所构成。产生由半电池反应的和得到的分数氢的总反应和相应反应混合物可包含关于本发明中给出的热功率产生所考虑的反应类型。来自分数氢反应的自由能δg产生电位,其视构成产生分数氢的反应混合物的氧化还原化学性质而定可为氧化电位或还原电位。电位可用以在燃料电池中产生电压。电位v可用自由能δg换算来表示:其中f为法拉第常数(faradayconstant)。假定对于跃迁至h(1/4),自由能为约-20mj/摩尔h,则视其它电池组分(诸如化学物质、电解质和电极)而定,电压可能较高。在电压受限于此类或其它组分的氧化还原电位的一个实施方式中,能量可表现为来自分数氢形成的较高电流和相应动力贡献。如方程式(6-9)所示,分数氢跃迁的能量可以连续辐射的形式释放。特定而言,能量以非辐射方式转移至催化剂以形成介稳态中间物,当电子自初始半径转变为最终半径时其在等离子体系统中衰变,伴随发射连续辐射。在凝聚态物质(诸如ciht电池)中,此能量可内部转化为高能电子,其表现为电位类似于电池反应物的化学电位的电池电流和动力贡献。因此,动力可表现为电压低于方程式(77)给出者的较高电流。电压也将受限于反应动力学;因此,形成分数氢的较高动力学有利于通过提高电流和电压中的至少一种来提高动力。因为电池反应可由h与催化剂之间形成分数氢的大放热反应所驱动,所以在一个实施方式中,形成所述用于形成分数氢的反应物的常规氧化还原电池反应的自由能可为任何可能值。适合范围为约+1000焦/摩尔至-1000焦/摩尔、约+1000焦/摩尔至-100焦/摩尔、约+1000焦/摩尔至-10焦/摩尔,和约+1000焦/摩尔至0焦/摩尔。归因于形成分数氢的负自由能,因此电池电流、电压和动力中的至少一种高于可促成该电流、电压和动力的非分数氢反应的自由能所致者。此适用于开路电压和具有负载者。因此,在一个实施方式中,ciht电池与任何在先技术的区别的处在于以下中的至少一种:电压高于由非分数氢相关化学的能斯特方程式(nernstequation)预测(由于当加载电池时有任何极化电压,因此包括电压校正)的电压、电流高于由常规化学驱动的电流,和动力高于由常规化学驱动的动力。关于图1,燃料或ciht电池400包含具有阴极405的阴极隔室401、具有阳极410的阳极隔室402、盐桥420、于电池操作期间在单独的电子流和离子质量输送下构成分数氢反应物的反应物,和氢来源。在一般实施方式中,ciht电池为氢燃料电池,其由使氢催化反应至较低能态(分数氢)而产生电动势(emf)。因此,其充当将自分数氢反应释放的能量直接转化为电的燃料电池。在另一实施方式中,相较于经由电极405和410施加的电解功率,ciht电池产生动力和热功率增益中的至少一种。在形成分数氢时,电池消耗氢,且需要加氢;另外,在一个实施方式中,用于形成分数氢的反应物为热再生型或电解再生型中的至少一种。在通过单独的导管连接以便电子与离子在隔室之间形成电路的不同电池隔室中提供处于不同状态或条件(诸如不同温度、压力和浓度中的至少一种)下的不同反应物或相同反应物。由于分数氢反应对自一个隔室至另一隔室的质量流的依赖性,因此产生单独的隔室的电极之间的电位和动力增益或系统的热增益。质量流提供至少一个以下形成:可起反应而产生分数氢的反应混合物和允许以实质速率发生分数氢反应的条件。质量流还需要电子和离子在连接隔室的单独的导管中输送。电子可由以下中的至少一种产生:在原子氢与催化剂反应的期间的催化剂电离,和诸如原子、分子、化合物或金属的反应物质的氧化或还原反应。隔室(诸如阳极隔室402)中的物质电离可因以下中的至少一种所致:(1)因以下发生的有利自由能变化:其氧化、单独的隔室(诸如阴极401)中反应物质的还原、和将隔室中的电荷平衡至电中性的迁移离子反应;和(2)由以下所致的自由能变化:分数氢形成、单独的隔室中的物质氧化、物质还原和引起形成分数氢的反应的迁移离子反应。离子迁移可通过盐桥420。在另一实施方式中,单独的隔室中的物质氧化、物质还原,和迁移离子的反应可能不为自发的或可能以低速率发生。施加电解电位以驱动反应,其中质量流提供至少一个以下形成:可起反应而产生分数氢的反应混合物和允许以实质速率发生分数氢反应的条件。电解电位可经由外部电路425施加。各半电池的反应物可经历以下中的至少一种:供应、维持和再生(通过经由通道460和461至用于产物储存和再生的反应物来源或储集器430和431添加反应物或移除产物而达成)。在一个实施方式中,原子氢和氢催化剂中的至少一种可通过反应混合物的反应来形成,且藉助于其经历反应的一种反应物使得催化具有活性。引发分数氢反应的反应可为以下中的至少一种:放热反应、偶合反应、自由基反应、氧化还原反应、交换反应,和吸气剂、载体或基质辅助催化反应。在一个实施方式中,形成分数氢的反应提供能化学动力。引发分数氢反应(诸如本发明的交换反应)的反应混合物和反应为通过氢反应形成分数氢来产生动力的燃料电池的基础。由于氧化还原电池的半反应,因此产生分数氢的反应混合物通过电子经由外部电路迁移和经由单独的路径进行离子质量输送以形成电路所构成。产生由半电池反应的和得到的分数氢的总反应和相应反应混合物可包含本发明的热功率和分数氢化学产生的反应类型。因此,理想地,在无电子流和离子质量输送存在下,分数氢反应不发生或不以可观速率发生。电池至少包含催化剂来源或催化剂和氢来源或氢。适合的催化剂或催化剂来源和氢来源为选自li、lih、na、nah、k、kh、rb、rbh、cs、csh、ba、bah、ca、cah、mg、mgh2、mgx2(x为卤离子)和h2的那些。表3中给出其它适合催化剂。在一个实施方式中,正离子可在阴极经历还原。离子可为阴极的还原和反应中的至少一种的催化剂来源。在一个实施方式中,氧化剂经历反应而形成分数氢反应物,其接着起反应而形成分数氢。作为选择,最终电子-受体反应物包含氧化剂。氧化剂或阴极-电池反应混合物可位于具有阴极405的阴极隔室401中。作为选择,阴极-电池反应混合物在阴极隔室中由离子和电子迁移构成。在燃料电池的一个实施方式中,阴极隔室401充当阴极。在操作期间,正离子可自阳极迁移至阴极隔室。在某些实施方式中,此迁移经由盐桥420发生。作为选择,负离子可自阴极经由盐桥420迁移至阳极隔室。迁移离子可为以下中的至少一种:催化剂或催化剂来源的离子、氢离子(诸如h+、h-或h-(1/p))和通过催化剂或催化剂来源与氧化剂或氧化剂阴离子反应而形成的化合物的相对离子。各电池反应可经历以下中的至少一种:供应、维持和再生(通过经由通道460和461至用于产物储存和视情况再生的反应物来源或储集器430和431添加反应物或移除产物而达成)。在一个实施方式中,化学在燃料电池的阴极隔室中产生活性分数氢反应物,其中还原电位可包括来自将h催化为分数氢的一大贡献。催化剂或催化剂来源可包含中性原子或分子,诸如碱金属原子或氢化物,其可通过还原正电物质(positivespecies)(诸如相应碱金属离子)来形成。催化剂离子还原为催化剂和h电子跃迁至较低电子状态的电位对由方程式(77)给出的电位基于反应δg产生贡献。在一个实施方式中,阴极半电池还原反应和任何其它反应均包含形成催化剂和原子氢和使h催化反应成分数氢。阳极半电池反应可包含电离诸如催化剂金属的金属。离子可迁移至阴极且经还原,或电解质的离子可经还原而形成催化剂。催化剂可在h存在下形成。示例性反应为阴极半电池反应:其中er为catq+的还原能。阳极半电池反应:cat+er→catq++qe-(79)其它适合的还原剂为金属,诸如过渡金属。电池反应:在催化剂阳离子经由适合的盐桥或电解质迁移的情况下,催化剂可在阴极隔室中再生且在阳极经置换。接着,可通过置换已反应形成分数氢的阴极隔室氢来维持燃料电池反应。氢可来自水电解。在实施方式中,水可来自外部来源或由吸湿性化合物或电解质自大气吸收。电池的产物可为通过分数氢原子反应而形成的分子分数氢。在h(1/4)为产物的情况下,此类反应的能量为2h(1/4)→h2(1/4)+87.31ev(81)h2o+2.962ev→h2+0.5o2(82)在操作期间,催化剂与原子氢反应,自原子氢至催化剂的整数倍27.2ev的非辐射性能量转移引起催化剂电离,同时短暂释放自由电子,且因能量大释放而形成分数氢原子。在一个实施方式中,此反应可在阳极隔室402中发生使得阳极410最终接受电离电子流。电流也可来自阳极隔室中的还原剂氧化。在燃料电池的一个实施方式中,阳极隔室402充当阳极。li、k、nah、nh和h2o中的至少一种可充当用于形成分数氢的催化剂。载体(诸如碳粉;碳化物,诸如tic、wc、yc2或cr3c2;或硼化物)可充当与可充当集电体的电极(诸如阳极)电接触的电子导体。所传导的电子可来自催化剂电离或还原剂氧化。作为选择,载体可包含阳极和阴极中的至少一种,其用导线与负载电连接。与负载连接的阳极导线以和阴极导线可为任何导体,诸如金属。在化学在燃料电池的阳极隔室产生活性分数氢反应物的情况下,氧化电位和电子可具有来自催化剂机制的贡献。如方程式(6-9)所示,催化剂可包含自原子氢(通过被电离)接受能量的物质。催化剂被电离和h电子跃迁至较低电子状态的电位对由方程式(77)给出的电位基于反应δg产生贡献。因为nah为形成分数氢同时将na电离为na2+的协同内反应(如方程式(28-30)给出),所以在此情况下方程式(77)应尤其适用。在一个实施方式中,阳极半电池氧化反应包含催化电离反应。阴极半电池反应可包含使h还原为氢化物。示例性反应为阳极半电池反应:阴极半电池反应:其中er为金属氢化物mh2的还原能。适合的氧化剂为氢化物,诸如稀土金属氢化物、氢化钛、氢化锆、氢化钇、lih、nah、kh和bah、硫族化物,和m-n-h系统(诸如li-n-h系统)的化合物。在催化剂阳离子或氢化物离子经由适合的盐桥或电解质迁移的情况下,催化剂和氢可在阳极隔室中再生。在催化剂的稳定氧化态为cat的情况下,盐桥或电解质反应为盐桥或电解质反应:其中0.754ev为氢化物电离能且4.478ev为h2键能。催化剂或催化剂来源可为也可充当h来源的氢化物。接着,盐桥反应为盐桥或电解质反应:其中el为cath的晶格能。接着,燃料电池反应可通过将氢置换于阴极隔室中来维持,或可使电解质中的cath与m反应形成mh2。m=la的示例性反应由以下给出:la+h2→lah2+2.09ev(87)在前一情况下,氢可来自以下:将来自在catr+还原中形成的阳极隔室的过量氢再循环。经消耗以形成h(1/4)、接着h2(1/4)的氢置换可来自水电解。反应物可被热再生或电解再生。产物可在阴极或阳极隔室中再生。或其可使用例如泵送至再生器,其中本发明或本领域技术人员已知的任何再生化学均可适用于再生初始反应物。经历分数氢反应的电池可向经历反应物再生者提供热。在为达成再生而提高产物温度的情况下,可使ciht电池产物和再生反应物通过回流换热器,同时分别送至再生器并自再生器送出,以回收热和提高电池效率和系统能量平衡。电解质可包含离子液体。电解质可具有诸如在100-200℃的范围内的低熔点。示例性电解质为硝酸乙铵、掺杂磷酸二氢盐的硝酸乙铵(诸如约1%掺杂)、硝酸肼、nh4po3-tip2o7,和lino3-nh4no3的低共熔盐。其它适合的电解质可包含以下的组中的至少一种盐:lino3、三氟甲磺酸铵(tf=cf3so3-)、三氟乙酸铵(tfac=cf3coo-)、四氟硼酸铵(bf4-)、甲烷磺酸铵(ch3so3-)、硝酸铵(no3-)、硫氰酸铵(scn-)、胺基磺酸铵(so3nh2-)、二氟化铵(hf2-)、硫酸氢铵(hso4-)、双(三氟甲烷磺酰基)亚胺化铵(tfsi=cf3so2)2n-)、双(全氟乙烷磺酰基)亚胺化铵(beti=cf3cf2so2)2n-)、硝酸肼且可还包含混合物,诸如还包含nh4no3、nh4tf和nh4tfac中的至少一种的低共熔混合物。其它适合溶剂包含酸,诸如磷酸。适合的铵化合物为铵或烷基铵卤化物,和芳族化合物,诸如咪唑、吡啶、嘧啶、吡嗪、高氯酸盐、和本发明的与同溶剂接触的电池的任何组分兼容的其它阴离子。示例性环境温度h+传导性熔融盐电解质为氯化1-乙基-3-甲基咪唑鎓-alcl3和基于吡咯锭的质子离子液体。参考图1,在示例性电池[na/base/naoh]的一个实施方式中,包含产物与反应物的混合物的熔融盐在阴极隔室420中通过使用氢来源和泵430在控制压力下经由入口460供应氢来再生。通过加热器411维持熔融盐温度,使得在上方形成na层,且通过泵440抽运至阳极隔室402。在图1中也展示的另一实施方式中,使包含产物与反应物的混合物的熔融盐自阴极隔室401经由通道419和通过416和418(各自包含阀和泵中的至少一种)流入再生电池412中。供应氢且压力通过用管线415连接至再生电池412的氢来源和泵413控制,其中流量由控制阀414控制。用加热器411维持熔融盐温度。氢化使得na形成单独的层,将其自再生电池412顶部经由通道421通过422和423(各自包含阀和泵中的至少一种)抽至阴极室402。在一个实施方式中,诸如包含连续阴极盐流动模式的实施方式中,通道419在na层下方延伸以将流动盐自阴极隔室供至至少包含na2o和naoh的下层。任何阴极或阳极隔室,或再生电池均可还包含搅拌器以在动力或再生反应中的所需时刻混合内容物。在包含base电解质的电池的另一实施方式中,阴极为碱金属,诸如na,且熔融盐阴极包含低共熔混合物(诸如表4中的一种)和氢来源(诸如氢渗透性膜与h2气体或解离体与h2气体)。示例性电池为[na/base/低共熔盐(诸如nai-nabr)+ni(h2)或pdal2o3]。氢可在阴极隔室中与na反应形成可充当催化剂的nah和h来源以形成分数氢。反应物可被连续馈送通过半电池以引起分数氢反应且可还流动或输送至另一区域、隔室、反应器或系统中,其中再生可分批、间歇或连续发生,其中再生产物可静止或移动。适合的氧化剂为wo2(oh)、wo2(oh)2、vo(oh)、vo(oh)2、vo(oh)3、v2o2(oh)2、v2o2(oh)4、v2o2(oh)6、v2o3(oh)2、v2o3(oh)4、v2o4(oh)2、feo(oh)、mno(oh)、mno(oh)2、mn2o3(oh)、mn2o2(oh)3、mn2o(oh)5、mno3(oh)、mno2(oh)3、mno(oh)5、mn2o2(oh)2、mn2o6(oh)2、mn2o4(oh)6、nio(oh)、tio(oh)、tio(oh)2、ti2o3(oh)、ti2o3(oh)2、ti2o2(oh)3、ti2o2(oh)4、nio(oh)、alo(oh)、sco(oh)、yo(oh)、vo(oh)、cro(oh)、mno(oh)(α-mno(oh)锰榍石和γ-mno(oh)水锰矿)、feo(oh)、coo(oh)、nio(oh)、rho(oh)、gao(oh)、ino(oh)、ni1/2co1/2o(oh)和ni1/3co1/3mn1/3o(oh)。一般而言,氧化剂可为mxoyhz,其中x、y和z为整数且m为金属,诸如过渡金属、内过渡金属或稀土金属,诸如金属氢氧化合物。构成混合物的适合示例性熔融氢化物为以下的低共熔混合物:熔融温度为约503℃的约43mol%+57mol%的nah-kbh4、熔融温度为约390℃的约66mol%+34mol%的kh-kbh4、熔融温度为约395℃的约21mol%+79mol%的nah-nabh4、熔融温度为约103℃的约53mol%+47mol%的kbh4-libh4、熔融温度为约213℃的约41.3mol%+58.7mol%的nabh4-libh4、和熔融温度为约453℃的约31.8mol%+68.2mol%的kbh4-nabh4,其中混合物可还包含碱金属或碱土金属氢化物,诸如lih、nah或kh。其它示例性氢化物为mg(bh4)2(mp260℃)和ca(bh4)2(367℃)。反应物的h可键结于金属,诸如稀土金属、过渡金属、内过渡金属、碱金属或碱土金属。h反应物可包含氢化物。氢化物可为金属氢化物。在一个示例性反应中,自氢化物(诸如金属氢化物)吸取h以形成m+h-,其中m+为相对离子,诸如电解质的相对离子,且h-迁移至阳极,氧化为h且与受体(诸如本发明的受体)反应。在一个实施方式中,由还原迁移离子和与阴极反应物任何可能的还反应形成的阴极产物可通过非电解以和电解技术而再生。产物可用本发明方法来再生为阳极起始物质以用于反应混合物。举例而言,包含迁移离子的元素的产物可被物理或热分离和再生且返回阳极。分离可通过热分解氢化物和蒸发作为还原迁移离子的金属来达成。迁移离子的阴极产物也可经分离和与阳极产物反应而形成起始反应物。阴极反应物的氢化物可通过添加氢来再生,或可在分离为形成起始氢化物所必需的相应阴极反应产物的后在单独的反应室中形成氢化物。类似地,任何其它阴极起始反应物均可通过分离和化学合成步骤在原位或在单独的容器中来再生以形成反应物。在ciht电池的一个实施方式中,碱金属阳离子(诸如na+)可为可移动离子。可移动离子可在阴极处还原以形成催化剂或催化剂来源,诸如nah、k、li、sr+或bah。电解质可包含β"-氧化铝或也与相应可移动离子错合的β氧化铝。因此,固体电解质可包含al2o3与na+、k+、li+、sr2+和ba2+中的至少一种的络合物,且也可与h+、ag+或pb2+中的至少一种错合。电解质或盐桥可为离子浸渍玻璃,诸如k+玻璃。在h+作为可移动离子的一个实施方式中,h+在阴极还原为h以充当原子氢来源以便催化为分数氢。在一个一般实施方式中,阳极隔室包含碱金属,固体电解质包含相应迁移金属离子与β氧化铝的络合物,且阴极隔室包含氢来源,诸如氢化物或h2。迁移金属离子可在阴极还原为金属。金属或自金属形成的氢化物可为催化剂或催化剂来源。分数氢通过催化剂与氢反应来形成。电池可在提供有利传导性的温度范围内操作。适合的操作温度范围为250℃至300℃。其它示例性钠离子传导性盐桥为nasicon(na3zr2si2po12)和naxwo3。在其它实施方式中,另一金属,诸如li或k可置换na。在一个实施方式中,至少一种电池组分,诸如盐桥和阴极和阳极反应物包含对既定物质选择性渗透性的涂层。实例为对oh-选择性渗透性的氧化锆涂层。反应物可包含微粒,其囊封于此种涂层中以使得其与选择性渗透性物质选择性反应。锂固体电解质或盐桥可为卤化物稳定化的libh4,诸如libh4-lix(x=卤离子)、li+浸渍型al2o3(li-β-氧化铝)、基于li2s的玻璃、li0.29+dla0.57tio3(d=0至0.14)、la0.51li0.34tio2.94、li9alsio8、li14znge4o16(lisicon)、lixm1-ym'ys4(m=si、ge且m'=p、al、zn、ga、sb)(硫基-lisicon)、li2.68po3.73n0.14(lipon)、li5la3ta2o12、li1.3al0.3ti1.7(po4)3、lim2(po4)3、miv=ge、ti、hf和zr、li1+xti2(po4)3(0≤x≤2)linbo3、硅酸锂、铝酸锂、铝硅酸锂、固体聚合物或凝胶、二氧化硅(sio2)、氧化铝(al2o3)、氧化锂(li2o)、li3n、li3p、氧化镓(ga2o3)、氧化磷(p2o5)、氧化硅铝,和其固溶体和此项技术中已知的其它锂固体电解质或盐桥。盐桥可包含阴离子传导性膜和/或阴离子导体。盐桥可传导阳离子。盐桥可由沸石或氧化铝形成,该沸石或氧化铝诸如有充满催化剂阳离子者,该催化剂诸如为铝酸钠、镧系元素硼化物(诸如mb6,其中m为镧系元素),或碱土金属硼化物(诸如mb6,其中m为碱土金属)。反应物或电池组分可为氧化物。氧化物中的电化学物质可为氧化物离子或质子。盐桥可传导氧化物离子。氧化物导体的典型实例为氧化钇稳定化的氧化锆(ysz)、掺杂氧化钆的二氧化铈(cgo)、镓酸镧(lanthanumgallate)和铋铜钒氧化物(诸如bicuvox)。一些钙钛矿材料,诸如la1-xsrxcoyo3-d,也显示混合氧化物和电子传导性。盐桥可传导质子。经掺杂的铈酸钡和锆酸钡为良好质子导体或质子化氧化物离子的导体。h+导体可为srceo3型质子导体,诸如锶铈钇铌氧化物。hxwo3为另一适合的质子导体。纳菲膜(nafion)、类似膜和相关化合物也为适合的质子导体,且可还充当阳离子导体,诸如na+或li+导体。质子导体可于金属网(诸如ss)上包含hcl-licl-kcl熔融盐电解质的固体膜,其可充当具有有机电解质的电池的质子导体盐桥。阳离子电解质可经历与纳菲膜的交换以形成相应离子导体。质子导体可为无水聚合物,诸如基于离子液体的复合膜,诸如纳菲膜和离子液体,诸如三氟甲烷磺酸1-乙基-3-甲基咪唑鎓和四氟硼酸1-乙基-3-甲基咪唑鎓,或包含以下的聚合物:质子供体和受体基团,诸如具有苯并咪唑部分的基团,诸如聚[(1-(4,4'-二苯醚)-5-氧基苯并咪唑)-苯并咪唑],其也可与纳菲膜一起掺合且还经诸如无机电子缺乏型化合物(诸如bn纳米粒子)掺杂。在其它实施方式中,本领域技术人员已知的许多其它离子中的一种或多种可在固体内移动,诸如li+、na+、ag+、f-、cl-和n3-。使用任何此类离子的相应良好的电解质材料为li3n、na-β-al2o3、agi、pbf2和srcl2。掺杂碱金属盐的聚氧化乙烯或类似聚合物可充当迁移碱金属离子(诸如li+)的电解质/隔板。另外,碱金属和碱土金属氢化物、卤化物和混合物为氢化物离子h-的良导体。适合混合物包含低共熔熔融盐。盐桥可包含氢化物且可选择性传导氢化物离子。氢化物可极具热稳定性。由于其高熔点和热分解温度,因此适合氢化物为盐水氢化物,诸如锂、钙、锶和钡的盐水氢化物,和金属氢化物,诸如稀土金属(诸如eu、gd和la)的氢化物。在后一情况下,h或质子可扩散通过金属,同时在表面自h-转化或转化为h-。盐桥可为氢化物离子传导性固体-电解质,诸如cacl2-cah2。适合的氢化物离子传导性固体电解质为cacl2-cah2(5至7.5mol%)和cacl2-licl-cah2。li+、na+和k+(分别为催化剂li、nah和k的来源)的适合盐桥分别为β氧化铝与li+、na+和k+的络合物。li+盐桥或固体电解质可为卤化物稳定化的libh4,诸如libh4-lix(x=卤离子)、li+浸渍型al2o3(li-β-氧化铝)、基于li2s的玻璃、li0.29+dla0.57tio3(d=0至0.14)、la0.51li0.34tio2.94、li9alsio8、li14znge4o16(lisicon)、lixm1-ym'ys4(m=si、ge且m'=p、al、zn、ga、sb)(硫基-lisicon)、li2.68po3.73n0.14(lipon)、li5la3ta2o12、li1.3al0.3ti1.7(po4)3、lim2(po4)3、miv=ge、ti、hf和zr、li1+xti2(po4)3(0≤x≤2)linbo3、硅酸锂、铝酸锂、铝硅酸锂、固体聚合物或凝胶、二氧化硅(sio2)、氧化铝(al2o3)、氧化锂(li2o)、li3n、li3p、氧化镓(ga2o3)、磷氧化物(p2o5)、氧化硅铝,和其固溶体和此项技术中已知的其它li+盐桥或固体电解质。传导性可用诸如li3po4或li3bo3的li盐增强。li玻璃也可充当li+盐桥。举例而言,浸透1mlipf6电解质的1:1碳酸二甲酯(dmc)/碳酸乙烯酯(ec)溶液(也称为lp30)或1mlipf6的1:1碳酸二乙酯(dec)/碳酸乙烯酯(ec)溶液(也称为lp40)的whatmangf/d硼硅玻璃-纤维薄片可充当隔板/电解质。卤化物稳定化的libh4甚至在室温下也可充当快li+离子导体。卤化物可为lif、licl、libr或lii。隔板可为膜,诸如单层或多层聚烯烃或芳族聚酰胺。该膜可在阳极与阴极之间提供屏障且可还使锂离子可自电池一侧交换至另一侧。适合的膜隔板为聚丙烯(pp)、聚乙烯(pe)或三层(pp/pe/pp)电解膜。特定示例性膜为厚度为25μm且孔隙率为0.37的celgard2400聚丙烯膜(charlotte,nc)。电解质可为1mlipf6电解质的1:1碳酸二甲酯(dmc)/碳酸乙烯酯(ec)溶液。另一适合的隔板/电解质为celgard2300和1mlipf6电解质的30:5:35:30v/vec-pc-emc-dec溶剂溶液。其它适合溶剂和电解质为锂螯合型硼酸根阴离子电解质,诸如锂[双(乙二酸酯基)硼酸盐]、二氧戊环、四氢呋喃衍生物、六甲磷酰胺(hmpa)、二甲氧乙烷(dme)、1,4-苯并二噁烷(bdo)、四氢呋喃(thf)和高氯酸锂的二氧戊环(诸如1,3-二氧戊环)溶液。本领域技术人员已知的适于操作基于li的阳极的其它溶剂为适合的。此类溶剂范围介于有机物(诸如碳酸丙烯酯)至无机物(诸如亚硫酰氯和二氧化硫)之间且通常具有极性基,诸如羰基、腈基、磺酰基和醚基中的至少一种。溶剂可还包含添加剂以提高溶剂稳定性或提高分数氢反应程度和速率中的至少一种。在实施方式中,有机碳酸盐和酯可包含电解质溶剂。适合溶剂为碳酸乙烯酯(ec)、碳酸丙烯酯(pc)、碳酸丁烯酯(bc)、γ-丁内酯(γbl)、δ-戊内酯(δvl)、n-甲基吗啉-n-氧化物(nmo)、碳酸二甲酯(dmc)、碳酸二乙酯(dec)、碳酸乙基甲酯(emc)、乙酸乙酯(ea)、丁酸甲酯(mb)和丁酸乙酯(eb)。在实施方式中,有机醚可包含电解质溶剂。适合溶剂为二甲氧基甲烷(dmm)、1,2-二甲氧基乙烷(dme)1,2-二乙氧基乙烷(dee)、四氢呋喃(thf)、2-甲基-四氢呋喃(2-me-thf)、1,3-二氧戊环(1,3-dl)、4-甲基-1,3-二氧戊环(4-me-1,3-dl)、2-甲基-1,3-二氧戊环(2-me-1,3-dl)。锂盐可构成电解质溶质。适合的溶质为四氟硼酸锂(libf4)、六氟磷酸锂(lipf6)、六氟砷酸锂(liasf6)、高氯酸锂(liclo4)、三氟甲磺酸锂(li+cf3so3-)、亚胺化锂(li+[n(so2cf3)2]-),和双全氟乙烷磺酰亚胺化锂(lithiumbeti)(li+[n(so2cf2cf3)2]-)。在实施方式中,为了整体特性,添加增强效能的添加剂,诸如12-冠-4、15-冠-5、氮杂醚、硼酸盐(borate)、硼烷和硼酸盐(boronate)。在实施方式中,电解质可还包含阳极固体电解质界面(sei)添加剂,诸如co2、so2、12-冠-4、18-冠-6、儿茶酚碳酸酯(cc)、碳酸乙烯烯酯(vc)、亚硫酸乙烯酯(es)、α-溴-γ-丁内酯、氯甲酸甲酯、2-乙酰氧基-4,4-二甲基-4-丁内酯、丁二酰亚胺、n-苯甲氧基羰氧基丁二酰亚胺和肉桂酸甲酯。在实施方式中,电解质可还包含阴极表面层添加剂,诸如i-/i2、正丁基二茂铁、1,1'-二甲基二茂铁、二茂铁衍生物,诸如1,2,4-三唑的na盐、诸如咪唑的na盐、1,2,5,-三氰基苯(tcb)、四氰基对醌二甲烷(tcnq)、具有取代基的苯、焦碳酸酯和苯基环己烷。在实施方式中,电解质可还包含新型非水溶剂,诸如环状碳酸酯、γbl、直链酯、氟化酯、氟化碳酸酯、氟化胺基甲酸酯、氟化醚、二醇硼酸酯(beg)、砜和磺酰胺。在实施方式中,电解质可还包含新型锂盐,诸如芳族硼酸锂、非芳族硼酸锂、螯合磷酸锂、lifap、偶氮化锂(liazolate)和咪唑化锂(liimidazolide)。在一个实施方式中,诸如分子分数氢的分数氢产物可溶于诸如dmf的溶剂中。示例性电池为[li/包含的溶剂。阴极和阳极可为电导体。导体可为载体且还包含导线以便阴极和阳极中的每一种各自连接至负载。导线也为导体。适合导体为金属、碳、碳化物或硼化物。适合金属为过渡金属、不锈钢、贵金属、内过渡金属(诸如ag)、碱金属、碱土金属、al、ga、in、sn、pb和te。电池可还包含阳极或阴极反应物的粘合剂。适合的聚合粘合剂包括例如聚(偏二氟乙烯)、共聚(偏二氟乙烯-六氟丙烯)、聚(四氟乙烯)、聚(氯乙烯)或聚(乙烯-丙烯-二烯单体)、epdm。电极可为与半电池反应物接触的适合导体,诸如镍。电池可包含固体、熔融或液体电池。后者可包含溶剂。可控制操作条件以达成至少一种反应物或电池组分的所需状态或特性,诸如阴极电池反应物、阳极电池反应物、盐桥和电池隔室的所需状态或特性。适合状态为固体、液体和气体,且适合特性为离子和电子传导性、物理特性、可溶混性、扩散速率和反应性。在一或多种反应物维持为熔融状态的情况下,隔室温度可控制在反应物熔点以上。热可来自将氢催化为分数氢的过程。作为选择,用由燃料电池的内电阻或可为烘箱的外部加热器450所供的热使氧化剂和/或还原剂反应物熔融。在一个实施方式中,ciht电池系由绝缘物包围,该绝缘物包含双壁抽空夹套,诸如薄片金属夹套,其以传导性和放射性热损失的绝缘物填充,此为本领域技术人员已知。电池可还包含按需提供启动和维持热以补充自反应(诸如在操作期间发生的分数氢产生反应)内部产生的任何热的热管理系统。另外,必要时,系统可包含排热系统以移除过量热。排热系统可包含此项技术中已知的排热系统,诸如包含热交换器和冷却剂循环器的排热系统,其中热转移可通过强制对流、辐射和传导中的至少一种来实现。在一个实施方式中,配置为热力学有效的保热体,诸如为保留热提供最佳体积与表面积的比的恰当柱状叠堆。在一个实施方式中,阴极和阳极隔室中的至少一种的反应物由溶剂至少部分溶剂化。适合溶剂为有机溶剂章节和无机溶剂章节中所揭示者。可溶解碱金属的适合溶剂为六甲基磷酰胺(op(n(ch3)2)3)、氨、胺、醚、错合溶剂、冠醚和大环胺醚(cryptand)和溶剂,诸如醚,或酰胺,诸如thf加上冠醚或大环胺醚。燃料电池可还包含至少一个氢系统460、461、430和431以便针对至少一个隔室测量、传递和控制氢。氢系统可包含泵、至少一个阀、一个压力计和读取器和控制系统以便将氢供至阴极和阳极隔室的至少一种。氢系统可将氢自一个隔室循环至另一隔室。在一个实施方式中,氢系统将h2气体自阳极隔室再循环至阴极隔室。再循环可为主动或被动的。在前一情况下,可在操作期间将h2自阳极抽至阴极隔室,且在后一情况下,由于在操作期间根据反应(诸如等式(85-86)的反应)在阳极隔室中建立压力,因此h2可自阳极扩散或流至阴极隔室。产物可在阴极或阳极隔室中再生。可将产物送至再生器,其中本发明的任何再生化学均可适用于再生初始反应物。经历分数氢反应的电池可向经历反应物再生者提供热。至少一个半电池的反应物可包含氢储存材料(诸如金属氢化物)、m-n-h系统的物质(诸如linh2、li2nh或li3n)和还包含硼或铝的碱金属氢化物(分别诸如硼氢化物或铝氢化物)。其它适合的氢储存材料为金属氢化物,诸如碱土金属氢化物,诸如mgh2;金属合金氢化物,诸如bareh9、lani5h6、fetih1.7和mgnih4;金属硼氢化物,诸如be(bh4)2、mg(bh4)2、ca(bh4)2、zn(bh4)2、sc(bh4)3、ti(bh4)3、mn(bh4)2、zr(bh4)4、nabh4、libh4、kbh4和al(bh4)3、alh3、naalh4、na3alh6、lialh4、li3alh6、lih、lani5h6、la2co1ni9h6和tifeh2、nh3bh3、聚胺基硼烷、胺硼烷络合物,诸如胺硼烷、氢化硼氨合物、肼-硼烷络合物、二硼烷二氨合物、硼氮炔和八氢三硼酸铵或四氢硼酸铵;咪唑鎓离子液体,诸如烷基(芳基)-3-甲基咪唑鎓n-双(三氟甲烷磺酰基)酰亚胺盐;硼酸鏻;和天然焦(carbonite)物质。其它示例性化合物为氨硼烷、碱金属氨硼烷,诸如锂氨硼烷;和硼烷烷基胺络合物,诸如硼烷二甲胺络合物、硼烷三甲胺络合物;和胺基硼烷和硼烷胺,诸如胺基二硼烷、n-二甲胺基二硼烷、参(二甲胺基)硼烷、二正丁基硼胺、二甲胺基硼烷、三甲胺基硼烷、氨-三甲基硼烷,和三乙胺基硼烷。其它适合氢储存材料为含吸收氢的有机液体,诸如咔唑和衍生物,诸如9-(2-乙基己基)咔唑、9-乙基咔唑、9-苯基咔唑、9-甲基咔唑和4,4'-双(n-咔唑基)-1,1'-联苯。在一个实施方式中,至少一个电池另外包含电解质。电解质可包含熔融低共熔盐且可还包含氢化物。盐可包含与催化剂的阳离子相同的阳离子的一或多种卤化物,或为比可由催化剂与盐的卤化物(诸如混合物lih+licl/kcl)的反应形成的卤化物化合物更稳定的化合物。作为选择,盐混合物包含与催化剂金属相同的碱金属的混合卤化物,此系因为用催化剂氢化物的卤离子-氢离子交换反应将不会产生净反应的故。盐可为氢化物离子导体。除卤化物的外,可传导氢化物离子的其它适合熔融盐电解质为氢氧化物,诸如含kh的koh或含nah的naoh;和有机金属系统,诸如含nah的naal(et)4。电池可由金属(诸如al、不锈钢、fe、ni、ta)制成,或包含石墨、氮化硼、mgo、氧化铝或石英坩埚。电解质可包含两种或两种以上氟化物的低共熔盐,所述氟化物诸如为碱金属卤化物和碱土金属卤化物的组中的至少两种化合物。示例性盐混合物包括lif-mgf2、naf-mgf2、kf-mgf2和naf-caf2。其它适合溶剂为有机氯铝酸盐熔融盐和基于金属硼氢化物和金属铝氢化物的系统。可为熔融混合物(诸如熔融低共熔混合物)的其它适合电解质系在表4中给出。表4.熔融盐电解质诸如表4中给出的示例性盐混合物等熔融盐电解质为h-离子导体。在实施方式中,在本发明中隐含:将诸如碱金属氢化物(诸如lih、nah或kh)的h-来源添加至熔融盐电解质中以改良h-离子传导性。在其它实施方式中,熔融电解质可为碱金属离子导体或质子导体。在其它实施方式中,电解质包含氢氧化物。催化剂可为可由氢氧化物形成的h2o。在一个示例性实施方式中,licl-kcl浓度为约58.5mol%+41.2mol%,熔融温度为约450℃,且lih浓度为约0.1mol%或0.1mol%以下。在其它实施方式中,lih浓度可为任何所需摩尔百分比直至约8.5%的饱和极限。在另一示例性实施方式中,电解质可包含lih+lif+kf或naf和视情况选用的载体(诸如tic)。其它适合电解质为碱金属氢化物和碱金属和碱土金属硼氢化物的混合物,其中电池反应可为金属交换。适合混合物为以下的低共熔混合物:熔融温度为约503℃的约43mol%+57mol%的nah-kbh4、熔融温度为约390℃的约66mol%+34mol%的kh-kbh4、熔融温度为约395℃的约21mol%+79mol%的nah-nabh4、熔融温度为约103℃的约53mol%+47mol%的kbh4-libh4、熔融温度为约213℃的约41.3mol%+58.7mol%的nabh4-libh4,和熔融温度为约453℃的约31.8mol%+68.2mol%的kbh4-nabh4,其中混合物可还包含碱金属或碱土金属氢化物,诸如lih、nah或kh。适合的氢化物浓度为0.001mol%至10mol%。反应混合物可包含(1)催化剂或催化剂来源和氢来源,诸如lih、nah、kh、rbh、csh、bah之一和至少一个h;(2)可充当电解质的低共熔盐混合物,其可具有高离子传导性且可选择性允许氢化物离子通过,包含li、na、k、rb、cs、mg、ca、sr和ba的组中的至少两种阳离子和f、cl、br和i的组中的至少一种卤素;(3)可选择性导电的载体,诸如碳化物,诸如tic;和(4)视情况选用的还原剂和氢化物交换反应物,诸如碱土金属或碱土金属氢化物。示例性ciht电池包含(i)还原剂或还原剂来源,诸如元素或化合物,其包含来自以下列表的元素:铝、锑、钡、铋、硼、镉、钙、碳(石墨)、铈、铯、铬、钴、铜、镝、铒、铕、钆、镓、锗、金、铪、钬、铟、铱、铁、镧、铅、锂、镏、镁、锰、汞、钼、钕、镍、铌、锇、钯、磷、铂、钾、镨、钷、镤、铼、铑、铷、钌、钐、钪、硒、硅、银、钠、锶、硫、钽、鎝、碲、铽、铥、锡、钛、钨、钒、镱、钇、锌和锆;(ii)电解质,诸如表4中给出者的一;(iii)氧化剂,诸如表4中给出的化合物;(iv)传导性电极,诸如金属、金属碳化物(诸如tic)、金属硼化物(诸如tib2和mgb2)、金属氮化物(诸如氮化钛)和包含以下列表的元素的彼等元素或材料:铝、锑、钡、铋、硼、镉、钙、碳(石墨)、铈、铯、铬、钴、铜、镝、铒、铕、钆、镓、锗、金、铪、钬、铟、铱、铁、镧、铅、锂、镏、镁、锰、汞、钼、钕、镍、铌、锇、钯、磷、铂、钾、镨、钷、镤、铼、铑、铷、钌、钐、钪、硒、硅、银、钠、锶、硫、钽、鎝、碲、铽、铥、锡、钛、钨、钒、镱、钇、锌和锆。金属可来自以下列表:铝、锑、钡、铋、镉、钙、铈、铯、铬、钴、铜、镝、铒、铕、钆、镓、锗、金、铪、钬、铟、铱、铁、镧、铅、锂、镏、镁、锰、汞、钼、钕、镍、铌、锇、钯、铂、钾、镨、钷、镤、铼、铑、铷、钌、钐、钪、硒、硅、银、钠、锶、钽、鎝、碲、铽、铥、锡、钛、钨、钒、镱、钇、锌和锆;和(v)氢或氢来源,诸如氢化物,诸如碱金属或碱土金属氢化物,和催化剂来源或催化剂来源,诸如li、nah、k、rb+、cs、nh和h2o,和至少一个h。在一个实施方式中,电池还包含用于将反应物或电池化学物质再生为使电池恢复以下状态的物质和浓度的系统:形成分数氢反应物和接着形成分数氢的反应以快于再生前的速率出现。在一个实施方式中,再生系统包含电解系统。电池还包含阳极和阴极的集电体,其中集电体可包含固体箔或网孔材料。阳极半电池的适合的未经涂布的集电体材料可选自以下的组:不锈钢、ni、ni-cr合金、al、ti、cu、pb和pb合金、耐火金属和贵金属。阴极半电池的适合的未经涂布的集电体材料可选自以下的组:不锈钢、ni、ni-cr合金、ti、pb氧化物(pbox)和贵金属。作为选择,集电体可包含适合金属箔,诸如al,其具有薄钝化层,该钝化层不会被腐蚀且将保护上方沉积有其的该箔。可用于任一半电池中的示例性抗腐蚀层为tin、crn、c、cn、nizr、nicr、mo、ti、ta、pt、pd、zr、w、fen和con。在一个实施方式中,阴极集电体包含经tin、fen、c、cn涂布的al箔。涂层可通过此项技术中已知的任何方法来实现。示例性方法为物理气相沉积(诸如溅镀)、化学气相沉积、电沉积、喷雾沉积和层压。h来源可为金属氢化物,包含阳极反应物和阳极反应物中的至少一种。氢化物可为电导体。示例性导电氢化物为氢化钛和氢化镧。其它适合的氢化物为稀土金属氢化物,诸如la、ce、eu和gd的氢化物、氢化钇和氢化锆。显示高电导率的其它适合的示例性氢化物为以下组中一种或多种:ceh2、dyh2、erh2、gdh2、hoh2、lah2、luh2、ndh2、prh2、sch2、tbh2、tmh2和yh2。其它适合的导电氢化物为tih2、vh、vh1.6、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2、crh、crh2、nih、cuh、yh2、yh3、zrh2、nbh、nbh2、pdh0.7、lah2、lah3、tah、镧系氢化物:mh2(氟石)m=ce、pr、nb、sm、gd、tb、dy、ho、er、tm、lu;mh3(立方体)m=ce、pr、nd、yb;mh3(六方)m=sm、gd、tb、dy、ho、er、tm、lu;锕系元素氢化物:mh2(氟石)m=th、np、pu、am;mh3(六方)m=np、pu、am和mh3(立方体,复杂结构)m=pa、u。半电池反应物可还包含任何种类的载体或导电载体,诸如碳化物(诸如tic)、硼化物(诸如tib2或mgb2)、碳或其它载体(诸如ticn)。其它适合的载体为纤维素、碳纤维、纳菲膜、阳离子或阴离子交换树脂、分子筛(诸如4a或13x)或导电聚合物(诸如聚苯胺、聚噻吩、聚乙炔、聚吡咯、聚乙烯基二茂铁、聚乙烯基二茂镍或聚乙烯基二茂钴)、碳纳米管、富勒烯或类似笼形或穴形化合物(诸如沸石),和可与导体(诸如碳)混合或掺杂导体的pt/纳米ti、pt/al2o3、沸石、y沸石、hy沸石和ni-al2o3-sio2。蒸汽或具有一些亲水性官能团的活性碳也可用作载体。除将胺化合物、亚胺化合物和氮化物添加至电解质中外,反应物或物质的活性也可通过添加如下物质来改变:磷化物、硼化物、氧化物、氢氧化物、硅化物、氮化物、砷化物、硒化物、碲化物、锑化物、碳化物、硫化物和氢化物的组中的至少一种化合物。在一个实施方式中,诸如li或lih或其它催化剂来源或催化剂(诸如k、kh、na和nah)的物质的活性系通过使用包括可键结于物质的阴离子的缓冲液来控制。缓冲液可包含相对离子。相对离子可为以下的组中的至少一种:卤离子、氧离子、磷离子、硼离子、氢氧根、硅离子、氮离子、砷离子、硒离子、碲离子、锑离子、碳离子、硫离子、氢离子、碳酸根、碳酸氢根、硫酸根、硫酸氢根、磷酸根、磷酸氢根、磷酸二氢根、硝酸根、亚硝酸根、高锰酸根、氯酸根、高氯酸根、亚氯酸根、过亚氯酸根、次氯酸根、溴酸根、过溴酸根、亚溴酸根、过亚溴酸根、碘酸根、过碘酸根、亚碘酸根、过亚碘酸根、铬酸根、重铬酸根、碲酸根、硒酸根、砷酸根、硅酸根、硼酸根、氧化钴、氧化碲和其它氧阴离子,诸如以下的氧阴离子:卤素、p、b、si、n、as、s、te、sb、c、s、p、mn、cr、co和te。至少一个ciht半电池隔室可含有相对离子的化合物,电池可包含盐桥,且盐桥可对相对离子具有选择性。电解质可另外包含金属或氢化物,诸如碱金属或碱土金属或氢化物。适合的碱土金属和氢化物分别为mg和mgh2。至少一个电极可包含载体,诸如tic、yc2、ti3sic2和wc,且半电池可还包含催化剂(诸如k、nah),或可为来自li+迁移的li、还原剂(诸如mg或ca)、载体(诸如tic、yc2、ti3sic2或wc)、氧化剂(诸如licl、srbr2、srcl2或bacl2)和h来源(诸如氢化物,诸如r-ni、tih2、mgh2、nah、kh或lih)。氢可渗入半电池隔室的壁中以形成催化剂或充当h来源。渗透h的来源可来自h-氧化。半电池隔室可用电绝缘隔板分隔和连接。隔板也可充当盐桥的载体。盐桥可包含熔融盐,由隔板支撑。隔板可为mgo或bn纤维。后者可作为编织物或无纺毡。在一个实施方式中,催化剂或催化剂来源和氢来源(诸如nah或kh)实质上不可溶于盐桥中。可将各半电池反应混合物压成板片(plaque)并附接至阳极和阴极的集电体。板片可用至少一个穿孔薄片(诸如金属板)固定。作为选择,隔板可渗透过h,其中h-在阴极半电池界面起反应而形成h,h穿过隔板且在阳极半电池界面形成h-。通过形成h而输送h-的适合隔板为耐火碱金属,诸如v、nb、fe、fe-mo合金、w、rh、ni、zr、be、ta、rh、ti、th和稀土金属以和贵金属和合金,诸如pd和pd/ag合金。构成h膜的金属可被加上偏压以提高界面处的h-/h转化活性。活性也可通过使用浓度梯度来提高。反应物可包含至少一种也可充当氢解离体的载体。载体可包含碳、碳化物或硼化物。适合的碳、碳化物和硼化物为碳黑、tic、ti3sic2、ticn、sic、yc2、tac、mo2c、wc、c、hfc、cr3c2、zrc、vc、nbc、b4c、crb2、zrb2、gdb2、mgb2和tib2。也可充当氢解离体的适合载体为pd/c、pt/c、pd/mgo、pd/al2o3、pt/mgo和pt/al2o3。半电池隔室可用也可充当盐桥载体的电绝缘隔板分隔并连接。盐桥可包含由隔板支撑的熔融盐。隔板可为mgo或bn纤维。后者可作为编织物或无纺毡。在另一实施方式中,阳极或阴极半电池包含h或h-来源,诸如氢渗透性阴极;和氢来源,诸如ti(h2)、nb(h2)或v(h2)阴极((h2)表示可渗入电极以接触电解质的氢来源,诸如氢气);或氢化物,诸如以下中的至少一种:碱金属或碱土金属的氢化物、过渡金属的氢化物(诸如ti氢化物)、内过渡金属的氢化物(诸如nb、zr或ta的氢化物)、钯或铂的氢化物和稀土金属的氢化物。电池可为间歇电解和放电型中的至少一种。电解阴极和阳极可为ciht电池阳极和阴极,其中自ciht转换成电解电池时作用颠倒且在电池再生的后复原。反向电压可以脉冲形式施加。可在任何频率范围内、在峰值电压、峰值动力、峰值电流、工作循环和补偿电压下具有脉冲反向极性和波形。脉冲逆转可为dc,或所施加电压可交替变化或具有波形。该施加可按所需频率脉冲式进行且波形可具有所需频率。适合的脉冲频率系在约1至约1000hz的范围内且工作循环可为约0.001%至约95%,但可在此范围内两个增量的因子的较窄范围内。在一个实施方式中,电池被维持在最佳操作高频率下以使输入能量最小化,以便形成h单层,其可在放电阶段期间起反应而形成分数氢。每电池的峰值电压可在约0.1v至10v中的至少一种的范围内,但可在此范围内两个增量的因子的较窄范围内。在另一实施方式中,施加可在每电池约10v至100kv的范围内,但可在此范围内量级增量的较窄范围内的高压脉冲。波形频率可在约0.1hz至约100mhz、约100mhz至10ghz和约10ghz至100ghz中的至少一种的范围内,但可在此范围内量级增量的较窄范围内。工作循环可为约0.001%至约95%和约0.1%至约10%的范围中的至少一种,但可在此范围内量级增量的较窄范围内。脉冲的峰值功率密度可在约0.001w/cm2至1000w/cm2的范围内,但可在此范围内量级增量的较窄范围内。脉冲的平均功率密度可在约0.0001w/cm2至100w/cm2的范围内,但可在此范围内量级增量的较窄范围内。在一个实施方式中,可增加间歇充电-放电频率以降低电荷转移电阻。在一个实施方式中,在电解期间产生可能短暂存在的反应物,此使得在充电与放电的重复周期的ciht电池放电阶段期间形成分数氢和相应动力。可施加电解动力以相对于输入能最佳化来自形成分数氢的能量。可调节电压、波形、工作电池、频率和其它此类参数的电解条件以提高来自电池的电能增益。在实施方式中,使半电池反应物再生。再生可为分批模式,通过诸如将产物电解为反应物的方法或通过使产物热反应成反应物来达成。作为选择,系统可以分批模式或连续地自发再生。形成分数氢反应物的反应通过包括在阳极半电池中经历氧化且在阴极半电池中经历还原的相应反应物的电子和离子流来发生。在一个实施方式中,形成分数氢反应物的总反应在热力学上并不有利。举例而言,其具有正自由能,且反方向的反应为自发的或可通过改变反应条件而变得自发。接着,由分数氢形成中释放的高能量以可为协同反应的方式驱动反应的正向。因为形成分数氢的反应为不可逆的,所以在形成分数氢的后产物可自发转化为反应物。或改变一或多种反应条件,诸如温度、氢压或一或多种反应物或产物的浓度,以使电池的初始反应物再生。在一个实施方式中,分数氢氢化物抑制反应,且再生系通过使氢化物反应形成可自电池排出的分子分数氢来达成。氢化物可存在于阴极和阳极中的至少一种上和存在于电解质中。氢化物反应成分子分数氢可通过电解达成。电解可具有与ciht电池操作相反的极性。电解可形成质子或h,其与分数氢氢化物反应形成分子分数氢。反应可在电解阳极处发生。在一个实施方式中,分数氢氢化物离子具有高移动率,使得其迁移至阳极且与h+或h反应形成分子分数氢。在一个实施方式中,选择半电池反应物,使得氧化还原反应中的能量优选地匹配h原子与催化剂之间约27.2ev能量转移的整数倍以提高形成分数氢的反应速率。氧化还原反应中的能量可提供活化能以提高形成分数氢的反应速率。在一个实施方式中,调节电池的动力负载以使经由电和离子流偶合的氧化还原反应与h原子与催化剂之间约27.2ev能量转移的整数倍匹配以提高形成分数氢的反应速率。在图2中所示的双膜三隔室电池中,盐桥可在阳极472与阴极473之间的隔室470中包含离子传导性电解质471。电极保持分开且可密封于内部容器壁以使容器壁和电极形成电解质471的腔室470。使电极与容器电绝缘以使其彼此隔离。可能使电极电短路的任何其它导体均必须也与容器电绝缘以避免短路。阳极和阴极可包含对氢具有高渗透性性的金属。电极可包含提供较高表面积的几何形状,诸如管电极,或其可包含多孔电极。来自阴极隔室474的氢可扩散通过阴极且在阴极与盐桥电解质471的界面处经历向h-的还原。h-经由电解质迁移且在电解质-阳极界面处氧化为h。h扩散通过阳极且与催化剂在阳极隔室475中反应形成分数氢。h-和催化剂电离在阴极提供还原电流,其携带于外部电路476中。h渗透性电极可包含v、nb、fe、fe-mo合金、w、mo、rh、ni、zr、be、ta、rh、ti、th、pd、经pd涂布的ag、经pd涂布的v、经pd涂布的ti、稀土金属、其它耐火金属,和本领域技术人员已知的其它此类金属。电极可为金属箔。化学物质可通过加热在阳极隔室中形成的任何氢化物以将其热分解来热再生。可使氢流至或将其抽至阴极隔室中以使初始阴极反应物再生。再生反应可在阳极和阴极隔室中发生,或可将一或两个隔室中的化学物质输送至一或多个反应容器中以进行再生。在图2所示的一个实施方式中,电解质471包含熔融氢氧化物,诸如碱金属氢氧化物,诸如lioh和naoh中的至少一种,且可还包含另一盐,诸如碱金属卤化物。图2中所示的电池可包含一个单元的所述电池的叠堆。相对于地面的定向可如图2中所示,其中阳极472在底部上且与地面呈水平。阳极可包含可抵抗氢氧化物腐蚀的氢渗透性材料,诸如ni。阴极473可部分浸没或浸没于电解质471中。在一个实施方式中,阳极可包含在碱中稳定且在较低温度下具有较高渗透速率的金属或合金,诸如niv、pdag或经ni涂布的h渗透性过性金属(诸如v、nb、ti、不锈钢(ss)430和ta),以致可降低电池操作温度。氢可自歧管经由氢供应管供应给叠堆的各电池。在渗透电极由氢鼓泡或喷射电极置换的一个实施方式中,氢供应还包含氢歧管且可还包含氢扩散器以在电池叠堆的各鼓泡或喷射电极的上理想地均匀分配氢。在一个实施方式中,阴极渗透性过氧来源(诸如o2气体或空气)。阴极可包含多孔垫、泡沫、烧结金属粉末(可为ni)。惰性间隔物可隔开阴极与阳极。在一个实施方式中,al2o3珠粒可充当示例性间隔物,其中在电极之间有一薄电解质层。腔室474可包含用于氧来源(诸如o2气体或空气)的气隙。气隙474可还包含支撑结构以固持安装于支撑物上的多个电池的叠堆的紧贴邻接层。电池可串联或并联电连接。在另一实施方式中,叠堆的单元电池的阳极包含具有氢渗透性膜的腔室,该氢渗透性膜包含一个面向电解质的壁,其中腔室具有氢供应(诸如通向腔室的氢管线)。单元电池还包含可为可能敞露的高表面积导电材料的相对阴极以使其渗透性过阴极气体(诸如空气)。适合的示例性材料为纤维状、丝状或烧结多孔金属(诸如镍垫)。下一单元电池可与阳极腔室的同与前一单元电池的阴极接触的氢渗透性膜相对的导电壁叠堆于一起。叠堆可由位于各叠堆末端或散置于叠堆中的加热器(诸如板)加热。作为选择,叠堆可在烘箱中加热。叠堆可含于绝热腔室中。在一个实施方式中,如图3中所示,氢渗透电极和视情况选用的氧电极由双极板507的组件替换。电池设计可基于平面正方形几何配置,其中电池可叠堆以建立电压。各电池可形成包含阳极集电体、多孔阳极、电解质基质、多孔阴极和阴极集电体的重复单元。一个电池可由隔板与下一个隔开,隔板可包含充当气体隔板与串联集电体的双极板。板可具有交叉流动气体配置或内部歧管。如图3中所示,在包含多个个体ciht电池的ciht电池叠堆500中,互连件或双极板507将阳极501与相邻阴极502隔开。阳极或h2板504可为波纹状的或包含分配经由孔口503供应的氢的通道505。具有通道505的板504代替其它实施方式的氢渗透性膜或间歇电解阴极(放电阳极)。所述孔口可自歧管沿着孔口503接收氢,该氢又由氢来源(诸如槽)供应。板504可还理想地均匀分配氢以鼓泡或喷射至发生电化学反应的有效区中。双极板可还包含双极板的具有与h2板类似的结构的氧板以分配氧气至氧气歧管自供应处沿氧气孔口506供应氧气的有效区中。所述波纹状或有通道的板可导电,且与有效区中的阳极和阴极集电体相连并维持电接触。在一个实施方式中,所有互连件或双极板构成允许阳极与阴极气体相分离的气体分配网状结构。湿封可通过延伸压在两个个体板之间的电解质/基质(诸如lioh-libr/li2tio3片)形成。该密封可防止反应物气体泄漏。电解质可包含本发明的压制球粒。形成电解质球粒的压力在约1至500公吨/平方英寸范围内,电解质球粒诸如为包含氢氧化物(诸如碱金属氢氧化物,诸如lioh)和卤化物(诸如碱金属卤化物,诸如libr)和基质(诸如mgo)的球粒。叠堆可还包含连接杆,其将压力板固持在叠堆末端以向电池施加压力,从而维持电解质(诸如球粒电解质)与电极之间的所需接触。在一个实施方式中,双极板相对侧的电极的金属不同,诸如一侧为ni且另一侧为nio,其中nio可位于两侧,其中一侧具有较高重量百分比。作为选择,一侧可为一种金属,且另一侧可为另一种金属,诸如ni对比242合金或mo。不同金属可交替分布在整个叠堆中。在另一实施方式中,双极板可包含阳极与阴极之间的导电隔板。隔板可包含不同材料,诸如不同于阴极与阳极中的至少一种的金属。隔板和至少一个电极可包含双金属电极。双金属可包含双金属结。双金属可包含至少一个导体(诸如金属或合金),其电镀于至少一个其它导体(诸如第二金属或合金)上。双金属电极或结中的至少一种可产生引起分数氢反应速率增加的本质电压。在一个实施方式中,双金属包含两种导体,诸如金属,诸如ni;和氧化物,诸如可还构成化合物的金属氧化物,诸如碱金属氧化物。适合的示例性碱金属氧化物为锂化氧化镍。该增加可归因于允许分数氢跃迁的催化剂与h的优选能量匹配。在另一实施方式中,双极板相对侧的电解质不同。电解质差异可包含有至少一种成分不同的不同组成中的至少一种,且电解质的相同成分的浓度可不同。举例而言,电解质可在一侧上包含基质(诸如mgo)且在另一侧上包含lialo2。作为选择,电解质可在一侧上包含lioh-libr,且在另一侧上包含lioh-licl。另外,一侧可包含一定重量百分比的naoh。在一个实施方式中,电极一侧与另一侧之间的差异引起各半电池的电极的化学电位、费米能级或电压不同于各自的电解质。在另一实施方式中,分隔介质或间隔物(诸如不导电材料或绝缘体)隔开双极板的相对侧,以致电极的接触电解质的侧的化学电位、费米能级或电压不同于接触分隔介质侧。在一个实施方式中,化学电位、费米能级或电压的差异有助于催化氢形成分数氢。在一个实施方式中,不同电极金属、双金属结、电解质、基质和条件(诸如水合作用和温度)中的至少一种在整个叠堆中交替存在。在一个实施方式中,阴极与阳极为不同材料,诸如不同金属。阴极相对于阳极的材料不同可代替对双极板双金属阳极的需求。在一个实施方式中,双极板区分阳极和阴极的双金属性质通过使用不同于阴极的材料(诸如不同金属)的单层阳极来满足。适合的示例性阴极包含本发明的阴极之一。在另一实施方式中,至少一个电极包含含有至少两种不同材料的多个层。电极可包含不同材料的层压件。内层可改变与电解质接触或与电解质的接触增加的外层的电极电位。可选择能抵抗腐蚀的外层。适于外层的稳定材料为ni、贵金属和抗腐蚀合金,诸如本发明的贵金属和合金。适于内层以改变电极电位的材料为mo和h242和过渡金属(诸如v、cr、ti、mn、co、cu或zn)、内过渡金属(诸如zr、ag、cd、hf、ta、w)、稀土金属(诸如la)、或合金(诸如lani5)、或其它金属或类金属或合金(诸如al、sn、in和pb)、和其它合金(诸如moco、mocu、momn、moni和mocr)。电极可充当阳极或阴极。可充当阳极的示例性多层、多金属电极或层压电极为经压制的ni/mo/ni、经压制的ni/h242/ni和经压制的ni/h242/mo/ni。在一个实施方式中,电极可为熔融盐,诸如氢氧化物与卤化物盐的混合物,诸如碱金属氢氧化物与卤化物盐的混合物,诸如本发明的所述混合物,诸如lioh-libr;或水性电解质,诸如氢氧化物或碳酸盐电解质或本发明的其它类似物。结构、材料和方法可由本领域技术人员已知的熔融碳酸盐或碱性燃料电池的结构、材料和方法改变而来。示例性的适合结构、材料和方法如下。隔板或集电体可为ni或cu涂布型不锈钢,诸如310s/316l。集电体可为穿孔的。虽然涂层为约50微米,但其它厚度也适合,诸如1微米至1毫米。其它示例性的适合材料为铁基合金,诸如304l、309s、310s、314、316l、347、405、430、446、17-4ph18-18+、18sr、a118-2、a126-1s、a129-4、a1439、glassseal27、ferralium255、ra253ma、nitronic50、20cb3、330、crutemp-25、crutemp-25+la、sanicro-33、310+ce、in800、in840、a-286和镍;钴基合金,诸如in600、in601、in671、in690、in706、in718、in825、in925、ma956、ra333、ni200、ni201、ni270、haynes230、haynes625、haynes188、haynes556、nichrome、monel400;和含铝合金,诸如ge-2541、fecral+hf、haynes214、fecr合金、ijr(406)、85h、kanthalaf和ni3al。虽然适合的涂布方法为包覆,但其它方法也可使用,诸如如用胺基磺酸盐浴的电解ni电镀,或无电ni电镀。至少一个电极可包含一或多种所述材料,尤其诸如钢和合金,诸如抗腐蚀合金。阳极可为氢储存材料,诸如本发明的氢储存材料,诸如密铈合金(mischmetal),诸如m1:富la密铈合金,诸如m1ni3.65al0.3mn0.3或m1(nicomncu)5、ni、r-ni、r-ni+约8wt%vulcanxc-72、lani5、cu或ni-al、ni-cr(诸如约10%cr)、ce-ni-cr(诸如约3/90/7wt%)、cu-al或cu-ni-al合金。阳极可掺杂有氧化物,诸如mno、ceo2和lifeo2,或包含所述或其它氧化物。阴极可为nio且可掺杂有lifeo2、li2mno3或licoo2。基质可包含惰性材料,诸如陶瓷。基质材料可包含化合物,包含可迁移以促进离子输送的物质。适合的示例性基质材料为氧阴离子化合物,诸如铝酸盐、钨酸盐、锆酸盐、钛酸盐和本发明的其它类似物,诸如硫酸盐、磷酸盐、碳酸盐、硝酸盐、铬酸盐和锰酸盐、氧化物、氮化物、硼化物、硫族化物、硅化物、磷化物和碳化物。基质材料可包含金属、金属氧化物、非金属和非金属氧化物。氧化物可包含以下中的至少一种:碱金属、碱土金属、过渡金属、内过渡金属和稀土金属和al、ga、in、sn、pb、s、te、se、n、p、as、sb、bi、c、si、ge和b和可形成氧化物或氧阴离子的其它元素。基质可包含至少一种氧化物,诸如碱性金属、碱土金属、过渡金属、内过渡金属和稀土金属和al、ga、in、sn、pb、s、te、se、n、p、as、sb、bi、c、si、ge和b和可形成氧化物的其它元素的氧化物,和一个氧阴离子,且还包含至少一个阳离子,诸如碱金属、碱土金属、过渡金属、内过渡金属和稀土金属和al、ga、in、sn和pb阳离子。适合的实例为lialo2、mgo、li2tio3或srtio3。在一个实施方式中,基质化合物可包含阳极材料氧化物和电解质化合物,诸如阳离子和电解质氧化物中的至少一种。在一个示例性实施方式中,电解质包含可形成相应氧化物(诸如m2o,诸如li2o)的氢氧化物(诸如碱金属氢氧化物,诸如moh(m=碱金属),诸如lioh),且电解质包含元素、金属、合金或混合物,诸如可形成相应氧化物的mo、ti、zr、si、al、ni、fe、ta、v、b、nb、se、te、w、cr、mn、hf、co和m'(m'=碱土金属)(诸如mg),诸如moo2、tio2、zro2、sio2、al2o3、nio、feo或fe2o3、tao2、ta2o5、vo、vo2、v2o3、v2o5、b2o3、nbo、nbo2、nb2o5、seo2、seo3、teo2、teo3、wo2、wo3、cr3o4、cr2o3、cro2、cro3、mno、mn3o4、mn2o3、mno2、mn2o7、hfo2、co2o3、coo、co3o4、co2o3和mgo,基质包含阴极材料氧化物和视情况选用的电解质氧化物(诸如li2o),对应于示例性的适合基质li2moo3或li2moo4、li2tio3、li2zro3、li2sio3、lialo2、linio2、lifeo2、litao3、livo3、li2b4o7、li2nbo3、li2seo3、li2seo4、li2teo3、li2teo4、li2wo4、li2cro4、li2cr2o7、li2mno4、li2hfo3、licoo2和m'o(m'=碱土金属)(诸如mgo)。基质可包含阳极元素或同一族元素的氧化物。举例而言,就mo阳极而言,同一元素或族的基质可为li2moo4、moo2、li2wo4、li2cro4和li2cr2o7。基质可提供支撑。基质可抑制反应性物质自放电阴极扩散至放电阳极,诸如氧气或反应性氧物质,诸如过氧化物或超氧化物离子。基质可呈糊状。在实施方式中,粒子尺寸可为亚微米,但诸如微米至毫米的其它尺寸也适合。在一个实施方式中,电解质基质包含介电材料。介电质基质可容许h催化以在电池放电期间给阳极充相对于阴极呈负性的电荷。充电可通过形成离子双层或通过电离(氧化)电池的物质(诸如电解质和基质中的至少一种)来实现。在一个实施方式中,能量来自将h催化形成分数氢的过程。来自h跃迁为分数氢的能量可为连续的,以使能量释放以在相应阳极电压下贡献给充电,或充电可贡献给阳极电压。充电可涉及类似于电容器的机制和涉及至少一个电池物质的电化学变化机制(诸如阳极半电池的电解质的氧化)中的至少一种。阳极充电引起相应阴极充电以完成离子或电子流经电解质的外部电路。在一个实施方式中,阳极半电池反应为oh-+2h→h2o+e-+h(1/p)(88)其中第一h与oh-反应形成h2o催化剂和e-与在h2o催化下使第二h形成分数氢协同进行。与oh-反应的h可来自m-h,其中m为阳极材料,诸如金属。在一个实施方式中,催化剂接受匹配如方程式(68)所给出的所形成h2o分子的势能且对应于使得形成h(1/4)的方程式(5)中m=3的3×27.2ev。以第二h跃迁为分数氢状态所致的电子形式释放的连续能量和在自第二h接受后自催化剂释放的能量可引起阳极充电。充电可包含电解质离子电容式充电或电解质或电极的至少一种物质氧化。因此,形成h2o催化剂的电化学反应和形成分数氢的协同h催化反应中所释放的能量给经由外部电路的电流流动提供动力。电压可为氢和氧电池反应的电压,因为电解质包含h2o和含氢气、氧气和水的氧化和还原产物的物质。电池反应可包含由方程式(171-173)所给的反应中的至少一种。经由电解质以完成电路的离子路径可包含电解质离子,诸如在包含lioh-libr的电解质的情况下,li+、oh-、氧化物和过氧化物离子和br-中的至少一种,或基质离子。因此,在一个实施方式中,基质充当离子传导介质,其中传导可通过电荷转移或离子输送提供。在另一实施方式中,基质包含氧化物、氢氧化物、混合金属氧化态、电解质离子和其它离子的混合物中的至少一种。离子传导可通过离子跳跃实现。输送可涉及物质的电荷转移或离子输送,该物质诸如为阴离子,诸如包含氧和氢中的至少一种的阴离子。适合的物质为至少一种选自以下的氧物质:o2、o3、o、o+、h2o、h3o+、oh、oh+、oh-、hooh、ooh-、o-、o2-、和和h物质和选自以下的氢物质:h2、h、h+、h2o、h3o+、oh、oh+、oh-、hooh和ooh-。在一个示例性实施方式中,输送的物质为在阴极处形成且由示例性物质o2、o3、o、o+、h2o、h3o+、oh、oh+、oh-、hooh、ooh-、o-、和形成的还原程度较大的状态的含氧物质,诸如o2-。还原程度较大的物质可在阳极处氧化。在一个实施方式中,分数氢反应能可通过在放电阶段期间使电子流入阳极且自阴极流出而转化为电。此需要在放电期间在阳极处氧化且在阴极处还原。阳极处电解质(诸如示例性物质oh-和h2o中的至少一种)的直接氧化和阴极处电解质(诸如示例性物质h2o)的还原分别产生氧气和氢气,氧气和氢气可在各相应电极处分别与电解产物h2和o2反应并消耗所述电解产物。在一个实施方式中,携带离子的基质在电池放电期间降低阳极处分数氢反应能量驱动的氧气形成和阴极处分数氢反应能量驱动的氢气形成,此可减少放电阶段的可利用反应物。在不具有基质的一个实施方式中,离子导电在电池放电期间可经由电解质实现。输送的物质可至少部分地在电池外部提供。电池可为敞露的,诸如对大气敞露。在一个示例性实施方式中,至少一种外部氧气和h2o在阴极处还原,且还原的物质(诸如至少一种外部氧气和h2o的还原产物)在阳极处氧化。输送可由h催化成分数氢状态所产生的能量驱动。控制由外部氧化剂(诸如外部氧气和h2o中的至少一种)所致的电流以控制腐蚀,诸如阳极的腐蚀。在一个实施方式中,阳极为对空气衍生的物质(诸如氧气物质,诸如oh-、hooh、ooh-、o-、和)所携带的电流为稳定的或具抗腐蚀性。抗腐蚀阳极可为本发明的抗腐蚀阳极。作为选择,阴极可包含稳定的物质,诸如氧化物或硫化物,诸如nio或mos。在一个实施方式中,维持间歇电解和放电期间每电池的电池电压超过防止阳极实质上氧化的电位,诸如在ni阳极的情况下,为约0.8v。在一个实施方式中,电池放电期间通过将h催化成分数氢所释放的能量提供通过诸如形成离子双层(诸如在电容性充电中)和氧化至少一种电池物质中的至少一种的机制负性地给阳极充电的能量。间歇充电-放电频率可足够高以使双层中的能量至少部分地消耗于外部电路中。在一个实施方式中,高频率在少于1秒的充电和放电时间中的至少一种的范围内,但可在约0.1ms至5s范围内。在一个实施方式中,放电期间形成的离子双层减少充电(电解)阶段期间的充电能量。来自双层的能量在充电(电解)阶段期间可至少部分地保存在电解产物(诸如h2和o2)形成中。电解质可包含或可不包含基质。在一个实施方式中,基质相对于无基质存在下可产生更快充电(电解)时间,可使得能够高频率充电。在一个实施方式中,也选择高频率以通过降低形成电解反应物(诸如氢气和氧气)的输入能量使能量增益最佳化。适合的输入能量建立原子氢层以反应形成催化剂(诸如h2o和分数氢)。通过选择适合的充电和放电时间(诸如本发明范围内的一种)避免会损失或不涉及催化剂和分数氢中的至少一种形成的过量气体电解产物。在一个实施方式中,反应物包含离子载体来源。离子载体可包含硫族化物。在一个实施方式中,硫族化物物质(诸如包含硫的物质)在电池放电期间可携带离子电流。s可溶解于电解质中。s物质(诸如s或sn(n=整数))在放电期间可在阴极处还原且在阳极处氧化。在一个实施方式中,电池为封闭的。两个电极可皆浸没于电解质中。驱动离子电流和外部电流的动力可来自h催化形成分数氢。在一个实施方式中,至少一个电极(诸如放电阳极)可包含硫来源,诸如合金,诸如mos合金。在一个实施方式中,s的摩尔比小于mo的摩尔比。示例性合金为mos(90至99.5wt%,10至0.5wt%)。在一个实施方式中,硫来源为硫化物,诸如包含以下中的至少一种的硫化物:碱金属、碱土金属、过渡金属、内过渡金属和稀土金属、和al、ga、in、sn、pb、s、te、se、n、p、as、sb、bi、c、si、ge和b、和形成硫化物的其它元素。硫化物可包含硒或碲硫化物,诸如ses2、se4s4和se2s6中的至少一种。在一个实施方式中,硫族化物包含硒和碲中的至少一种。硒或碲的来源分别为硒化物或碲化物,诸如包含以下中的至少一种的硒化物或碲化物:碱金属、碱土金属、过渡金属、内过渡金属和稀土金属、和al、ga、in、sn、pb、s、te、se、n、p、as、sb、bi、c、si、ge和b和可形成硒化物或碲化物的其它元素。从热力学角度而言,诸如负离子等物质可在阳极处电离,且在放电阴极处还原产生相同物质,当阳极处的离子或电子温度大于阴极时,动力消耗于外部电路中。涉及半电池的温差的非分数氢实例为电池[na(热)/base/na(冷)]。lioh-libr盐中的示例性离子为oh-和br-,可分别氧化成oh和br,且由经由外部电路传递至阴极的电子还原。作为选择,包含o和h中的至少一种的物质可携带离子电流。分数氢反应提供等效于产生传递至电路的动力的热的能量。在一个实施方式中,基质充当隔板以防止阴极和阳极电极或半电池短路。所防止的短路可为热力学和电意义上的至少一种。基质可隔开半电池反应以相对于阴极增加阳极处分数氢反应产生电动势(emf)的速率、效力或程度,从而驱动电流经由外部回路。在一个实施方式中,阳极和阴极半电池反应的隔开引起通过催化剂h2o自第二h接收的能量的更佳匹配,其中h2o形成因oh-氧化和与第一h反应而发生,且形成催化剂的氧化反应与如方程式(88)所给的第二h形成分数氢的催化反应协同。在一个实施方式中,基质可结合h2o,而且充当间歇电解反应的h2o来源。h2o的结合和供应可处于增加分数氢形成反应的速率或程度的能量下。h2o结合能可引起自h转移至催化剂(诸如h2o)的能量的更佳匹配。包含充当介电质、隔板或h2o粘合剂和储集器的中的至少一种的至少一种的基质的示例性电解质为碱金属氢氧化物-碱金属卤化物混合物(诸如lioh-libr)和可具有任何想要摩尔比的组分的本发明基质材料。碱金属卤化物和基质材料的wt%可类似。在电池操作温度(在约75℃至700℃范围内)下,包含基质的电解质可包含固体或半固体。示例性电解质为lioh-libr-mgo,其wt%分别在10wt%、45wt%和45wt%范围内,各±1至30wt%。电解质可由诸如带铸、电泳沉积、热辊研磨或热压的方法制造。双极板的湿封区域可包含可包含涂层的铝或铝合金。适合的镀铝方法为漆涂、热喷涂、接着可熔合热处理的真空沉积、和包裹胶结(packcementation)。不锈钢的示例性所得扩散涂层包含mal-m3al结构(m=铁、镍+5-15mol%铬)。作为选择,在一个示例性实施方式中,可以将含铝合金粉末(诸如fecraly、mal或m3al(m=ni、fe))进行热喷雾。在一个实施方式(诸如氢气通过渗透或间歇电解提供的实施方式)中,电池包含基质以固持电解质。基质可包含以电解质作芯或使电解质粘性更大的化合物,诸如惰性化合物。适合的示例性基质材料为以下中的至少一种:石棉、al2o3、mgo、li2zro3、lialo2、li2moo4、li2tio3或srtio3。电解质可以糊状物形式固定。固持电解质呈层(诸如薄层)形式的基质包含混合基质材料和至少一种其它材料和加热混合物形成基质的步骤,其它材料诸如粘合剂、颗粒材料和溶剂,溶剂在加热至高温时基本上完全燃烧。适合的化合物为聚(乙烯醇缩甲醛)(pvfo)和乙醇溶剂和聚乙二醇(peg)。基质的孔径尺寸和密度可随基质材料的颗粒尺寸和与至少一种其它化合物的比率变化而变化。在一个实施方式中,电解质添加至基质材料中。可控制孔径尺寸和密度以相对于电解质表面张力调整基质的毛细管作用以致电解质实质上维持于某一层中而无阴极或阳极的过量溢流。基质孔径尺寸可在约10nm至10mm、约100nm至100μm、或约1μm至10μm范围内。基质可包含固体,诸如陶瓷。适合的示例性固体基质为mgo、zro2或氧化钇稳定的氧化锆。基质可为可传导氧化物离子的固体氧化物燃料电池之一,诸如氧化钇稳定的二氧化锆(ysz)(通常8%形成y8sz)、氧化钪稳定的二氧化锆(scsz)(通常9mol%sc2o3-9scsz)和掺杂钆的二氧化铈(gdc)。基质可包含可传导氧化物离子的盐桥。氧化物导体的典型实例为氧化钇稳定的二氧化锆(ysz)、掺杂氧化钆的二氧化铈(cgo)、没食子酸镧和铋铜钒氧化物(诸如bicuvox)。一些钙钛矿材料,诸如la1-xsrxcoyo3-d,也展示混合氧化物和电子传导性。基质可注有电解质,诸如低共熔盐电解质,诸如氢氧化物,诸如碱金属氢氧化物,且可还包含碱金属卤化物。适合的示例性电解质为可注入mgo固体基质中的lioh-libr。固体基质可还包含颗粒基质(诸如mgo粒子)或本发明的其它基质化合物。在一个实施方式中,阳极包含间歇电解电极或氢喷射或鼓泡电极,诸如多孔电极,诸如ni垫电极。在一个实施方式中,电极和电解质中的至少一种抗电解质溢流。电解质可包含基质以稳定电解质。阳极可为具有大孔径尺寸且具有低于以电解质为芯的阈值的毛细管力的垫,其中电解质可包含基质材料,诸如mgo或li2tio3。电极可周期性地清洗以移除溢流电解质。可改变操作条件以防止溢流。举例而言,可调整温度以改变电解质粘度、表面张力和毛细管作用以防止电极溢流。可改变可再循环的氢气流以防止电极溢流。在一个实施方式中,阳极半电池反应物包含h来源。在一个实施方式中,金属离子(诸如碱金属离子)迁移至阴极隔室且可与阴极隔室的氢化物经历氢化物交换反应。阳极反应物包含li来源的示例性常规电池总反应可由以下表示:其中m表示选自能够形成氢化物的金属或半金属的单一元素或若干元素(呈混合物、金属互化物或合金形式)。此类氢化物也可经指定为「m氢化物」(其是指吸附(例如化学组合)氢原子的元素m)的化合物置换。m氢化物可表示下文mhm,其中m为由m吸附或组合的h原子数。在一个实施方式中,氢化物mnhm或mhm的每个h的自由生成焓高于、等于或小于诸如lih的催化剂的氢化物的自由生成焓。作为选择,至少一个h可充当催化剂。在实施方式中,示例性氢化物金属或半金属包含碱金属(na、k、rb、cs)、碱土金属(mg、ca、ba、sr)、第iiia族元素(诸如b、al、ga、sb)、第iva族元素(诸如c、si、ge、sn)和第va族元素(诸如n、p、as)。其它实例为过渡金属合金和金属间化合物abn,其中a表示一或多种能够形成稳定氢化物的元素且b为形成不稳定氢化物的元素。在表5中给出金属间化合物的实例。表5.形成氢化物的元素和组合。其它实例为金属间化合物,其中位点a和/或位点b的部分取代有另一元素。举例而言,若m表示lani5,则金属间合金可由lani5-xax表示,其中a为例如al、cu、fe、mn和/或co,且la可经以下取代:密铈合金、含有30%至70%铈、钕和极少量来自相同系列的元素的稀土金属混合物,剩余物为镧。在其它实施方式中,锂可经其它催化剂或催化剂来源(诸如na、k、rb、cs、ca)和至少一个h置换。在实施方式中,阳极可包含合金,诸如li3mg、k3mg、na3mg,其形成诸如mmgh3(m=碱金属)的混合氢化物。在一个实施方式中,使用包含如图4中所示的三个半电池的ciht电池实现再生。一次阳极600和阴极601半电池包含基本电池,其包含标准反应物,分别诸如li来源和coo(oh),由隔板602和有机电解质分隔。各自分别具有其相应电极603和604。在闭合开关606后,放电基本电池的动力耗散在负载605中。另外,第三或再生半电池607与一次阴极半电池601交界,且包含质子来源。一次阴极和再生半电池由质子导体608分隔。再生半电池具有其电极609。在基本电池再充电期间,动力由来源610,在开关611闭合和开关606打开下提供。再生半电池607充当二次阳极,且一次阳极600充当二次阴极。质子通过氧化h来形成且自再生电池607迁移至一次阴极601。由h+离子将li+离子自licoo2中置换出,形成coo(oh)或hcoo2,同时li+离子迁移至二次阴极600且还原成li。在一个三腔室电池实施方式中,再充电阳极可包含质子来源(诸如pt/c(h2))和质子导体。接着再充电电池可为[pt/c(h2)与质子导体交界/licoo2/li]。示例性电池为[li来源(诸如li或li合金(诸如li3mg)或lic)/烯烃隔板和有机电解质(诸如celgard和lp40)/coo(oh)或hcoo2/质子导体/h+来源(诸如pt(h2)、pt/c(h2))]。在另一实施方式中,氢供应给腔室607,腔室607包含氢解离催化剂(诸如pt/c)和隔膜隔板608(其可为纳菲膜),h原子通过此隔膜隔板扩散至腔室601中的阴极产物材料中,同时电解电压施加于电极604与603之间。施加于电极604上的正电压引起li迁移至腔室600中,以在电极603处被还原,同时h在电解期间并入阴极材料中。在另一实施方式中,隔板608与池体电隔离,且包含电极609。腔室607包含h来源,诸如氢化物。电极609可氧化诸如氢化物的来源的h-。电导率可通过腔室607中的熔融低共熔盐h-导体来增强。电解引起h迁移至腔室601中,层夹于氢氧化合物中。在一个实施方式中,电池包含水性电解质。电解质可为呈溶液形式的碱金属盐,诸如碱金属硫酸盐、硫酸氢盐、硝酸盐、亚硝酸盐、磷酸盐、磷酸氢盐、磷酸二氢盐、碳酸盐、碳酸氢盐、卤化物、氢氧化物、过锰酸盐、氯酸盐、高氯酸盐、亚氯酸盐、过亚氯酸盐、次氯酸盐、溴酸盐、过溴酸盐、亚溴酸盐、过亚溴酸盐、碘酸盐、过碘酸盐、亚碘酸盐、过亚碘酸盐、铬酸盐、重铬酸盐、碲酸盐、硒酸盐、砷酸盐、硅酸盐、硼酸盐和其它氧阴离子。另一适合的电解质为碱金属硼氢化物,诸如于浓碱中的硼氢化钠,诸如于约14mnaoh中的约4.4mnabh4。在包含水性或熔融氢氧化物电解质的另一实施方式中,电池包含金属氢化物电极,诸如本发明的金属氢化物电极。适合的示例性氢化物为r-ni、拉尼钴(r-co)、拉尼铜(r-cu)、过渡金属氢化物(诸如coh、crh、tih2、feh、mnh、nih、sch、vh、cuh和znh)、金属间氢化物(诸如lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2)和agh、cdh2、pdh、pth、nbh、tah、zrh2、hfh2、yh2、lah2、ceh2和其它稀土金属氢化物。适合氢化物的其它示例性金属或半金属包含碱金属(na、k、rb、cs)、碱土金属(mg、ca、ba、sr)、来自第iiia族的元素(诸如b、al、ga、sb)、来自第iva族的元素(诸如c、si、ge、sn)和来自第va族的元素(诸如n、p、as)和过渡金属和合金。氢化物可为金属间化合物。其它实例为金属间化合物abn,其中a表示能够形成稳定氢化物的一或多种元素且b为形成不稳定氢化物的元素。表5和本发明的相应章节中给出金属间化合物的实例。氢化物可为ab5型(其中a为镧、铈、钕、镨的稀土元素混合物,且b为镍、钴、锰和/或铝)和ab2型(其中a为钛和/或钒且b为锆或镍,经铬、钴、铁和/或锰改质)中的至少一种。在一个实施方式中,阳极材料起到可逆地形成金属氢化物化合物的混合物的作用。示例性化合物为lani5和lani3.6mn0.4al0.3co0.7。金属氢化物r-ni的一示例性阳极反应为r-nihx+oh-→r-nihx-1+h2o+e-(90)在一个实施方式中,镍氢化物可充当诸如阳极的半电池反应物。其可通过使用经氢化的镍阴极进行水性电解来形成。电解质可为碱性的,诸如koh或k2co3,且阳极也可为镍。阴极可包含可与水反应的氧化剂,诸如金属氧化物,诸如羟基氧化镍(niooh)。一示例性阴极反应为nio(oh)+h2o+e-→ni(oh)2+oh-(91)分数氢可通过阳极处所形成的h2o催化剂形成。电池可包含诸如碱金属氢氧化物(诸如koh)的电解质,且可还包含隔板,诸如亲水性聚烯烃。示例性电池为[r-ni、拉尼钴(r-co)、拉尼铜(r-cu)、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2、coh、crh、feh、mnh、nih、sch、vh、cuh、znh、agh/聚烯烃koh(水溶液)、naoh(水溶液)或lioh(水溶液)/nio(oh)]。其它适合的氧化剂为wo2(oh)、wo2(oh)2、vo(oh)、vo(oh)2、vo(oh)3、v2o2(oh)2、v2o2(oh)4、v2o2(oh)6、v2o3(oh)2、v2o3(oh)4、v2o4(oh)2、feo(oh)、mno(oh)、mno(oh)2、mn2o3(oh)、mn2o2(oh)3、mn2o(oh)5、mno3(oh)、mno2(oh)3、mno(oh)5、mn2o2(oh)2、mn2o6(oh)2、mn2o4(oh)6、nio(oh)、tio(oh)、tio(oh)2、ti2o3(oh)、ti2o3(oh)2、ti2o2(oh)3、ti2o2(oh)4和nio(oh)。其它示例性适合的氢氧化合物为以下的组中的至少一种:羟铬矿(cro(oh))、水铝石(alo(oh))、sco(oh)、yo(oh)、vo(oh)、针铁矿(α-fe3+o(oh))、锰榍石(mn3+o(oh))、圭羟铬矿(cro(oh))、黑铁钒矿((v,fe)o(oh))、coo(oh)、nio(oh)、ni1/2co1/2o(oh)和ni1/3co1/3mn1/3o(oh)、rho(oh)、ino(oh)、镓矿(gao(oh))、水锰矿(mn3+o(oh))、钇钨华-(y)(yw2o6(oh)3)、钇钨华-(ce)((ce,nd,y)w2o6(oh)3)、未命名物质(钇钨华-(ce)的nd类似物)((nd,ce,la)w2o6(oh)3)、铜碲矿(cu2[(oh)2[teo4]])、碲铅铜石和副碲铅铜石一般而言,氧化剂可为mxoyhz,其中x、y和z为整数且m为金属,诸如过渡金属、内过渡金属或稀土金属,诸如金属氢氧化合物。在其它实施方式中,其它氢化硫族化物或硫族化物可置换氢氧化合物。电池可通过充电或通过化学处理,诸如将金属氢化物(诸如r-ni)再氢化而再生。电解质可包含浓碱,诸如浓度在约6.5m至饱和的范围内的moh(m=碱金属)。正电极中的活性材料可包含氢氧化镍,其经充电形成羟基氧化镍。作为选择,其可为另一氢氧化合物、氧化物、氢氧化物或碳(诸如cb、ptc或pdc)或碳化物(诸如tic)、硼化物(诸如tib2)或碳氮化物(诸如ticn)。诸如氢氧化镍的阴极可具有由氧化钴和集电体(诸如镍泡沫骨架)构成的导电性网状物,但或者可为镍纤维基质或可通过烧结单纤维镍纤维产生。负电极中的活性材料可为能够储存氢的合金,诸如ab5(laceprndnicomnal)或ab2(vtizrnicrcomnalsn)型的一,其中「abx」名称系指a型元素(laceprnd或tizr)与b型元素(vnicrcomnalsn)的比率。适合的氢化物阳极为用于金属氢化物电池(诸如本领域技术人员已知的镍金属氢化物电池)中的氢化物阳极。示例性适合的氢化物阳极包含r-ni、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2的组的氢化物,和能够储存氢的其它合金,诸如ab5(laceprndnicomnal)或ab2(vtizrnicrcomnalsn)型的一,其中「abx」名称系指a型元素(laceprnd或tizr)与b型元素(vnicrcomnalsn)的比率。在其它实施方式中,氢化物阳极包含以下中的至少一种:mmni5(mm=密铈合金)(诸如mmni3.5co0.7al0.8);ab5型:mmni3.2co1.0mn0.6al0.11mo0.09(mm=密铈合金:25wt%la、50wt%ce、7wt%pr、18wt%nd)、la1-yryni5-xmx;ab2型:ti0.51zr0.49v0.70ni1.18cr0.12合金;基于镁的合金,诸如mg1.9al0.1ni0.8co0.1mn0.1合金、mg0.72sc0.28(pd0.012+rh0.012)和mg80ti20、mg80v20;la0.8nd0.2ni2.4co2.5si0.1、lani5-xmx((m=mn、al)、(m=al、si、cu)、(m=sn)、(m=al、mn、cu))和lani4co、mmni3.55mn0.44al0.3co0.75、lani3.55mn0.44al0.3co0.75、mgcu2、mgzn2、mgni2;ab化合物,诸如tife、tico和tini;abn化合物(n=5、2或1)、ab3-4化合物和abx(a=la、ce、mn、mg;b=ni、mn、co、al)。其它适合的氢化物为zrfe2、zr0.5cs0.5fe2、zr0.8sc0.2fe2、yni5、lani5、lani4.5co0.5、(ce、la、nd、pr)ni5、密铈合金-镍合金、ti0.98zr0.02v0.43fe0.09cr0.05mn1.5、la2co1ni9、feni和timn2。在任一种情况下,所述材料均可具有复杂微结构,所述微结构允许氢储存合金在电池内腐蚀性环境下操作,其中大部分金属呈氧化物时在热力学上更稳定。适合的金属氢化物材料具有传导性,且可应用于集电体,诸如由穿孔或展开镍或镍泡沫基板制成的集电体或由铜制成的集电体。在实施方式中,水性溶剂可包含h2o、d2o、t2o或水混合物和同位素混合物。在一个实施方式中,控制温度,以控制分数氢的反应速率,因此控制ciht电池的动力。一适合的温度范围为约环境温度至100℃。通过密封电池,可将温度维持在约100℃以上,以便产生压力且抑制沸腾。在一个实施方式中,在阳极处,在h或h来源存在下由oh-氧化形成oh催化剂或h2o催化剂。适合的阳极半电池反应物为氢化物。在一个实施方式中,阳极可包含氢储存材料,诸如金属氢化物,诸如金属合金氢化物,诸如bareh9、la2co1ni9h6、lani5h6或lani5h(本发明中,lani5h定义为lani5的氢化物且可包含lani5h6和其它氢化物化学计量,且上述情况也适用于本发明的其它氢化物,其中除所呈现者以外的其它化学计量也在本发明的范畴内)、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2、fetih1.7、tifeh2和mgnih4。在包含lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75或zrmn0.5cr0.2v0.1ni1.2阳极或类似阳极和koh或naoh电解质的一个实施方式中,将lioh添加至电解质中,以钝化任何氧化物涂层,从而促进h2的吸收以氢化或再氢化lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75或zrmn0.5cr0.2v0.1ni1.2。示例性电池为[bareh9、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2、fetih1.7、tifeh2和mgnih4/moh(饱和水溶液)(m=碱金属)/碳、pdc、ptc、氢氧化合物、碳化物或硼化物]和[lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75或zrmn0.5cr0.2v0.1ni1.2/koh(饱和水溶液)eubr2或eubr3/cb]。在一个实施方式中,电池包含水性电解质,诸如koh(1m至饱和),和金属氢化物阳极,诸如lani5h6、mmni3.5co0.7al0.8h6、(land)(nicosi)5h4、timn2和(ti,zr)(v,ni)2中的至少一种,其中电池可还包含固体电解质,诸如在阳极处。适合的固体电解质为氢氧化四甲基铵五水合物(tmah5)(ch3)4noh.5h2o。阴极可包含氧还原催化剂(诸如碳,诸如蒸汽碳(sc))和氧来源(诸如空气或o2)。示例性电池为[lani5h6、mmni3.5co0.7al0.8h6、(land)(nicosi)5h4、timn2和(ti,zr)(v,ni)2tmah5中的至少一种/koh(饱和水溶液)/sc+空气]。电池可在通过用h2使阳极氢化或通过电解放电后再生。作为反应物经还原反应形成oh-或h2o的中间物所形成的oh可充当形成分数氢的催化剂或催化剂来源(诸如oh或h2o)。在一个实施方式中,包含碱性电解质(诸如moh或m2co3水溶液电解质,m=碱金属)的电池的氧化剂包含诸如以下中的至少一种的氧来源:包含氧的化合物、含氧的导电聚合物、添加至导电基质(诸如碳)中的含氧化合物或聚合物、o2、空气和氧化碳(诸如蒸汽处理碳)。氧的还原反应可形成经还原的含氧化合物和可包含至少o和可能h的自由基,诸如过氧化氢离子、超氧离子、氢过氧自由基、hooh、hoo-、oh和oh-。在一个实施方式中,电池还包含防止或阻碍氧自阴极迁移至阳极且迁移离子(诸如oh-)渗透性过的隔板。隔板也可阻碍或防止在阳极半电池隔室中形成的氧化物或氢氧化物(诸如和迁移至阴极室。在一个实施方式中,阳极包含h来源,诸如氢化物(诸如r-ni、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75或zrmn0.5cr0.2v0.1ni1.2)或h2气体与解离体(诸如pt/c)。在包含r-ni的本发明的此实施方式和其它实施方式中,另一拉尼金属(诸如拉尼钴(r-co)、拉尼铜(r-cu)和包含可含有其它金属、金属氧化物、合金或化合物的活化剂的r-ni的其它形式)可取代r-ni,以包含其它实施方式。一示例性电池包含金属氢化物m'hx(m'=金属或合金,诸如r-ni或lani5)和氧阴极,诸如阴极(诸如碳阴极)上o2气体或空气,或吸附于碳c(o2)x中的氧,碳c(o2)x释放o2,得到c(o2)x-1。在类似于方程式(94)的一个实施方式中,水与氧中的至少一种在阴极还原成oh-、h和h2中的至少一种。相应示例性反应为阳极m'hx+oh-→m'hx-1+h2o+e-(92)其中oh可作为中间物形成且充当形成分数氢的催化剂,或可形成h2o来充当催化剂。阴极1/2o2+h2o+2e-→2oh-(93)作为选择,阴极反应可在正电极处仅仅包含水:h2o+e-→1/2h2+oh-(94)进行反应方程式(94)的阴极可为水还原催化剂,和视情况存在的o2还原(方程式(93))催化剂,诸如负载型金属、沸石和可具有导电性的聚合物(诸如聚苯胺、聚噻吩或聚乙炔),其可与导电性基质(诸如碳)混合。适合的h2o还原催化剂在诸如碱性溶液的溶液中有效地将h2o还原成h2。示例性催化剂为以下的组的催化剂:ni、多孔ni、烧结ni粉、ni-ni(oh)2、r-ni、fe、过渡金属的金属间化合物、hf2fe、zr-pt、nb-pd(i)、pd-ta、nb-pd(ii)、ti-pt、纳米晶nixmo1-x(x=0.6、0.85原子百分比)、ni-mo、mm合金(诸如mmni3.6co0.75mn0.42al0.27、ni-fe-mo合金(64:24:12)(wt%)、ni-s合金和ni-s-mn合金)。电解质可还包含活化剂,诸如离子活化剂,诸如氯化参(乙二胺)钴(iii)络合物和na2moo4或edta(乙二胺四乙酸)每一种或其与铁的组合。示例性电池为[m/koh(饱和水溶液)/水还原催化剂和可能o2还原催化剂];m=合金或金属,诸如zn、sn、co、sb、te、w、mo、pb、ge的合金或金属;水还原催化剂和可能o2还原催化剂=pt/ti、pt/al2o3、蒸汽碳、钙钛矿、ni、多孔ni、烧结ni粉、ni-ni(oh)2、r-ni、fe、过渡金属的金属间化合物、hf2fe、zr-pt、nb-pd(i)、pd-ta、nb-pd(ii)、ti-pt、纳米晶nixmo1-x(x=0.6、0.85原子百分比)、ni-mo、mm合金(诸如mmni3.6co0.75mn0.42al0.2、ni-fe-mo合金(64:24:12)(wt%)、ni-s合金和ni-s-mn合金)中的至少一种。在一个实施方式中,阴极包含诸如氧化物、氢氧化合物、氧气或空气的氧来源。来自此来源的氧在阴极于水溶液中还原,形成包含o且可能包含h的负离子。氧的还原反应可形成经还原的含氧化合物和可包含至少o和可能h的自由基,诸如过氧化氢离子、超氧离子、氢过氧自由基、hooh、hoo-、oh和oh-。在一个实施方式中,此类物质或在阳极形成的产物物质中的至少一种可包含催化剂。催化剂反应可包含ooh-氧化成oh和金属氧化物,其中ooh-充当催化剂来源。金属m的示例性反应为阴极o2+h2o+2e-→ooh-+oh-(95)阳极:m+ooh-→mo+oh+e-(96)mh或moh+ooh-→m或mo+hooh+e-(97)其中ooh-和可能和hooh中的至少一种充当催化剂来源(诸如oh或h2o中的至少一种)。ooh-也可充当包含形成氧化物的氢氧化物阴极或阳极反应物且可能还包含固体电解质(诸如base)的电池中的催化剂来源。催化剂可为h2o。一示例性电池为[na/base/naoh],且涉及超氧化物、过氧化物和氧化物的示例性反应为na+2naoh→nao2+2nah→naooh+2na→na2o+naoh+1/2h2(98)2na+2naoh→na2o2+2nah→naooh+2na+nah(99)2naoh→naooh+nah→na2o+h2o(100)在后一反应中,h2o可与na反应。形成中间物mooh(m=碱金属)(诸如naooh,其可反应形成na2o和oh)的反应可包含供应的氢。示例性电池为[ni(h2,诸如在约1至1.5atm的范围内)naoh/base/nacl-nicl2或nacl-mncl2或licl-bacl2]和[ni(h2)na2o与naoh中的至少一种/base/nacl-nicl2或nacl-mncl2或licl-bacl2],其可经由诸如以下的反应形成分数氢来产生动力:阴极:2na++2e-+m'x2→2nacl+m'(101)阳极:1/2h2+3naoh→naooh+nah+h2o+na++e-(102)naooh+nah→na2o+h2o(103)na2o+naoh→naooh+2na++2e-(104)其中m'为金属,x为卤离子,其它碱金属可取代na,且nah或ooh-可充当催化剂来源,或oh可作为中间物形成且充当催化剂。在一个实施方式中,氧来源可包含含有结合至少一种其它元素的o的化合物。适合的氧来源为co2、no2、no、n2o和so2中的至少一种。示例性电池为[ni(h2)/moh-mx/ni+co2、no2、no、n2o或so2](m=碱金属,x=卤离子)。在一个实施方式中,电解质包含或另外包含碳酸盐,诸如碱金属碳酸盐。电解期间,过氧物质可形成诸如过氧碳酸或碱金属过碳酸盐,其可为充当形成分数氢的催化剂来源或催化剂的ooh-、oh或h2o的来源。示例性电池为[zn、sn、co、sb、te、w、mo、pb、ge/koh(饱和水溶液)+k2co3/碳+空气]和[zn、sn、co、sb、te、w、mo、pb、ge/koh(饱和水溶液)+k2co3/ni粉+碳(50/50wt%)+空气]。在一个实施方式中,诸如蒸汽活性碳的基质包含氧来源(诸如羧酸酯基),其与诸如氢氧化物(诸如koh)的电解质反应,形成相应羧酸盐(诸如k2co3)。举例而言,来自羧酸酯基的co2可如下反应:2koh+co2→k2co3+h2o(105)其中使oh-氧化且使co2还原。此过程可包含形成分数氢的机制。活性碳和包含活性碳的ptc可以此方式反应,形成分数氢。类似地,r-ni与oh-反应,形成h2o和al2o3,此包含oh-的氧化且提供直接形成分数氢的机制。因此,可在碳阴极或r-ni阳极通过直接反应形成分数氢。一个实施方式包含具有氢来源(诸如h2气体)和氧来源(诸如o2气体或空气)的燃料电池。h2与o2中的至少一种可通过水电解产生。用于电解的动力可由ciht电池供应,该ciht电池可由直接自电解电池供应给其的气体驱动。电解可还包含h2与o2的气体隔板,以提供纯化的气体至阴极与阳极每一种。氢可供应给阳极半电池,且氧可供应给阴极半电池。阳极可包含h2氧化催化剂且可包含h2解离体,诸如pt/c、ir/c、ru/c、pd/c和本发明的其它解离体。阴极可包含o2还原催化剂,诸如本发明的还原催化剂。电池产生可形成可充当形成分数氢的催化剂的oh的物质,且产生的能量(诸如电能)超过由氢与氧反应形成水所产生的能量。在一个实施方式中,在阴极处包含o2或空气还原反应的电池包含对h2放出有抗性的阳极,诸如pb、in、hg、zn、fe、cd或氢化物,诸如lani5h6阳极。阳极金属m可形成复合物或离子,诸如其至少部分可溶于电解质中,使得阳极反应在不受涂层(诸如氧化物涂层)阻碍下进行。阳极也可包含其它更具活性的金属,诸如li、mg或al,其中可使用抑制剂来防止直接与水性电解质反应,或可使用非水性电解质,诸如有机电解质或离子液体。适用于诸如li的阳极的离子液体电解质为双(三氟甲基磺酰基)胺化1-甲基-3-辛基咪唑鎓、双(五氟乙基磺酰基)胺化1-乙基-3-甲基咪唑鎓和双(三氟甲基磺酰基)胺化1-乙基-3-甲基咪唑鎓。阳极可通过电解在水溶液中再生,其中可添加pb、hg或cd以抑制h2放出。具有高负电极电位的金属(诸如al、mg和li)可用作使用非质子性有机电解质的阳极。在一个实施方式中,o2还原经由涉及两个电子的过氧化物途径进行。有利于此过氧化物途径的适合阴极为石墨和大部分其它碳、金、氧化物覆盖的金属(诸如镍或钴)、一些过渡金属大环化合物和过渡金属氧化物。诸如mno2的氧化锰可充当o2还原催化剂。作为选择,氧可通过4个电子直接还原成oh-或h2o。此途径主要在贵金属(诸如铂和铂族金属)、具有钙钛矿或烧绿石型结构的一些过渡金属氧化物、一些过渡金属大环化合物(诸如铁酞菁和银)上。在一个实施方式中,阴极抗碱性电解质腐蚀,碱性电解质诸如水性或熔融碱金属氢氧化物,诸如lioh、naoh或koh。适合的阴极为ni和cu。电极可包含用于氧还原和放出的化合物电极。后者可用于再生。电极可具有能够还原和放出氧的双功能,其中通过相应单独的催化剂层提供活性,或电催化剂可具有双功能。电极和电池设计可为此项技术中已知用于金属-空气电池(fe或zn-空气电池或本领域技术人员已知的其适当修改)的电极和电池设计。适合的电极结构包含集电体、可包含碳和粘合剂的气体扩散层、和可为双功能催化剂的活性层。作为选择,电极可在集电体一侧包含o2还原层,且在另一侧包含o2放出层。前者可包含与氧来源接触的外部气体扩散层和与集电体接触的多孔疏水性催化剂层;而后者可在该层一侧包含与电解质接触的多孔亲水性催化剂层且在另一侧包含集电体。可充当还原来自来源的氧的催化剂的适合钙钛矿型氧化物可具有通式abo3,且所述具有取代基的钙钛矿可具有通式a1-xa'xb1-yb'yo3。a可为la、nd;a'可为锶、钡、钙;且b可为镍、钴、锰、钌。用于在阴极还原氧的其它适合催化剂为钙钛矿型催化剂,诸如掺杂金属氧化物的la0.6ca0.4coo3、mnio2(m=碱金属)、mm'o2(m=碱金属,m'=过渡金属)、la1-xcaxcoo3、la1-xsrxcoo3(0≤x≤0.5)或la0.8sr0.2co1-ybyo3(b=ni、fe、cu或cr;0≤y≤0.3)、la0.5sr0.5coo3、lanio3、lafexni1-xo3、具有取代基的lacoo3、la1-xcaxmo3、la0.8ca0.2mno3、la1-xa'xco1-yb'yo3(a'=ca;b'=mn、fe、co、ni、cu)、la0.6ca0.4co0.8fe0.2o3、la1-xa'xfe1-yb'yo3(a'=sr、ca、ba、la;b'=mn)、la0.8sr0.2fe1-ymnyo3和基于mn和一些过渡金属或类镧系元素的钙钛矿型氧化物;或尖晶石,诸如co3o4或nico2o4;烧绿石,诸如pb2ru2pb1-xo1-y或pb2ru2o6.5;其它氧化物,诸如na0.8pt3o4;有机金属化合物,诸如钴卟啉;或具有co添加剂的热解大环化合物。适合的烧绿石型氧化物具有通式a2b2o7或a2b2-xaxo7-y(a=pb/bi,b=ru/ir),诸如pb2ir2o7-y、pbbiru2o7-y、pb2(pbxir2-x)o7-δ和nd3iro7。适合的尖晶石为镍钴氧化物、纯或掺锂氧化钴(co3o4)、mxco3-xo4型辉钴矿尖晶石((m=co、ni、mn氧还原)和(m=co、li、ni、cu、mn氧放出))。氧还原催化剂可为镍、r-ni、银、ag-载体(诸如ag-al2o3)、贵金属(诸如pt、au、ir、rh或ru)、镍钴氧化物(诸如nico2o4)和氧化铜钴(诸如cuco2o4)。氧还原或放出催化剂可还包含导电载体,诸如碳,诸如碳黑、石墨碳、科琴黑(ketjenblack)或石墨化vulcanxc72。示例性电池为[zn、sn、co、sb、te、w、mo、pb、ge/koh(饱和水溶液)/空气+碳+o2还原催化剂(诸如钙钛矿型催化剂,诸如掺杂金属氧化物的la0.6ca0.4coo3、la1-xcaxcoo3、la1-xsrxcoo3(0≤x≤0.5)或la0.8sr0.2co1-ybyo3(b=ni、fe、cu或cr;0≤y≤0.3);或尖晶石,诸如co3o4或nico2o4;烧绿石,诸如pb2ru2pb1-xo1-y或pb2ru2o6.5;其它氧化物,诸如na0.8pt3o4或具有co添加剂的热解大环化合物)]。在另一实施方式中,阴极包含水还原催化剂。阴极能够支持h2o与o2中的至少一种还原。阴极可包含高表面积导体,诸如碳,诸如碳黑、活性碳和蒸汽活性碳。阴极可包含针对o2或h2o中的至少一种还原或h2放出具有低过电位的导体,诸如pt、pd、ir、ru、rh、au或于导电载体(诸如碳或钛)上的此类金属,作为以h2o作为阴极半电池反应物的阴极。电解质可为诸如在约6.1m至饱和范围内的浓碱。示例性电池为[解离体与氢(诸如ptcb、pdc或pt(20%)ru(10%)(h2,约1000托))或金属氢化物(诸如各种组成的r-ni、r-co、r-cu、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2或表5的氢化物)/碱的水溶液(诸如koh(水溶液))电解质(>6.5m至饱和或>11m至饱和)/碳、氧电极(诸如碳上的o2或空气、c(o2)x或氧化碳(诸如蒸汽活性碳)或cb、ptc、pdc、cb(h2)、ptc(h2)、pdc(h2)、针对o2或h2o中的至少一种的还原或h2放出具有低过电位的导体(诸如pt、pd、ir、ru、rh、au或于导电载体(诸如碳或钛)上的此类金属,作为以h2o和o2作为阴极半电池反应物的阴极))]。在一个实施方式中,阴离子可充当阴极的氧来源。适合的阴离子为氧阴离子,诸如和诸如的阴离子可形成碱性溶液。一示例性阴极反应为阴极反应可包含可逆半电池氧化还原反应,诸如h2o还原成oh-+h可引起形成分数氢的阴极反应,其中h2o充当催化剂。示例性电池为具有koh-k2co3电解质的[zn、sn、pb、sb/koh(饱和水溶液)+k2co3/cb-sa]。在一个实施方式中,co2、so2、po2和其它类似反应物可作为氧来源添加至电池中。阳极可包含能够与氧物质(诸如ooh-或oh-)反应的金属。适合的金属为可为粉末的al、v、zr、ti、mn、se、zn、cr、fe、cd、co、ni、sn、in、pb、cu、sb、bi、au、ir、hg、mo、os、pd、re、rh、ru、ag、tc、te、tl和w。阳极可包含短的亲水性纤维,诸如纤维素纤维,以防止再充电期间稠化。阳极可在放电状态形成且通过充电活化。一示例性锌阳极可包含以下各物的混合物:氧化锌粉末、纤维素纤维、聚四氟乙烯粘合剂和视情况选用的一些锌粉和添加剂,诸如氧化铅(ii)或锑、铋、镉、镓和铟的氧化物,以防止h2放出。混合物可在水-丙酮混合物上搅拌,且所得均匀悬浮液可过滤,滤饼压入集电体(诸如镀铅铜网)中,并在略微高于100℃的温度下干燥。具有约50%孔隙率的电极可包裹在多微孔聚合物膜(诸如celgard)中,此膜将电极固持在一起且可充当隔板。在其它实施方式中,阳极可主要使用zn粉来组装,此避免初始充电步骤。电池可包含串联或并联连接的电池叠堆,其可具有储集器以适应电解质的体积变化。电池可还包含湿度与co2管理系统中的至少一种。金属电极可夹在氧电极之间,以使表面积加倍。氧可自空气扩散,穿过包含氧扩散电极的多孔特氟隆(teflon)层压空气电极。在一个实施方式中,来自阴极的电子与氧在氧扩散电极的湿润部分的催化位点反应,形成经还原的水和氧物质。在一个实施方式中,浸没阳极,且阴极包含电解质润湿的部分和与o2来源(诸如空气或o2)直接接触的部分。在一个实施方式中,氧气还原电流通过增加曝露于空气中的材料来增加,对于既定电解质界面面积,通过增加更多曝露于空气的阴极表面积。在一个实施方式中,浸没阴极且通过电解提供氧气。在一个实施方式中,阴极大部分浸没,较小表面积部分曝露于空气中以便通过电解提供补充,从而最佳化电池形成分数氢的效率,同时避免过度腐蚀,诸如阳极腐蚀。在一个实施方式中,与添加的h2o蒸汽一起向电池提供氧气和惰性气体混合物。氧气可在约1至10摩尔%范围内,h2o在约约31托至93托范围的范围内。在用h2o供应的ciht电池的实施方式中,h2o蒸汽的压力范围为以下至少一种:约0.001托至100atm、约0.001托至0.1托、约0.1托至1托、约1托至10托、约10托至100托、约100托至1000托、和约1000托至100atm。其余为惰性气体,诸如氮气。在一个实施方式中,o2为约5摩尔%。在一个实施方式中,空气经膜或低温过滤或处理以通过本领域技术人员已知的方法达成所需气体比率。在另一实施方式中,氧还原电极(诸如阴极)可完全浸没于电解质中。来自来源的氧可通过诸如喷射含氧气体(诸如o2或空气)的方法或通过间歇电解供应。间歇电解电极可为不同材料,诸如不同金属或不同的本发明材料,所述不同电极选自金属、碳化物、硼化物、氮化物和腈的组。在浸没阴极的一个实施方式中,氧由诸如o2分压通过在电解质的上维持高o2压力而增加的电解质的来源提供。高压可在约0.5atm至200atm或约1atm至10atm的范围内。在一个实施方式中,选择电解质以具有增加的氧溶解性。作为选择,选择阴极材料以使其具有氧亲和性。在一个实施方式中,阳极部分地浸没,其中放电阳极的至少一部分表面未浸没于电解质中。在一个实施方式中,至少一个电极部分浸没。各电极与电解质接触。在一个实施方式中,至少一个电极仅一部分电极表面积与电解质接触。至少一部分表面积不直接与电解质接触。未接触表面积可曝露于电池氛围或电池的另一组件中,诸如隔板,或在电极包含双极板的某一侧时,双极板的对侧。相对于完全浸没或浸没部分,某一电极部分未浸没于电解质中的情况提供不同化学电位、费米能级或电压。该不同化学电位、费米能级或电压可促进分数氢反应。在一个实施方式中,放电阴极可有至少一部分表面未浸没于电解质中,与电池氛围或阴极气体无关。阴极气体可为供应气体、氧气和h2o和电解产生的氧气中的至少一种。水可包含氢、氘和氚中的至少一种,诸如为h2o、hod、d2o、t2o、dot和hot中的至少一种。阴极气体可为惰性气体(诸如n2)或稀有气体(诸如ar)。在此情况下,氧可来自电解。相对于浸没的放电阳极,部分未浸没阴极提供不同化学电位、费米能级或电压,即使两者为相同材料。该不同化学电位、费米能级或电压促进分数氢反应。放电阴极部分浸没所在的电解质可包含基质,诸如mgo、lialo2、li2tio3、livo3、tio2、ceo2和本发明的其它基质。包含基质的电解质在电池操作温度下可为固体或半固体,电池操作温度可为或高于电解质熔点。电解质可包含本发明电解质,诸如熔融盐,诸如碱性盐或低共熔盐或混合物,诸如moh-mx(其中m为碱金属且x为卤离子)。在氢和氧中的至少一种可至少部分通过间歇电解产生的一个实施方式中,氢和氧处于约h2o的化学计量比。在实施方式中,比率为约2份h2比1份o2,在约±300%内、在约±100%内、在约±50%内、在约±25%内或在约±10%内。其余电池气体可包含压力使动力最佳化或达成所需动力的水蒸汽,且可还包含惰性气体,诸如稀有气体或n2。水蒸汽压力可维持在约0.01托至10atm范围内。在另一实施方式中,水蒸汽压力维持在约31托至93托范围内。总压力可为任何所需值,诸如高于或低于大气压,诸如约1atm至500atm、约1atm至100atm、或约1amt至10atm。在一个实施方式中,电池包含至少一个h2o蒸汽通道或通路以自来源穿透电池叠堆而接触至少电解质。在一个实施方式中,h2o经由芯结构(诸如热管的芯结构)供应至叠堆。芯可包含不导电材料以避免使电极电短路。芯材料可包含氧化物(诸如金属氧化物)或其它不导电化合物。氧化物或其它化合物可具吸湿性,诸如本发明的氧化物或化合物。在另一实施方式中,在压力下呈气态h2o或液态h2o的h2o可经由管道或通道注入电解质层中。在一个实施方式中,电解质层包含芯或毛细管结构以输送h2o穿过叠堆的各电池的电解质层。结构可包含包埋于电解质中或与电解质混合的基质,基质的孔隙率和孔径尺寸达成在层内快速输送以维持h2o浓度处于最佳含量,诸如相当于约10至100托范围内的与电解质平衡的h2o蒸汽分压的含量。在一个实施方式中,叠堆包含并联安置且浸没于常见电解储集器中的电极。电极可包含水平或垂直或任何所需定向叠堆的板。电解质可包含碱,诸如熔融或水性碱性溶液,诸如koh(水溶液)或熔融lioh-libr;或熔融或水性酸性溶液,诸如水性或熔融酸,诸如h2so4(水溶液)或熔融h3po4。电池可包含h2、o2和h2o中的至少一种的来源。氧气和水可至少部分来自空气。氢气可由氢渗透电极、氢喷射或鼓泡电极、或间歇电解中的至少一种供应。电池的阳极(诸如[ni(h2)/lioh-libr/ni+空气])可包含位于相对表面(诸如两个相对板)上的渗透膜。氢可由视情况出自通向由两个相对膜表面(诸如板)形成的腔室的共同歧管的管线供应。阴极可为可至少部分地曝露在空气中的多孔材料,诸如多孔镍,诸如celmet;而阳极可完全浸没。多个阳极可垂直浸没于电解质中,且至少一个阴极可部分地浸没于电解质表面上。阴极可平置于电解质表面上定向。各阳极可垂直于至少一个阴极,其中多个阳极可并联地与共同阴极电连接。作为选择,阴极和阳极电极可平行且可由惰性隔板(诸如mgo或li2tio3)隔开。共同储集器可由至少一个加热器加热。包含电解质的熔融浴的温度可由温度控制器控制。共同电解质可由循环器循环以维持均一温度。储集器可为绝热的。电池可包含间歇电解电池。氢气和氧气可由电解间歇地产生。电池的极性可保持恒定,而电流随着循环在充电与放电之间交替间歇地逆转方向。电极可以串联或并联或其组合电连接。在另一实施方式中,氧还原电极(诸如阴极)可完全浸没于电解质中。来自来源的氧可通过诸如喷射包含氧气的气体(诸如o2或空气)的方式或通过间歇电解供应。间歇电解电极可为不同材料,诸如不同金属或本发明的不同材料,所述不同电极选自金属、碳、碳化物、硼化物、氮化物和腈的组。在一个实施方式中,金属-空气电池(诸如zn-空气电池)可包含金属-空气燃料电池,其中连续添加金属且连续移除氧化金属(诸如金属氧化物或氢氧化物)。通过诸如抽吸、螺钻、输送或本领域技术人员已知用于移动此类材料的其它机械方法的方式,将新鲜金属输送至阳极半电池,且将废弃氧化金属自阳极半电池输送离开。金属可包含可抽吸的小粒。在一个实施方式中,氢氧化合物可充当形成oh-的氧来源。氢氧化合物可形成稳定氧化物。示例性阴极反应包含以下中的至少一种:氢氧化合物的还原;或氢氧化合物(诸如mnooh、coooh、gaooh和inooh和镧系元素氢氧化合物(诸如laooh)的组的一)与h2o和o2中的至少一种的还原反应,形成相应氧化物,诸如la2o3、mn2o3、coo、ga2o3和in2o3。金属m的示例性反应由以下给出阴极:mooh+e-→mo+oh-(108)2mooh+2e-+h2o→m2o3+2oh-+h2(109)2mooh+2e-+1/2o2→m2o3+2oh-(110)作为选择,氧化物可充当形成oh-的氧来源。经还原的金属产物可为金属呈较低氧化态的氧化物、氢氧化合物或氢氧化物。涉及金属m的一示例性阴极反应为阴极:ymox+re-+qh2o→myoyx+q-r+roh-+(2q-r)/2h2(111)其中y、x、r和q为整数。适合的示例性氧化物为mno2、mn2o3、mn3o4、m'o(m'=过渡金属)、seo2、teo2、p2o5、so2、co2、n2o、no2、no、sno、pbo、la2o3、ga2o3和in2o3,其中气体可维持在基质中,诸如吸收于碳中。电解质可为诸如在约6.1m至饱和范围内的浓碱。示例性电池为[解离体与氢(诸如ptcb、pdc或pt(20%)ru(10%)(h2,约1000托))或金属氢化物(诸如各种组成的r-ni、r-co、r-cu、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2或表5的氢化物)/碱的水溶液(诸如koh(水溶液))电解质(>6.5m至饱和或>11m至饱和)/氢氧化合物或氧化物(诸如mno2、mn2o3、mn3o4、m'o(m'=过渡金属)、seo2、teo2、p2o5、so2、co2、n2o、no2、no、sno、pbo、la2o3、ga2o3和in2o3,其中气体可维持在基质中,诸如吸收于碳中,或coooh、mnooh、laooh、gaooh或inooh)]、[m/koh(饱和水溶液)/mox(x=1或2)(适合金属m=zn、sn、co、sb、te、w、mo、pb、ge)]和[m/koh(饱和水溶液)/m'ooh(适合金属m=zn、sn、co、sb、te、w、mo、pb、ge;m'=mn、co、la、ga、in)]。作为oh-氧化反应的中间物形成的oh可充当形成分数氢的催化剂或催化剂来源(诸如oh或h2o)。在一个实施方式中,形成氢氧化物或氧化物的金属可充当阳极。作为选择,氢氧化物起始反应物可充当阳极。氧化金属、金属氧化物和金属氢氧化物中的至少一种可将oh-氧化成oh,作为形成包含金属、氧和氢中的至少两者的化合物(诸如金属氢氧化物、氧化物或氢氧化合物)的中间物。举例而言,金属可氧化形成氢氧化物,氢氧化物可还反应形成氧化物。至少一个氢氧化物h在oh-氧化形成水时可转移至其。因此,金属氢氧化物或氢氧化合物可以与氢化物(方程式(92))相同的方式反应,形成可充当形成分数氢的催化剂的oh中间物,或可形成h2o来充当催化剂。金属m的示例性反应为阳极:m+oh-→m(oh)+e-(112)随后m(oh)+oh-→mo+h2o+e-(113)m+2oh-→m(oh)2+2e-(114)随后m(oh)2→mo+h2o(115)m+2oh-→mo+h2o+2e-(116)其中水产物的oh最初可作为中间物形成且充当形成分数氢的催化剂,或可形成h2o来充当催化剂。阳极金属对与浓碱的直接反应可为稳定的,或可以缓慢速率反应。适合的金属为过渡金属、ag、cd、hg、ga、in、sn、pb和包含一或多种此类和其它金属的合金。阳极可包含粉末状金属与电解质(诸如碱,诸如moh(m=碱金属))的糊状物。示例性糊状物阳极反应物为zn粉与饱和koh混合或cd粉与koh混合。适用于阳极的正电性金属为al、v、zr、ti、mn、se、zn、cr、fe、cd、co、ni、sn、in和pb的组中的一种或多种。作为选择,具有低的水反应性的适合金属为cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn和w。在其它实施方式中,阳极可包含氢氧化物或氢氧化合物,诸如此类金属的氢氧化物或氢氧化合物,诸如co(oh)2、zn(oh)2、sn(oh)2和pb(oh)2。适合的金属氢氧化物形成氧化物或氢氧化合物。电解质可为诸如在约6.1m至饱和范围内的浓碱。示例性电池为[金属(诸如sc、ti、v、cr、mn、fe、co、ni、cu、zn、ag、cd、hg、ga、in、sn、pb或具有低的水反应性的金属(诸如cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn和w的组的一种)或此类金属与饱和moh的糊状物)或金属氢氧化物(诸如co(oh)2、zn(oh)2、sn(oh)2或pb(oh)2)/碱的水溶液(诸如koh(水溶液))电解质(>6.5m至饱和或>11m至饱和)/氢氧化合物或氧化物(诸如mno2、mn2o3、mn3o4、m'o(m'=过渡金属)、seo2、teo2、p2o5、so2、co2、n2o、no2、no、sno、pbo、la2o3、ga2o3和in2o3,其中气体可维持在基质中,诸如吸收于碳中,或coooh、mnooh、laooh、gaooh或inooh)或碳、氧电极(诸如碳上的o2或空气、c(o2)x或氧化碳(诸如蒸汽活性碳)或cb、ptc、pdc、cb(h2)、ptc(h2)、pdc(h2)、针对o2或h2o中的至少一种的还原或h2放出具有低过电位的导体(诸如pt、pd、ir、ru、rh、au或于导电载体(诸如碳或钛)上的此类金属,作为以h2o和o2作为阴极半电池反应物的阴极))]、[zn、sn、co、sb、te、w、mo、pb或y的氢氧化物/koh(饱和水溶液)/蒸汽碳]和[zn饱和的moh糊状物/moh(饱和水溶液)/具有o2的cb、活性碳或蒸汽活性碳]。在一个实施方式中,阴极可包含金属氧化物(诸如氧化物或氢氧化合物),且阳极可包含金属或相对于阴极氧化金属的还原氧化物。方程式(93)中给出的水还原可涉及氧化物或氢氧化合物的氧。阴极和阳极可包含呈不同氧化或氧化物状态的同一金属。阳极反应可由方程式(112-116)的至少一种给出。示例性电池为[m/koh(饱和水溶液)/mooh(m=过渡金属、稀土金属、al、ga或in)]、[m/koh(饱和水溶液)/mo2(m=se、te或mn)]和[m/koh(饱和水溶液)/mo(m=zn、sn、co、sb、te、w、mo、pb或ge)]。氢可添加至至少一个半电池中,以引发和传播水氧化和还原反应(例如方程式(93-94)和(123)),所述反应维持一些oh或包含o与h中的至少一种的其它催化剂(诸如h2o)。氢来源可为氢化物,诸如r-ni或lani5h6。诸如蒸汽碳的碳也可添加至诸如阴极的电极中,以促进水还原成oh-以和oh-氧化成oh和可能h2o。至少一个电极可包含含有碳的混合物。举例而言,阴极可包含碳与金属氧化物的混合物,诸如蒸汽碳与zn、sn、co、sb、te、w、mo、pb或ge的氧化物的混合物。阳极可包含阴极金属氧化物的相应金属。其它适用于在阴极还原o2的催化剂为钙钛矿型催化剂(诸如掺杂金属氧化物的la0.6ca0.4coo3、la1-xcaxcoo3、la1-xsrxcoo3(0≤x≤0.5)或la0.8sr0.2co1-ybyo3(b=ni、fe、cu或cr;0≤y≤0.3))或尖晶石(诸如co3o4或nico2o4)、烧绿石(诸如pb2ru2pb1-xo1-y或pb2ru2o6.5)、其它氧化物(诸如na0.8pt3o4)或具有co添加剂的热解大环化合物。氧还原催化剂可还包含导电载体,诸如碳,诸如碳黑或石墨碳。示例性电池为[zn、sn、co、sb、te、w、mo、pb、ge/koh(饱和水溶液)/空气+碳+o2还原催化剂(诸如钙钛矿型催化剂,诸如掺杂金属氧化物的la0.6ca0.4coo3、la1-xcaxcoo3、la1-xsrxcoo3(0≤x≤0.5)或la0.8sr0.2co1-ybyo3(b=ni、fe、cu或cr;0≤y≤0.3);或尖晶石,诸如co3o4或nico2o4;烧绿石,诸如pb2ru2pb1-xo1-y或pb2ru2o6.5;其它氧化物,诸如na0.8pt3o4或具有co添加剂的热解大环化合物)]。在另一实施方式中,阴极包含水还原催化剂。在一个实施方式中,电池还包含氧来源,其充当反应物,直接或间接参与催化剂和还形成分数氢的h来源的形成。电池可包含充当阳极的金属m,使得相应金属离子充当迁移离子。适合的示例性金属为cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn和w和其金属合金或其它金属的合金的组中的至少一种。oh可充当根据表3中给出的反应的催化剂,或可形成h2o来充当催化剂。除诸如m2+的金属离子外,一些oh可至少短暂地自oh-形成。可由oh形成的h2o可充当催化剂。氧可在阴极还原。水也可参与还原反应,形成至少一些可充当形成分数氢的催化剂或催化剂来源(诸如h2o)的oh。示例性反应为阳极:m→m2++2e-(117)m+2oh-→m(oh)2+2e-(118)阴极:m2++2e-+1/2o2→mo(119)m2++2e-+h2o+1/2o2→m2++2oh-→m(oh)2(120)其中一些oh自由基中间物在阳极或阴极形成,以还反应以可能通过形成h2o催化剂来形成分数氢。在另一实施方式中,待与水反应的氧来源为氢氧化合物,诸如mnooh或coooh。oh可通过阳极上oh-氧化和阴极上o或o2还原成oh-形成。o可为氢氧化合物的o。能量平衡可促进在传播形成分数氢的反应的条件下oh和h2o中的至少一种的形成。在其它实施方式中,氧化剂可为氧与另一氧化剂的混合物,该另一氧化剂可为气体或可为惰性的。适合的示例性混合物为o2与co2、no2、no、n2o、nf3、cf4、so2、sf6、cs2、he、ar、ne、kr和xe中的至少一种混合。碱(诸如moh,m=碱金属,诸如koh(水溶液))浓度可在任何所需范围内,诸如在约0.01m至饱和(饱和)、约6.5m至饱和、约7m至饱和、约8m至饱和、约9m至饱和、约10m至饱和、约11m至饱和、约12m至饱和、约13m至饱和、约14m至饱和、约15m至饱和、约16m至饱和、约17m至饱和、约18m至饱和、约19m至饱和、约20m至饱和和约21m至饱和的范围内。单独、与碱(诸如moh,m=碱金属)组合和以任何组合的其它适合的示例性电解质为碱金属或铵的卤化物、硝酸盐、高氯酸盐、碳酸盐、na3po4或k3po4和硫酸盐和nh4x(x=卤离子、硝酸根、高氯酸根、磷酸根和硫酸根)。电解质可呈任何所需浓度。当r-ni用作阳极时,由于r-ni的碱性组成或al与水或碱反应,所以可形成局部高浓度的oh-。al反应也可在阳极供应氢,还促进方程式(92)的反应。阳极粉末颗粒可具有保护涂层,以防止此项技术中已知的金属碱腐蚀。适合的锌腐蚀抑制剂和氢放出抑制剂为螯合剂,诸如选自胺基羧酸、聚胺和胺基醇的组的一,其以足以实现所需抑制的量添加至阳极中。zn腐蚀的抑制也可通过将锌与多达10%hg合并和通过将zno溶解于碱性电解质中或将zn盐溶解于酸性电解质中来实现。其它适合的材料为有机化合物,诸如聚乙二醇和美国专利4,377,625(以引用的方式并入本文中)中所揭示的有机化合物,和本领域技术人员已知用于商业zn-mno2电池的抑制剂。适用于zn和可能的其它金属的其它示例性抑制剂为如下有机或无机抑制剂:诸如界面活性剂的有机化合物;和含有抑制h2形成的铅、锑、铋、镉和镓以和相应金属氧化物的化合物;和螯合剂,诸如5%coo+0.1%二乙烯三胺五乙酸、5%sno2+0.1%二乙烯三胺五乙酸、乙二胺四乙酸(edta)或类似螯合剂;抗坏血酸、合成锂皂石或其它所述氢氧化物离子输送粘土、界面活性剂和硫酸铟、脂族基硫化物(诸如乙基丁基硫化物、二丁基硫化物和烯丙基甲基硫化物)、错合剂(诸如碱金属柠檬酸盐、碱金属锡酸盐和氧化钙)、金属合金和添加剂(诸如第iii族和第v族金属)、聚乙二醇、乙烯-聚乙二醇(诸如具有不同分子质量的聚乙二醇,诸如peg200或peg600)、氟聚乙二醇(fluoropolietoksyalkohol)、具有环氧乙烷的醚、聚氧化乙烯烷基磷酸酯酸形式、聚乙烯烷基磷酸酯、乙氧基化聚氟醇和烷基聚氧化乙烯。在其它实施方式中,用腐蚀抑制剂保护其它正电性金属(诸如sc、ti、v、cr、mn、fe、co、ni、cu、ag、cd、hg、ga、in、sn和pb)或具有低的水反应性的适合金属(cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn和w)。在一个实施方式中,可负载保护涂层材料以包含选择用于oh-的盐桥。包含盐桥的适合电池为如本发明中所给出的燃料电池类型。盐桥可为具有选择用于oh-的类似基团的四级铵基的膜。作为选择,其可为选择用于oh-的氧化物或氢氧化物。用于氢阳极的对h2渗透性有抗性的商业隔板为纳菲膜350(dupont)。电池可通过电解或通过与氢反应和通过本发明中所给出或此项技术中已知的其它化学处理和分离方法和系统再生。氧化金属(诸如金属氧化物)可通过供应h2至阳极,在较低电压下电解再生,其中金属沉积在阴极。再例如,可移除zn阳极,且用具有化学再生zn的新筒置换。在包含在放电期间分别形成zno、pbo和sno的zn、pb或sn阳极的一个实施方式中,产物zno、pbo和sno可用碳或co处理,形成锌、铅和锡和co2,或用硫酸处理,形成znso4、pbso4、snso4,所述物质可电解形成zn、pb和sn和硫酸,可再循环。在电池包含金属阳极的初始反应物和相应氧化金属(诸如氧化物、氢氧化合物和氢氧化物)的情况下,两个电极上的电池产物为氧化金属。电池可通过电解,或通过移除电极,将包含金属与氧化金属化合物的混合物的电极反应物组合且将混合物分离成金属和氧化金属化合物而再生。一示例性方法为加热混合物,使得金属熔融且形成基于密度可分离的层。适合的金属为pb(mp=327.5℃)、sb(mp=630.6℃)、bi(mp=271.4℃)、cd(mp=321℃)、hg(mp=-39℃)、se(mp=221℃)和sn(mp=232℃)。在另一实施方式中,阳极包含磁性金属,诸如铁磁性金属,诸如co或fe,且阴极包含相应氧化物,诸如coo和nio。放电后,阴极和阳极可包含金属与相应氧化物的混合物。各半电池的金属和氧化物可通过磁性分离,因为金属为铁磁性的。分离出的金属可返回阳极,且分离出的金属氧化物可返回阴极,形成再生电池。在一般反应中,oh-氧化成oh,用作形成分数氢的催化剂,且可自h来源(诸如氢化物(方程式(92))或氢氧化物(方程式(113)))形成h2o,其中h2o可充当形成分数氢的催化剂。氢氧化物提供h的反应可为两个oh-基团在氧化下形成金属氧化物和h2o的反应。金属氧化物可为与至少一个oh-基团的来源不同或相同的金属。如方程式(113)所给出,金属m'可与来自moh(诸如m为碱金属)的oh-来源反应,形成oh和h2o。而方程式(128)为作为oh-来源的金属m与形成金属氧化物的金属反应的一实例。参与机制与方程式(113)相同的示例性电池[na/base/naoh]的方程式(128)和(61)的反应的另一形式为na+2naoh→na2o+oh+nah→na2o+naoh+1/2h2(121)在包含碱性水性电解质的电解电池的一个实施方式中,形成oh和分数氢的反应机制遵循方程式(92-121)和(128)。举例而言,电解质可包含碱金属(m)碱,诸如moh或m2co3,其提供oh-和碱金属离子m+,可形成m2o和作为形成h2o的中间物的oh。举例而言,遵循方程式(121)的一示例性阴极反应为k++e-+2koh→k2o+oh+kh→k2o+koh+1/2h2(122)在水性电解电池的另一实施方式中,来自阳极的氧与金属或金属氢化物在阴极反应,形成oh-(方程式(93)),oh-在阳极氧化形成oh。oh也可作为阴极上的中间物形成。oh还反应以可能通过形成充当催化剂的h2o来形成分数氢。可通过使用碳或碳涂布的金属阴极促进o2和h2o在阴极还原成oh-。碳可自碳酸盐电解质(诸如碱金属碳酸盐,诸如k2co3)电镀。电池可在无外部复合器下操作,以增加o2浓度,从而提高o2还原速率。在产生oh的电池的其它实施方式中,在氧化与还原反应中的至少一种期间形成的h与o中的至少一种也可充当形成分数氢的催化剂。在具有氢硫族化物离子电解质的另一一般反应中,阴极反应包含进行接受电子与接受h步骤中的至少一种的反应。阳极反应包含进行供出电子、供出h和氧化氢硫族化物离子步骤中的至少一种的反应。在另一实施方式中,图4中所示的电池系统可包含阳极室600、阳极603(诸如zn)、阴极室601、阴极604(诸如碳)和对迁移离子(诸如电解质(诸如6.5m至饱和moh,m=碱金属)的oh-)选择性渗透性过的隔板602(诸如聚烯烃膜)。一适合的膜为celgard3501。电极经由开关606,通过负载605连接,以对电池放电,使得诸如zno的氧化物或氢氧化物产物在阳极603形成。包含电极603和604的电池可使用可为另一ciht电池或由第一ciht电池充电的电容器的电解电源供应器612再充电。电池可还包含辅助电极,诸如图4中所示的辅助隔室607中的辅助阳极609。当包含阳极603和阴极604的电池适当放电时,包含氧化产物(诸如zno)的电极603可充当阴极,且辅助电极609充当阳极,以使阳极603电解再生或自发放电。后一情况下具有碱性电解质的适合电极为ni或pt/ti。在后一情况下,适合的氢化物阳极为用于金属氢化物电池(诸如本领域技术人员已知的镍金属氢化物电池)中的氢化物阳极。示例性适合的辅助电极阳极为本发明的阳极,诸如金属(诸如sc、ti、v、cr、mn、fe、co、ni、cu、zn、ag、cd、hg、ga、in、sn、pb或具有低的水反应性的金属(cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn或w)或此类金属与饱和moh的糊状物)、解离体与氢(诸如ptc(h2))或金属氢化物(诸如r-ni、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2和能够储存氢的其它合金,诸如ab5(laceprndnicomnal)或ab2(vtizrnicrcomnalsn)型的一,其中「abx」名称系指a型元素(laceprnd或tizr)与b型元素(vnicrcomnalsn)的比率)。在其它实施方式中,氢化物阳极包含以下中的至少一种:ab5型:mmni3.2co1.0mn0.6al0.11mo0.09(mm=密铈合金:25wt%la、50wt%ce、7wt%pr、18wt%nd);ab2型:ti0.51zr0.49v0.70ni1.18cr0.12合金;基于镁的合金,诸如mg1.9al0.1ni0.8co0.1mn0.1合金、mg0.72sc0.28(pd0.012+rh0.012)和mg80ti20、mg80v20;la0.8nd0.2ni2.4co2.5si0.1、lani5-xmx((m=mn、al)、(m=al、si、cu)、(m=sn)、(m=al、mn、cu))和lani4co、mmni3.55mn0.44al0.3co0.75、lani3.55mn0.44al0.3co0.75、mgcu2、mgzn2、mgni2;ab化合物,诸如tife、tico和tini;abn化合物(n=5、2或1);ab3-4化合物;和abx(a=la、ce、mn、mg;b=ni、mn、co、al)。当开关611闭合且开关606断开时,包含阳极609和阴极603的电池可经由负载613放电。包含电极603和609的电池可使用可为另一ciht电池的电源供应器610再充电。作为选择,在闭合开关614和断开开关611后,可使用可为另一ciht电池的电源616对包含电极604和609的放电电池再充电。此外,辅助阳极609(诸如氢化物,诸如r-ni、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75或zrmn0.5cr0.2v0.1ni1.2)可通过电解再充电,或通过原位添加氢或通过移除、氢化和置换而再生。在放电期间形成氧化物或氢氧化物且具有热力学上有利的经h2还原成金属的再生反应的适合示例性阳极为cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn和w。此类和其它所述电极可在半电池中在h2下运转,分批或连续再生电极。电极可交替再循环。举例而言,放电的金属氢化物阳极(诸如自lani5h6形成lani5)可用作另一水性电池中的阴极,其中此阴极上水或h+还原成氢将使lani5再氢化成lani5h6,lani5h6又可充当阳极。驱动放电和再充电循环的能源为自氢形成分数氢。本领域技术人员可交换本发明的其它阳极、阴极、辅助电极、电解质和溶剂,以包含能够引起至少一个电极(诸如初始阳极)再生的其它电池。在其它实施方式中,阳极603与阴极604中的至少一种可包含多个电极,该多个电极各自还包含将该多个电极每一种电连接于电路或与电路断开的开关。接着,举例而言,一阴极或阳极可在放电期间连接,且另一阴极或阳极可在通过电解再充电期间连接。在具有碱性电解质(诸如moh(m=碱金属),诸如koh(饱和水溶液))的一示例性实施方式中,阳极包含金属(诸如具有低的水反应性的适合金属(cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn、w或zn))或氢化物(诸如r-ni或lani5h6),且阴极包含多个至少双电极,诸如在放电期间连接至电路的碳电极和在再充电期间连接的镍。在另一实施方式中,电解质可在至少一个半电池中改变,接着电解。举例而言,饱和moh可经稀释,以使h2在电解阴极放出,接着再次浓缩以用于放电。在另一实施方式中,溶剂与溶质中的至少一种可改变,以允许电池反应物再生。电池产物的电解电压可超过溶剂;接着选择溶剂改变以允许反应物通过电解再生。在一个实施方式中,在放电后诸如金属或氢化物的阳极可自包含该阳极和阴极的第一电池移除,且通过在具有相对电极的第二电池中电解再生,且作为再生阳极返回第一电池。在一个实施方式中,包含氢化物阳极的ciht电池还包含对电池间歇充电和放电的电解系统,使得净能量平衡增加。示例性电池为放电和充电电流恒定的[lani5h6、r-ni、tav、moco、mosi、mocr、mocu、snv、nizr、mgy、其它金属氢化物(诸如本发明的金属氢化物)、koh(饱和水溶液)或作为oh-/sc或m来源的其它电解质](m=金属或合金,诸如ni、pt/ti或本发明的其它金属或合金)脉冲电解,其中放电时间为约充电时间的1.1至100倍且在约10倍内放电和充电电流可为相同的。在一个实施方式中,电池间歇充电和放电。在示例性实施方式中,电池具有金属阳极或金属氢化物(mh)阳极,诸如[co/koh(饱和水溶液)/sc]、[zn/koh(饱和水溶液)/sc]、[sn/koh(饱和水溶液)/sc]和[mh/koh(饱和水溶液)/sc],其中mh可为lani5hx、timn2hx或la2ni9cohx。间歇充电和放电的ciht电池也可包含熔融电解质,诸如氢氧化物与卤化物或其它盐中的至少一种,且可在阳极还包含h来源,诸如可在电解质中的氢化物mh或h2o。适合示例性电池为[mh/m'(oh)n-m”xm/m”']和[m/m'(oh)n-m”xm(h2o)/m],其中n、m为整数,m、m'、m”和m”'可为金属,适合金属m可为ni,m'和m”可为碱金属和碱土金属,且可为过渡金属、内过渡金属、稀土金属和第iii、iv、v和vi族金属,且适合阴离子x可为氢氧根、卤离子、硫酸根、硝酸根、碳酸根和磷酸根。在一示例性实施方式中,ciht电池在诸如1ma的恒定电流下充电2秒,接着诸如在1ma的恒定电流下放电20s。电流和时间可调至任何所需值,以实现最大能量增益。在一个实施方式中,阳极包含形成可由氢还原的氧化物或氢氧化物的金属。氢可在阴极通过诸如水的反应(诸如方程式(94)给出的反应)的反应形成。氧化物或氢氧化物也可通过添加氢而还原。在一个实施方式中,氧化物或氢氧化物在阳极形成,其中水为氢氧化物来源,且氢还原氢氧化物或氧化物,其中水至少部分为氢来源。分数氢在包含阳极的oh-或金属氧化、水还原成氢气、和氢与阳极氧化物或氢氧化物反应以使阳极金属再生的动力学反应期间形成。接着阳极可包含氧化物或氢氧化物可由氢还原的金属,诸如以下的组的一:过渡金属、ag、cd、hg、ga、in、sn和pb或来自cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn和w的组的具有低的水反应性的适合金属。在一个实施方式中,过渡金属zn也可充当根据表1中给出的反应的催化剂。电池可通过水电解,加回在形成分数氢时消耗或自电池损失的任何氢来再生。在一个实施方式中,电解脉冲进行,使得氢化物(诸如金属氢化物,诸如镍氢化物)在产生与电解电压反向的电压的电解期间形成,且在不存在外加电压的占空比的时间间隔期间电解水。诸如峰值电压、电流和功率、补偿电压、电流和功率和占空比和频率的电解参数最佳化,以增加能量增益。在一个实施方式中,电池产生动力和氢气(方程式(94)),氢气可作为产物收集。作为选择,氢气可再循环以氢化r-ni,继续电池放电,产生电流,其中分数氢的形成为电池电压、电流、功率和能量中的至少一种作出贡献。电池也可通过可为另一ciht电池的外部电源再充电,以产生氢气,置换在形成分数氢时消耗或自电池损失的任何氢。在一个实施方式中,氢化物物质可通过原位添加h2或在自阳极室移除后在另一容器中再氢化。在前一种情况下,阳极可密封且用氢气加压。作为选择,电池可用氢气加压,其中氢气优先由阳极反应物吸收或保留。在一个实施方式中,电池可在操作期间用h2加压。碱性电解质可为氢氧化物水溶液,诸如碱金属氢氧化物水溶液,诸如koh或naoh。阴极可为氢氧化合物,诸如alo(oh)、sco(oh)、yo(oh)、vo(oh)、cro(oh)、mno(oh)(α-mno(oh)锰榍石和γ-mno(oh)水锰矿)、feo(oh)、coo(oh)、nio(oh)、rho(oh)、gao(oh)、ino(oh)、ni1/2co1/2o(oh)和ni1/3co1/3mn1/3o(oh),或可为高表面积导体,诸如碳(诸如cb、pt/c或pd/c)、碳化物(诸如tic)或硼化物(诸如tib2)。在碱性溶液中,反应为阳极h2+2oh-→2h2o+2e-或h2+oh-→h2o+e-+h(1/p)(123)阴极2(coooh+e-+h2o→co(oh)2+oh-)或coooh+2e-+2h2o→co(oh)2+2oh-+h(1/p)(124)示例性电池为[r-ni、h2与pd/c、pt/c、ir/c、rh/c或ru/c或金属氢化物(诸如过渡金属、内过渡金属、稀土金属氢化物)或合金(诸如ab5或ab2型碱性电池的一)/moh(m为碱金属,诸如koh(约6m至饱和),其中该碱可充当催化剂或催化剂来源,诸如k或2k+)或其它碱(诸如nh4oh)、oh-导体(诸如碱性水性电解质)、隔板(诸如具有氢氧化四级烷基铵和碱性水溶液的隔板)、离子液体或固体oh-导体/mo(oh)(m=金属,诸如co、ni、fe、mn、al),诸如alo(oh)、sco(oh)、yo(oh)、vo(oh)、cro(oh)、mno(oh)(α-mno(oh)锰榍石和γ-mno(oh)水锰矿)、feo(oh)、coo(oh)、nio(oh)、rho(oh)、gao(oh)、ino(oh)、ni1/2co1/2o(oh)和ni1/3co1/3mn1/3o(oh)或其它h层夹硫族化物或hy]。在其它实施方式中,电解质可为离子液体或于有机溶剂中的盐。电池可通过充电或通过化学处理再生。在供应h2的一燃料电池系统实施方式中,使h2选择性或优先在阳极反应。h2在阳极的反应速率远高于阴极。将h2限于阳极半电池或使用使阳极上反应优先于阴极的材料包含实现选择性的两种方法。电池可包含理论上不透h2的膜或盐桥。膜或盐桥可对oh-输送具有选择性。在另一实施方式中,ph值可较低,诸如中性至酸性。在h2o氧化形成oh,还反应形成分数氢的情况下,电解质的浓度可为高的,以提高活性和导电性,从而增加形成oh的反应速率,因此增加分数氢,如以下反应所给出:阳极h2o→oh+e-+h+→1/2o2+e-+h++h(1/p)(125)mhx+h2o→oh+2e-+2h+→1/2o2+2h++2e-+h(1/p)(126)阴极h++e-→1/2h2或h++e-→h(1/p)(127)通过由方程式(126)给出的竞争反应,与o2放出相比,存在阳极反应物氢化物(诸如mhx,m为除h以外的元素,诸如金属)更有利于oh形成。形成分数氢的反应可受氢化物的h可用性限制;因此,可最佳化增加h浓度的条件。举例而言,可增加温度或h2可供应给氢化物以补充任何消耗的h2。电池中隔板可为特氟隆,且使用高温。在一个实施方式中,阳极或阴极可包含添加剂,诸如载体,诸如碳化物(诸如tic或tac)或碳(诸如pt/c或cb)或无机化合物或吸气剂(诸如lan或ki)。示例性电池为[znlan/koh(饱和水溶液)/sc]、[sntac/koh(饱和水溶液)/sc]、[snki/koh(饱和水溶液)/sc]、[pbcb/koh(饱和水溶液)/sc]、[wcb/koh(饱和水溶液)/sc]。在另一实施方式中,电解质可包含碱混合物,诸如在koh中饱和的饱和氢氧化铵。示例性电池为[zn/koh(饱和水溶液)nh4oh(饱和水溶液)/sc]和[co/koh(饱和水溶液)nh4oh(饱和水溶液)/sc]。在一个实施方式中,阴极与阳极半电池反应中的至少一种形成充当形成分数氢的催化剂的oh与h2o中的至少一种。oh可由oh-氧化形成,或oh可由前驱体(诸如oh、h和o中的至少一种的来源)氧化形成。在后两种情况下,分别为h与o来源反应形成oh,和o与h来源反应形成oh。前驱体可为负性或中性物质或化合物。负性物质可为包含oh、oh-或含有oh或oh-的部分的离子,诸如包含oh-的或包含oh的超氧化物或过氧化物离子。负性物质可为包含h、h-或含有h或h-的部分的离子,诸如包含h-的或包含h的过氧化物离子。负性物质氧化的h产物接着与o来源反应,形成oh。在一个实施方式中,oh可由h或h来源与可形成作为形成oh的中间物的oh-的氧化物或氢氧化合物反应形成。负性物质可为包含除h以外的元素的离子,诸如o、o-、o2-、或包含o、o-、o2-、或的部分,诸如金属氧化物,诸如包含氧化物离子的或或包含o的过氧化物离子。负性物质氧化的o产物接着与h来源反应,形成oh。中性物质或化合物可包含oh、oh-或包含oh或oh-的部分,诸如氢氧化物或氢氧化合物,诸如包含oh-的naoh、koh、co(oh)2或coooh或包含oh的h2o、醇或过氧化物。中性物质或化合物可包含h、h-或包含h或h-的部分,诸如包含h-的金属氢化物或包含h的h2o、醇或过氧化物。氧化的h产物接着与o来源反应,形成oh和h2o中的至少一种,其中至少一种可充当催化剂。中性物质或化合物可包含除h以外的元素,诸如o、o-、o2-、或包含o、o-、o2-、或的部分,诸如包含氧化物离子或其来源的金属氧化物、氢氧化物或氢氧化合物,或包含o的h2o、醇或过氧化物。氧化的o产物接着与h来源反应,形成oh和h2o中的至少一种。oh可由oh+还原形成,或oh可由前驱体(诸如oh、h和o中的至少一种的来源)还原形成。在后两种情况下,分别为h与o来源反应形成oh,和o与h来源反应形成oh。前驱体可为正性或中性物质或化合物。正性物质可为包含oh或含有oh的部分的离子,诸如包含oh-的或包含oh的过氧化物离子。正性物质可为包含h、h+或含有h或h+的部分的离子,诸如包含h+的h3o+或包含h的过氧化物离子。正性物质还原的h产物接着与o来源反应,形成oh。正性物质可为包含除h以外的元素的离子,诸如o、o-、o2-、或包含o、o-、o2-、或的部分,诸如金属氧化物,诸如包含氧化物离子的alo+,或包含o的过氧化物离子。正性物质还原的o产物接着与h来源反应,形成oh。中性物质或化合物可包含oh或包含oh的部分,诸如h2o、醇或过氧化物。中性物质或化合物可包含h、h+或包含h或h+的部分,诸如包含h+的酸式盐或酸,分别诸如mhso4、mh2po4、m2hpo4(m=碱金属)和hx(x=卤离子),或包含h的h2o、醇或过氧化物。还原的h产物接着与o来源反应,形成oh。中性物质或化合物可包含除h以外的元素,诸如o,或包含o的部分,诸如h2o、醇或过氧化物。还原的o产物接着与h来源反应,形成oh。oh可与h或h来源还反应以形成可充当催化剂的h2o。oh可作为中间物形成,或通过包含氧化或还原化合物或物质的协同或二次化学反应形成。相同情况适用于h2o催化剂。反应物可包含oh或oh来源,诸如oh-、o和h中的至少一种。作为oh-形成或消耗中的中间物形成的适合oh来源为金属氧化物、金属氢氧化物或氢氧化合物,诸如coooh。本发明中给出示例性反应,其中oh在涉及oh-的反应期间短暂地形成,且至少oh和h2o中的一些反应形成分数氢。由二次反应形成的oh的实例包含氢氧化物或氢氧化合物,诸如包含oh-的naoh、koh、co(oh)2或coooh。举例而言,通过在诸如[na/base/naoh]的电池中还原na+,可形成na,其中na与naoh的反应可形成作为短暂中间产物的oh,如下:na++e-→na;na+naoh→na2+oh→na2o+1/2h2(128)在诸如[na/base/naoh]的一个实施方式中,na+的输送速率可通过诸如升高温度或减小base厚度来降低base电阻的方式达到最大,以增加na2与h中的至少一种的形成速率。因此,增加oh和h2o中的至少一种的实际速率,随的形成分数氢。类似地,通过在诸如[li/celgardlp30/coooh]的电池中还原li+,可形成li,其中li与coooh的反应可形成作为短暂中间产物的oh,如下:li++e-→li;3li+2coooh→licoo2+co+li2+2oh→licoo2+co+2lioh(129)作为选择,在有机电解电池[li/celgardlp30/coooh]中,机制可为oh-迁移至阳极,其中oh-氧化成充当形成分数氢的催化剂或反应物的no、oh和h2o中的至少一种。示例性反应为阴极coooh+e-→coo+oh-(130)阳极oh-→oh+e-;oh→o+h(1/p)(131)o可与li反应,形成li2o。氢氧化合物和电解质可经选择,以有利于oh-作为迁移离子。在一个实施方式中,促进oh-迁移的电解质为离子电解质,诸如熔融盐,诸如碱金属卤化物的低共熔混合物,诸如licl-kcl。阳极可为具有oh-或oh的反应物,诸如金属或氢化物,且阴极可为oh-来源,诸如氢氧化合物或氢氧化物,诸如本发明中所给出的所述物质。示例性电池为[li/licl-kcl/coooh、mnooh、co(oh)2、mg(oh)2]。在一个实施方式中,o2、2o、oh和h2o中的至少一种充当固体燃料反应与ciht电池中的至少一种中形成分数氢的催化剂。在一个实施方式中,oh可由氧来源(诸如p2o5、so2、kno3、kmno4、co2、o2、no、n2o、no2、o2和h2o)与h来源(诸如mh(m=碱金属)、h2o或h2气体与解离体)的反应形成。电池可通过电解或通过h2添加而再生。电解可在本发明所给出的条件下脉冲进行。一ciht电池可自另一ciht电池提供能解动力,因为循环过程的其充电-再充电循环相输出超过再充电的动力的净动力。电池可为摇椅型,其中h穿梭在阳极与阴极之间。在实施方式中,包含h的迁移离子可为oh-或h+。考虑在阳极具有h来源和在阴极具有h储集体的电池,诸如[r-ni/koh(饱和水溶液)/ac]。示例性放电和再充电反应由以下给出放电阳极:lani5hx或r-nihx+oh-→h2o+lani5hx-1或r-nihx-1+e-(132)阴极h2o+e-→oh-+碳中1/2h2(c(hx))(133)电解再充电阴极:lani5hx-1或r-nihx-1+h2o+e-→oh-+lani5hx或r-nihx(134)阳极c(hx)+oh-→h2o+c(hx-1)+e-(135)其中在此类反应(方程式(132-133))期间产生的h、oh和h2o中的至少一种充当形成分数氢的催化剂。电池可用以消耗水来置换形成分数氢的氢。氧可通过选择性针对氧的反应物选择性地吸除或移除。作为选择,氢气可加回电池中。可密封电池,以另外在电极之间含有剩余h流量。至少一个电极可在电池操作期间连续或间歇再氢化。氢可由气体管线供应,该气体管线使h2流至电极中。电池可包含另一移除h2的管线以维持流过至少一个电极。通过内部氢流量、通过电解在内部产生的氢和外部供应的氢中的至少一种的再氢化可通过氢与阴极或阳极或反应物直接反应进行。在一个实施方式中,阳极反应物(诸如氢化物)还包含用以执行增加阳极反应物(诸如氢化物,诸如r-ni、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75或zrmn0.5cr0.2v0.1ni1.2)对h2的吸收量和吸收速率中的至少一种的试剂。试剂可为氢溢流催化剂。适合的试剂为cb、ptc、pdc和其它氢解离体和载体材料上的氢解离体。氢气压力可在约0.01至1000atm范围内。适于再氢化lani5的范围为约1至3atm。迁移离子可为oh-,其中阳极包含h来源,诸如h层夹的层状硫族化物,诸如氢氧化合物,诸如coooh、niooh、htis2、hzrs2、hhfs2、htas2、htes2、hres2、hpts2、hsns2、hsnsse、htise2、hzrse2、hhfse2、htase2、htese2、hrese2、hptse2、hsnse2、htite2、hzrte2、hvte2、hnbte2、htate2、hmote2、hwte2、hcote2、hrhte2、hirte2、hnite2、hpdte2、hptte2、hsite2、hnbs2、htas2、hmos2、hws2、hnbse2、hnbse3、htase2、hmose2、hvse2、hwse2和hmote2。电解质可为oh-导体,诸如碱性水溶液,诸如koh水溶液,其中该碱可充当催化剂或催化剂来源,诸如oh、k或2k+。电池可还包含oh-渗透性隔板,诸如cg3401。示例性电池为[h层夹的层状硫族化物(诸如coooh、niooh、htis2、hzrs2、hhfs2、htas2、htes2、hres2、hpts2、hsns2、hsnsse、htise2、hzrse2、hhfse2、htase2、htese2、hrese2、hptse2、hsnse2、htite2、hzrte2、hvte2、hnbte2、htate2、hmote2、hwte2、hcote2、hrhte2、hirte2、hnite2、hpdte2、hptte2、hsite2、hnbs2、htas2、hmos2、hws2、hnbse2、hnbse3、htase2、hmose2、hvse2、hwse2和hmote2)/koh(6.5m至饱和)+cg3401/碳(诸如cb、ptc、pdc、cb(h2)、ptc(h2)、pdc(h2))、碳化物(诸如tic)和硼化物(诸如tib2)]。阳极可通过提供氢或通过电解再生。单独、与碱(诸如moh,m=碱金属)组合和呈任何组合的示例性电解质为碱金属或铵的卤化物、硝酸盐、高氯酸盐、碳酸盐、na3po4或k3po4和硫酸盐和nh4x,x=卤离子、硝酸根、高氯酸根、磷酸根和硫酸根。电解质可包含混合物或氢氧化物或其它盐,诸如卤化物、碳酸盐、硫酸盐、磷酸盐和硝酸盐。一般而言,单独或组合的示例性适合溶质为mno3、mno、mno2、mx(x=卤离子)、nh3、moh、m2s、mhs、m2co3、mhco3、m2so4、mhso4、m3po4、m2hpo4、mh2po4、m2moo4、mnbo3、m2b4o7(m的四硼酸盐)、mbo2、m2wo4、m2cro4、m2cr2o7、m2tio3、mzro3、malo2、mcoo2、mgao2、m2geo3、mmn2o4、m4sio4、m2sio3、mtao3、mvo3、mio3、mfeo2、mio4、mclo4、mscon、mtion、mvon、mcron、mcr2on、mmn2on、mfeon、mcoon、mnion、mni2on、mcuon、mznon(m为碱金属或铵且n=1、2、3或4)和有机碱性盐(诸如m的乙酸盐或m的羧酸盐)。电解质也可包含此类和其它阴离子以及可溶于溶剂中的任何阳离子,诸如碱土金属、过渡金属、内过渡金属、稀土金属和第iii族、第iv族、第v族和第vi族的其它阳离子(诸如al、ga、in、sn、pb、bi和te)。其它适合的溶质为诸如h2o2的过氧化物(其可以稀释量连续添加,诸如约<0.001wt%至10wt%)、胺化物、有机碱(诸如脲或类似化合物或盐和胍或类似化合物,诸如精胺酸的衍生物或其盐)、亚胺化物、缩醛胺或胺基缩醛、半缩醛胺、roh(r为醇的有机基团)(诸如乙醇、赤藻糖醇(c4h10o4)、半乳糖醇(甜醇)、(2r,3s,4r,5s)-己烷-1,2,3,4,5,6-己醇或聚乙烯醇(pva))、rsh(诸如硫醇)、msh、mhse、mhte、mxhyxz(x为酸阴离子,m为诸如碱金属、碱土金属、过渡金属、内过渡金属或稀土金属的金属,且x、y、z为整数,包括0)。浓度可为任何所需浓度,诸如饱和溶液。适合的溶质使溶液(诸如水溶液)为碱性。oh-浓度优选为高的。示例性电池为[r-ni/包含来自以下的组的溶质或溶质组合的水溶液:koh、khs、k2s、k3po4、k2hpo4、kh2po4、k2so4、khso4、k2co3、khco3、kx(x=卤离子)、kno3、kno、kno2、k2moo4、k2cro4、k2cr2o7、kalo2、nh3、knbo3、k2b4o7、kbo2、k2wo4、k2tio3、kzro3、kcoo2、kgao2、k2geo3、kmn2o4、k4sio4、k2sio3、ktao3、kvo3、kio3、kfeo2、kio4、kclo4、kscon、ktion、kvon、kcron、kcr2on、kmn2on、kfeon、kcoon、knion、kni2on、kcuon和kznon(n=1、2、3或4)(均饱和)和k的乙酸盐、稀h2o2添加剂、稀cocl2添加剂、胺化物、有机碱、脲、胍、亚胺化物、缩醛胺或胺基缩醛、半缩醛胺、roh(r为醇的有机基团)(诸如乙醇、赤藻糖醇(c4h10o4)、半乳糖醇(甜醇)、(2r,3s,4r,5s)-己烷-1,2,3,4,5,6-己醇或聚乙烯醇(pva))、rsh(诸如硫醇)、msh、mhse和mhte/cb或coooh+cb]。电解质浓度可为任何想要的浓度,但优选较高,诸如0.1m直至饱和。可使用本发明的其它溶剂或混合物和millspctus09/052072(以引用的方式并入本文中)的有机溶剂章节的溶剂或混合物以及水溶液或与水溶液组合使用。溶剂可为极性的。溶剂可包含纯水或水与一或多种其它溶剂(诸如醇、胺、酮、醚、腈和羧酸中的至少一种)的混合物。适合的示例性溶剂可选自以下中的至少一种的组:水、醇(诸如乙醇或甲醇)、二氧戊环、二甲氧基乙烷(dme)、1,4-苯并二噁烷(bdo)、四氢呋喃(thf)、二甲基甲酰胺(dmf)、二甲基乙酰胺(dma)、二甲亚砜(dmso)、1,3-二甲基-2-咪唑啶酮(dmi)、六甲基磷酰胺(hmpa)、n-甲基-2-吡咯啶酮(nmp)、甲醇、乙醇、胺(诸如三丁胺、三乙胺、三异丙胺、n,n-二甲基苯胺)、呋喃、噻吩、咪唑、吡啶、嘧啶、吡嗪、喹啉、异喹啉、吲哚、2,6-二甲吡啶(2,6-二甲基吡啶)、2-甲吡啶(2-甲基吡啶)和腈(诸如乙腈和丙腈)、4-二甲胺基苯甲醛、丙酮和丙酮-1,3-乙基二甲酯。示例性电池为[r-ni/包含来自水、醇、胺、酮、醚和腈的组的溶剂或溶剂组合和来自koh、k3po4、k2hpo4、kh2po4、k2so4、khso4、k2co3、k2c2o4、khco3、kx(x=卤离子)、kno3、kno、kno2、k2moo4、k2cro4、k2cr2o7、kalo2、nh3、k2s、khs、knbo3、k2b4o7、kbo2、k2wo4、k2tio3、kzro3、kcoo2、kgao2、k2geo3、kmn2o4、k4sio4、k2sio3、ktao3、kvo3、kio3、kfeo2、kio4、kclo4、kscon、ktion、kvon、kcron、kcr2on、kmn2on、kfeon、kcoon、knion、kni2on、kcuon和kznon(n=1、2、3或4)(均饱和)和k的乙酸盐的组的溶质或溶质组合的溶液/cb或coooh+cb]和[ni/moh(m=碱金属)1至10%h2o+离子液体溶剂或有机溶剂(诸如碳酸二甲酯(dmc)、碳酸乙二酯(ec)、碳酸二乙酯(dec)、乙醇、六甲磷酰胺(hmpa)、二甲氧乙烷(dme)、1,4-苯并二噁烷(bdo)、四氢呋喃(thf)、二氧戊环(诸如1,3-二氧戊环)/nio间歇电解潜阴极]。其它示例性电池为[r-ni/koh(饱和水溶液)/pt/ti]、[r-ni/k2so4(饱和水溶液)/pt/ti]、[ptc(h2)/koh(饱和水溶液)/mnoohcb]、[ptc(h2)/koh(饱和水溶液)/fepo4cb]、[r-ni/nh4oh(饱和水溶液)/cb]。阴极和阳极材料可具有极高表面积以提高动力学,从而增加动力。其它适合的阴极包含载体,诸如碳化物、硼化物、氮化物和腈中的一种或多种。阳极也可包含载体作为组分的一。本发明的不同实施方式中的载体可为氟化碳载体。示例性电池为[r-ni、拉尼钴(r-co)、拉尼铜(r-cu)、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2、coh、crh、feh、mnh、nih、sch、vh、cuh、znh、agh/koh或naoh(饱和)/碳、碳化物、硼化物和腈、cb、pdc、ptc、tic、ti3sic2、yc2、tac、mo2c、sic、wc、c、b4c、hfc、cr3c2、zrc、crb2、vc、zrb2、mgb2、nib2、nbc、tib2、六方氮化硼(hbn)和ticn]。阳极可包含金属(诸如zn、sn、pb、cd或co)或氢化物(诸如lani5h6)和载体(诸如碳、碳化物、硼化物和腈、cb、蒸汽碳、活性碳、pdc、ptc、tic、ti3sic2、yc2、tac、mo2c、sic、wc、c、b4c、hfc、cr3c2、zrc、crb2、vc、zrb2、mgb2、nib2、nbc、tib2、六方氮化硼(hbn)和ticn)。水合moh(m=碱金属,诸如k)可通过与方程式(123)和(94)所给出相同且包含oh-和h氧化成h2o和h2o还原成h和oh-的反应的机制以低速率直接反应,形成分数氢。oh可充当表3中给出的mh型催化剂,或h可充当另一h的催化剂。在一个实施方式中,通过使用供应h至阳极的oh-氧化反应的方案和通过使用大表面积阴极促进阴极的水还原,可显著提高反应速率,以便利用加速反应来产生动力。本发明ciht电池的半电池反应与总反应中的至少一种可包含产生热能的反应。在实施方式中,可产生热能与电能。热动力也可通过本发明的系统和此项技术中已知的系统转化为电。在一个实施方式中,oh-为在氧化后形成的oh和h2o催化剂中的至少一种的来源。举例而言,可在阳极处将oh-氧化成还在协同反应中反应以形成h2o催化剂的oh以和分数氢。阳极半电池反应物可包含碱(诸如naoh)。阳极半电池反应物可还包含h来源,诸如氢化物、氢与解离体或氢与氢渗透性膜(诸如ni(h2)、v(h2)、ti(h2)、fe(h2)或nb(h2)膜或可为电极(诸如阳极)的管)。电池可包含固体电解质盐桥,诸如base,在迁移离子为na+的情况下诸如为nabase。碱moh(m=碱金属)的m+经由诸如base的盐桥迁移,且还原成na,且可以协同方式或随后与至少一种阴极反应物反应。反应物可在维持在至少电池反应物熔点的高电池温度下熔融。阴极半电池反应物包含至少一种与经还原的迁移离子反应的化合物。产物钠化合物可比阳极半电池反应物的钠化合物稳定。阴极产物可为naf。阴极反应物可包含氟来源,诸如碳氟化合物、xef2、bf3、nf3、sf6、na2sif6、pf5和其它类似化合物,诸如本发明的含氟化合物。另一卤素可置换阴极中的f。举例而言,阴极反应物可包含i2。其它阴极反应物包含其它卤化物,诸如金属卤化物,诸如过渡金属、内过渡金属、稀土金属、al、ga、in、sn、pb、sb、bi、se和te卤化物,诸如nicl2、fecl2、mni2、agcl、eubr2、eubr3和本发明固体燃料的其它卤化物。任一电池隔室均可包含熔融盐电解质,诸如低共熔盐,诸如碱金属卤化物盐的混合物。阴极反应物也可为低共熔盐,诸如可包含过渡金属卤化物的卤化物混合物。包含金属(诸如过渡金属)的适合低共熔盐为cacl2-cocl2、cacl2-zncl2、cecl3-rbcl、cocl2-mgcl2、fecl2-mncl2、fecl2-mncl2、kalcl4-naalcl4、alcl3-cacl2、alcl3-mgcl2、nacl-pbcl2、cocl2-fecl2和表4中的其它低共熔盐。示例性电池为[naoh、r-ni、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2、ceh2、lah2、ptc(h2)、pdc(h2)、ni(h2)、v(h2)、ti(h2)、fe(h2)或nb(h2)的组中的至少一种/base/i2、i2+nai、碳氟化合物、xef2、bf3、nf3、sf6、na2sif6、pf5、金属卤化物(诸如过渡金属、内过渡金属、稀土金属、al、ga、in、sn、pb、sb、bi、se和te卤化物,诸如nicl2、fecl2、mni2、agcl、eubr2和eubr3)、低共熔盐(诸如cacl2-cocl2、cacl2-zncl2、cecl3-rbcl、cocl2-mgcl2、fecl2-mncl2、fecl2-mncl2、kalcl4-naalcl4、alcl3-cacl2、alcl3-mgcl2、nacl-pbcl2、cocl2-fecl2和表4的其它低共熔盐)]和[naoh+ptc(h2)、pdc(h2)、ni(h2)、v(h2)、ti(h2)、fe(h2)或nb(h2)/base/nax(x为阴离子,诸如卤离子、氢氧根、硫酸根、硝酸根、碳酸根)+nacl、agcl、alcl3、ascl3、aucl、aucl3、bacl2、becl2、bicl3、cacl2、cdcl3、cecl3、cocl2、crcl2、cscl、cucl、cucl2、eucl3、fecl2、fecl3、gacl3、gdcl3、gecl4、hfcl4、hgcl、hgcl2、incl、incl2、incl3、ircl、ircl2、kcl、kagcl2、kalcl4、k3alcl6、lacl3、licl、mgcl2、mncl2、mocl4、mocl5、mocl6、naalcl4、na3alcl6、nbcl5、ndcl3、nicl2、oscl3、oscl4、pbcl2、pdcl2、prcl3、ptcl2、ptcl4、pucl3、rbcl、recl3、rhcl、rhcl3、rucl3、sbcl3、sbcl5、sccl3、sicl4、sncl2、sncl4、srcl2、thcl4、ticl2、ticl3、tlcl、ucl3、ucl4、vcl4、wcl6、ycl3、zncl2和zrcl4的组的一种或多种]。另一碱金属可取代na,其它卤化物可取代cl,且base可与迁移离子匹配。电池可通过电解或以机械方法再生。举例而言,电池[ni(h21atm)naoh/base/nacl-mgcl2低共熔物]产生h2o,在一个实施方式中,h2o自半电池排出。在阴极,来自迁移na+的na可与mgcl2反应,形成nacl和mg。代表性电池反应为阳极naoh+1/2h2→h2o+na++e-(136)阴极na++e-+1/2mgcl2→nacl+1/2mg(137)阳极半电池可另外含有盐,诸如碱金属或碱土金属卤化物,诸如卤化钠。放电后,阳极可通过添加水或水来源再生。电池也可通过添加h2o反向自发运转,因为由方程式(137)给出的反应的自由能为+46千焦/摩尔(500℃)。水来源可为蒸汽,其中密封半电池。作为选择,水来源可为水合物。示例性水合物为磷酸镁五水合物或八水合物、硫酸镁七水合物、钠盐水合物、铝盐水合物和碱土金属卤化物水合物,诸如srbr2、sri2、babr2或bai2。来源可包含含有naoh的熔融盐混合物。在一替代性示例性机械再生方法中,当nacl与mg反应形成mgcl2和na时,通过蒸发na,使mgcl2再生。na可与水反应,形成naoh和h2,其为再生的阳极反应物。电池可包含流动系统,其中阴极和阳极反应物流动穿过相应半电池,且在单独的隔室中再生且返回流动流中。作为选择,在电池[na/base/naoh]中,na可直接用作阳极反应物。电池可为级联者。在一个实施方式中,阳极包含碱,诸如moh(m=碱金属),其中催化剂或催化剂来源可为与h反应以形成可充当催化剂的h2o的oh。阴极可还包含氢来源,诸如氢化物,诸如稀土金属或过渡金属氢化物或本发明的其它氢化物,或为渗透性膜与氢气,诸如ni(h2)、fe(h2)、v(h2)、nb(h2)和本发明的其它渗透性膜与氢气。催化剂或催化剂来源可来自oh-的氧化。涉及与h还反应的阳极氧化产物可为h2o。电池可包含电解质与盐桥中的至少一种,盐桥可为固体电解质,诸如base(β-氧化铝)。阴极可包含可与迁移离子或还原的迁移离子(分别诸如m+或m)反应,形成溶液、合金、混合物或化合物的元素、化合物、金属、合金和其混合物中的至少一种。阴极可包含熔融元素或化合物。适合的熔融元素为in、ga、te、pb、sn、cd、hg、p、s、i、se、bi和as中的至少一种。在具有na+作为穿过盐桥(诸如β氧化铝固体电解质(base))的迁移离子的一示例性实施方式中,阴极包含熔融硫,且阴极产物为na2s。示例性电池为[naoh+h来源(诸如lah2、ceh2、zrh2、tih2或ni(h2)、fe(h2)、v(h2)、nb(h2))/base/s、in、ga、te、pb、sn、cd、hg、p、i、se、bi和as中的至少一种和视情况选用的载体]。在另一实施方式中,电池缺乏诸如base的盐桥,因为诸如h2或氢化物的还原剂限定于阳极中,且另外半电池反应物之间的反应在能量方面或在动力学方面为不利的。在不具有盐桥的一个实施方式中,阳极半电池反应物不与阴极半电池反应物进行放能反应。示例性电池为[h来源(诸如lah2、ceh2、zrh2、tih2或ni(h2)、fe(h2)、v(h2)、nb(h2)/氢氧化物熔融盐(诸如naoh)/s、in、ga、te、pb、sn、cd、hg、p、i、se、bi和as和合金中的至少一种和视情况选用的载体]。在一个实施方式中,形成催化剂的反应包含形成充当另一h的催化剂的h2o的反应。能量可以热或光或电的形式释放,其中反应包含半电池反应。在反应物形成充当催化剂的h2o的一个实施方式中,反应物可包含可氧化为h2o的oh-。本发明中给出示例性反应。反应可发生在ciht电池或电解电池中。使用处于形成产物的过渡状态下的h2o,可有利于催化剂反应。电池还包含原子h来源。来源可为氢化物、氢气、由电解产生的氢、氢氧化物或本发明中给出的其它来源。举例而言,阳极可包含金属,诸如zn或sn,其中半电池反应包含oh-氧化成水和金属氧化物。在形成的h2o存在下,反应也形成原子h,其中h2o充当形成分数氢的催化剂。阳极可包含氢化物,诸如lani5h6,其中半电池反应包含oh-氧化成h2o,其中h由氢化物提供。在来自氢化物的h存在下发生氧化反应,h由形成的h2o催化,形成分数氢。阳极可包含金属与氢化物的组合,其中oh-氧化成h2o,伴随形成金属氧化物或氢氧化物,且h由氢化物提供。h由形成的h2o充当催化剂,催化形成分数氢。在另一实施方式中,诸如co2的氧化剂或诸如r-ni的zn或al的还原剂可与oh-反应,形成h2o和h作为中间物,其中在该反应期间一些h由h2o催化形成分数氢。在另一实施方式中,h2o与h中的至少一种可通过至少一种包含o与h中的至少一种的物质(诸如h2、h、h+、o2、o3、o、o+、h2o、h3o+、oh、oh+、oh-、hooh、ooh-、o-、o2-、和)进行还原反应而形成。在另一实施方式中,h2o与h中的至少一种可通过至少一种包含o与h中的至少一种的物质(诸如h2、h、h+、o2、o3、o、o+、h2o、h3o+、oh、oh+、oh-、hooh、ooh-、o-、o2-、和)进行氧化反应而形成。反应可包含本发明的反应的一。反应可发生在ciht电池或电解电池中。反应可为发生在燃料电池(诸如质子交换膜、磷酸和固体氧化物燃料电池)中的反应。反应可发生在ciht电池阳极。反应可发生在ciht电池阴极。可发生在含溶解的h2o的水性或熔融介质中的在阴极与阳极(逆反应)中的一或两者上形成h2o催化剂和h或形成可形成h2o催化剂和h的中间物质的代表性阴极反应为o2+4h++4e-→2h2o(138)o2+2h++2e-→h2o2(139)o2+2h2o+4e-→4oh-(140)o2+h++e-→ho2(141)o2+2h2o+2e-→h2o2+2oh-(143)h2o2+2h++2e-→2h2o(147)2h2o2→2h2o+o2(148)2h2o+2e-→h2+2oh-(149)h2o→2h2+o2(153)除分数氢以外,充当催化剂的h2o的产物为电离的h2o,可重组成h2和o2;因此,h2o催化可产生所述可商业上使用的气体。该h2来源可用于维持ciht电池的动力输出。其可直接供应h2或以使ciht半电池反应物(诸如阳极氢化物或金属)再生的反应物形式供应h2。在另一实施方式中,催化剂或催化剂来源(诸如h2o和和)可由oh-与o2的反应形成。示例性反应为在一个实施方式中,还原的氧物质为ho来源,诸如oh-,其可在ciht电池的阳极氧化或在固体燃料反应中化学产生。诸如ciht电池的阳极反应物的电池反应物还包含h2。h2与oh反应,形成h和呈活性状态的h2o,h2o用作通过与h反应形成分数氢的催化剂。作为选择,反应物包含h来源,诸如氢化物或h2与解离体,使得h与oh反应,形成活性h2o分数氢催化剂,还与另一h反应,形成分数氢。示例性电池为[m+h2/koh(饱和水溶液)/蒸汽碳+o2]和[m+h2+解离体(诸如ptc或pdc)/koh(饱和水溶液)/蒸汽碳+o2];m=zn、sn、co、lani5h6、cd、pb、sb和in。在热反应器的一个实施方式中,氢与氧组合在金属表面上,形成h2o催化剂和h,两者反应形成分数氢。金属促进h与o氧化重组形成水,该水充当h形成分数氢的催化剂,其中氧化金属可形成氢氧化物或氧化物。适合的示例性金属为zn、sn、co、lani5h6、cd、pb、sb和in。在一个实施方式中,阳极与阴极半电池反应物之间的协同反应引起h与h2o催化剂之间的至少一种能量匹配,从而形成分数氢且提供分数氢催化反应的活化能。在一示例性实施方式中,包含[m/koh(饱和水溶液)/h2o或o2还原催化剂+空气](m=zn、co、pb、lani5h6、cd、sn、sb、in或ge,h2o或o2还原催化剂诸如为蒸汽碳(sc)或碳黑(cb))的ciht起引起能量匹配与提供活化能中的至少一种的作用。在一个实施方式中,形成呈活性催化剂状态的h2o和h的反应物可用以产生热能。半电池反应物可混合,以直接使热能释放。示例性反应物可为m+koh(饱和水溶液)+h2o或o2还原催化剂+空气的混合物;m可为zn、co、pb、lani5h6、cd、sn、sb、in或ge,且h2o或o2还原催化剂可为碳、碳化物、硼化物或腈。在另一实施方式中,阳极可为金属m',诸如zn,且阴极可为金属氢化物mhx,诸如lani5h6。示例性ciht电池可包含[zn/koh(饱和水溶液)/lani5h6、r-ni或ptc+空气或o2]。示例性一般电极反应为阴极:mhx+1/2o2+e-→mhx-1+oh-(157)阳极:2m'+3oh-→2m'o+h+h2o+3e-;h→h(1/p)(158)适合的示例性热反应混合物为sn+koh(饱和水溶液)+cb或sc+空气和zn+koh(饱和水溶液)+lani5h6、r-ni或ptc+空气。除氧化oh-和与h反应外,形成h2o催化剂的反应可为脱水反应。一适合的示例性反应为金属氢氧化物脱水形成金属氧化物,诸如zn(oh)2→zno+h2o、co(oh)2→coo+h2o、sn(oh)2→sno+h2o或pb(oh)2→zno+h2o。另一实例为al(oh)3→al2o3+h2o,其中r-ni可包含al(oh)3,以及充当可催化形成分数氢的h来源,其中oh与h2o中的至少一种充当催化剂。反应可通过加热引发和传播。在一个实施方式中,nh、no(n=整数)、o2、oh和h2o催化剂中的至少一种由脱水或分解反应以活性状态形成。反应在h存在下发生,且h与催化剂反应形成分数氢。在一个实施方式中,反应包含h2o2的分解。催化剂h2o可由以下示例性反应形成:h2o2+h→h2o+1/2o2或o+h(1/p)(159)示例性脱水反应为在h存在下氢氧化物分解成相应氧化物和h2o,诸如r-ni的al(oh)3分解成al2o3和h2o,释放h。脱水反应可还涉及水合h2o,诸如水合koh或naoh的分解。在一个实施方式中,脱水反应涉及自末端醇释放h2o形成醛。末端醇可包含糖或其衍生物,其释放可充当催化剂的h2o。适合的示例性醇为内赤藓醇、半乳糖醇(galactitol/dulcitol)和聚乙烯醇(pva)。在一个实施方式中,电池包含含有氢氧化物的熔融盐电解质。电解质可包含盐混合物。在一个实施方式中,盐混合物可包含金属氢氧化物和相同金属以和本发明的另一阴离子,诸如卤离子、硝酸根、硫酸根、碳酸根和磷酸根。适合的盐混合物为csno3-csoh、csoh-koh、csoh-lioh、csoh-naoh、csoh-rboh、k2co3-koh、kbr-koh、kcl-koh、kf-koh、ki-koh、kno3-koh、koh-k2so4、koh-lioh、koh-naoh、koh-rboh、li2co3-lioh、libr-lioh、licl-lioh、lif-lioh、lii-lioh、lino3-lioh、lioh-naoh、lioh-rboh、na2co3-naoh、nabr-naoh、nacl-naoh、naf-naoh、nai-naoh、nano3-naoh、naoh-na2so4、naoh-rboh、rbcl-rboh和rbno3-rboh。混合物可为低共熔混合物。电池可在约为低共熔混合物的熔点的温度下操作,但可在较高温度下操作。催化剂h2o可由oh-在阳极氧化和与来自诸如渗透入金属膜(诸如ni、v、ti、nb、pd、pdag或fe)的h2气体的来源(称为ni(h2)、v(h2)、ti(h2)、nb(h2)、pd(h2)、pdag(h2)、fe(h2)或430ss(h2))的h反应形成。适于碱性电解质的氢渗透性电极包含ni和合金(诸如lani5)、贵金属(诸如pt、pd和au)和镍或贵金属涂布的氢渗透性金属(v、nb、fe、fe-mo合金、w、mo、rh、zr、be、ta、rh、ti、th、pd、pd涂布的ag、pd涂布的v、pd涂布的ti)、稀土金属、其它难熔金属、不锈钢(ss)(诸如430ss)和本领域技术人员已知的其它此类金属。氢氧化物的金属、氢氧化物的阳离子(诸如金属)或另一阳离子m可在阴极还原。示例性反应为阳极1/2h2+oh-→h2o+e-或h2+oh-→h2o+e-+h(1/p)(160)阴极m++e-→m(161)m可为金属,诸如碱金属、碱土金属、过渡金属、内过渡金属或稀土金属、al、ga、in、ge、sn、pb、sb、bi、se和te,且可为诸如s或p的另一元素。除氢氧化物阳离子以外的阳离子的还原可导致盐阳离子之间的阴离子交换。示例性电池为[m'(h2)/mohm”x/m”'],其中m、m'、m”和m”'为诸如金属的阳离子,x为可为氢氧根或诸如卤离子、硝酸根、硫酸根、碳酸根和磷酸根的另一阴离子的阴离子,且m'为h2渗透性。另一实例为[ni(h2)/m(oh)2-m'x/ni],其中m=碱土金属,m'=碱金属且x=卤离子,诸如[ni(h2)/mg(oh)2-nacl/ni]、[ni(h2)/mg(oh)2-mgcl2-nacl/ni]、[ni(h2)/mg(oh)2-mgo-mgcl2/ni]和[ni(h2)/mg(oh)2-naf/ni]。h2o与h形成,且在阳极反应,还形成分数氢,且金属mg为自阴极反应获得的热力学最稳定的产物。其它适合的示例性电池为[ni(h2)/moh-m'卤化物/ni]、[ni(h2)/m(oh)2-m'卤化物/ni]、[m”(h2)/moh-m'卤化物/m”]和[m”(h2)/m(oh)2-m'卤化物/m”],其中m=碱金属或碱土金属,m'=氢氧化物与氧化物中的至少一种不如碱金属或碱土金属的氢氧化物和氧化物稳定或具有低的水反应性的金属,诸如来自cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn和w的组的一,且m”为氢渗透性金属。作为选择,m'可为正电性金属,诸如al、v、zr、ti、mn、se、zn、cr、fe、cd、co、ni、sn、in和pb的组中的一种或多种。在另一实施方式中,m与m'中的至少一种可包含来自li、na、k、rb、cs、mg、ca、sr、ba、al、v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w的组的一。在一个实施方式中,阳离子可为盐混合物电解质的阴离子所共享,或阴离子可为阳离子所共享。作为选择,氢氧化物可对混合物的其它盐稳定。电极可包含高表面积电极,诸如多孔或烧结金属粉末,诸如ni粉末。示例性电池为[ni(h2)、v(h2)、ti(h2)、nb(h2)、pd(h2)、pdag(h2)、fe(h2)或430ss(h2)/lioh-lix、naoh-nax、koh-kx、rboh-rbx、csoh-csx、mg(oh)2-mgx2、ca(oh)2-cax2、sr(oh)2-srx2或ba(oh)2-bax2(其中x=f、cl、br或i)/ni]、[ni(h2)、v(h2)、ti(h2)、nb(h2)、pd(h2)、pdag(h2)、fe(h2)或430ss(h2)/csno3-csoh、csoh-koh、csoh-lioh、csoh-naoh、csoh-rboh、k2co3-koh、kbr-koh、kcl-koh、kf-koh、ki-koh、kno3-koh、koh-k2so4、koh-lioh、koh-naoh、koh-rboh、li2co3-lioh、libr-lioh、licl-lioh、lif-lioh、lii-lioh、lino3-lioh、lioh-naoh、lioh-rboh、na2co3-naoh、nabr-naoh、nacl-naoh、naf-naoh、nai-naoh、nano3-naoh、naoh-na2so4、naoh-rboh、rbcl-rboh和rbno3-rboh/ni]和[ni(h2)、v(h2)、ti(h2)、nb(h2)、pd(h2)、pdag(h2)、fe(h2)或430ss(h2)/lioh、naoh、koh、rboh、csoh、mg(oh)2、ca(oh)2、sr(oh)2或ba(oh)2+alx3、vx2、zrx2、tix3、mnx2、znx2、crx2、snx2、inx3、cux2、nix2、pbx2、sbx3、bix3、cox2、cdx2、gex3、aux3、irx3、fex3、hgx2、mox4、osx4、pdx2、rex3、rhx3、rux3、sex2、agx2、tcx4、tex4、tlx和wx4中的一种或多种(其中x=f、cl、br或i)/ni]。其它适合的h2渗透性金属可置换ni阳极且稳定阴极可置换ni。在一个实施方式中,电解质可包含氢氧化合物或诸如氢氧化物、卤化物、硝酸盐、碳酸盐、硫酸盐、磷酸盐中的一种或多种的盐与氢氧化合物的混合物。在一个实施方式中,电池可包含盐桥,诸如base或nasicon。在一个实施方式中,电解质可包含包含络合物或离子的氢氧化物,诸如或其中m可示例为zn、sn、pb、sb、al或cr。氢氧化物可还包含阳离子,诸如碱金属阳离子。氢氧化物可为li2zn(oh)4、na2zn(oh)4、li2sn(oh)4、na2sn(oh)4、li2pb(oh)4、na2pb(oh)4、lisb(oh)4、nasb(oh)4、lial(oh)4、naal(oh)4、licr(oh)4、nacr(oh)4、li2sn(oh)6和na2sn(oh)6。其它示例性的适合氢氧化物为co(oh)2、zn(oh)2、ni(oh)2、其它过渡金属氢氧化物、cd(oh)2、sn(oh)2和pb(oh)中的至少一种。在一个实施方式中,氧与h2o中的至少一种的来源供应给电池且可选择性地供应给阴极。在一个实施方式中,h2可选择性地供应给阳极,使得阳极反应由方程式(160)给出。在一个实施方式中,o2与h2o中的至少一种可供应给电池。在一个实施方式中,o2或h2o可添加至阴极半电池中,使得反应为阴极m++e-+h2o→moh+1/2h2(162)m++2e-+1/2o2→m2o(163)接着可添加h2o,使得反应为m2o+h2o→2moh(164)在提供o2的情况下,总平衡反应可为h2的燃烧,h2通过单独电解h2o再生。在一个实施方式中,h2供应于阳极且h2o和视情况存在的o2供应于阴极。h2可通过透过膜选择性地施加,且h2o可通过鼓入蒸汽选择性地施加。在一个实施方式中,维持熔融电解质上方控制的h2o蒸气压。h2o传感器可用以监测蒸气压和控制蒸气压。传感器可为光学传感器,诸如红外发射光谱传感器或此项技术中已知的传感器。h2o蒸气压可由加热的水触集器供应,由惰性载气(诸如n2或ar)运载,其中触集器温度和流动速率决定传感器所监测到的蒸气压。电池可通过自电池收集蒸汽和h2(分别诸如未反应的供应物和在阳极和阴极形成的气体),通过诸如h2o冷凝的方式分离气体,和向阳极再供应h2和向阴极再供应h2o来连续运转。在一个实施方式中,水蒸汽由维持在约20-100℃温度范围内的水发生器供应。在另一实施方式中,温度维持在约30至50℃范围内。水蒸汽压力可维持在约0.01托至10atm范围内。在另一实施方式中,水蒸汽压力维持在约31托至93托范围内。在一个实施方式中,阳离子可为盐混合物电解质的阴离子所共享,或阴离子可为阳离子所共享。作为选择,氢氧化物可对混合物的其它盐稳定。示例性电池为[ni(h2)/mg(oh)2-nacl/ni芯(h2o和视情况存在的o2)]、[ni(h2)/mg(oh)2-mgcl2-nacl/ni芯(h2o和视情况存在的o2)]、[ni(h2)/mg(oh)2-mgo-mgcl2/ni芯(h2o和视情况存在的o2)]、[ni(h2)/mg(oh)2-naf/ni芯(h2o和视情况存在的o2)]、[ni(h2)、v(h2)、ti(h2)、nb(h2)、pd(h2)、pdag(h2)、fe(h2)和430ss(h2)/lioh-lix、naoh-nax、koh-kx、rboh-rbx、csoh-csx、mg(oh)2-mgx2、ca(oh)2-cax2、sr(oh)2-srx2或ba(oh)2-bax2(其中x=f、cl、br或i)/ni芯(h2o和视情况存在的o2)]、[ni(h2)、v(h2)、ti(h2)、nb(h2)、pd(h2)、pdag(h2)、fe(h2)或430ss(h2)/csno3-csoh、csoh-koh、csoh-lioh、csoh-naoh、csoh-rboh、k2co3-koh、kbr-koh、kcl-koh、kf-koh、ki-koh、kno3-koh、koh-k2so4、koh-lioh、koh-naoh、koh-rboh、li2co3-lioh、libr-lioh、licl-lioh、lif-lioh、lii-lioh、lino3-lioh、lioh-naoh、lioh-rboh、na2co3-naoh、nabr-naoh、nacl-naoh、naf-naoh、nai-naoh、nano3-naoh、naoh-na2so4、naoh-rboh、rbcl-rboh和rbno3-rboh/ni芯(h2o和视情况存在的o2)]和[ni(h2)、v(h2)、ti(h2)、nb(h2)、pd(h2)、pdag(h2)、fe(h2)或430ss(h2)/lioh、naoh、koh、rboh、csoh、mg(oh)2、ca(oh)2、sr(oh)2或ba(oh)2+alx3、vx2、zrx2、tix3、mnx2、znx2、crx2、snx2、inx3、cux2、nix2、pbx2、sbx3、bix3、cox2、cdx2、gex3、aux3、irx3、fex3、hgx2、mox4、osx4、pdx2、rex3、rhx3、rux3、sex2、agx2、tcx4、tex4、tlx和wx4中的一种或多种(其中x=f、cl、br或i)/ni芯(h2o和视情况存在的o2)]。诸如[ni(h2)/moh(m=碱金属)m'x2(m'=碱土金属)和视情况存在的mx(x=卤离子)/ni]的电池可在高温下运转,使得反应物对氢氧根-卤离子交换为热力学上稳定的。在类型[m'(h2)或氢化物/包含熔融氢氧化物的电解质/m”]的另一实施方式中,其中m'和m”可包含h2渗透性金属,诸如ni、ti、v、nb、pt和ptag,电解质包含氢氧化物与氢化物的混合物,诸如moh-mh(m=碱金属)。mh可在阴极处为还原成m和h-。oh-和h可在阳极处氧化成h2o。包含过量mh的电解质可通过添加o2或h2o再生。在其它实施方式中,除mh(诸如硼氢化物和氢化铝)以外,电解质可包含另一氢储存材料。参看图2,由水还原形成的h渗透性过氢渗透性膜473且与h反应物反应。h渗透性电极可包含v、nb、fe、fe-mo合金、w、mo、rh、ni、zr、be、ta、rh、ti、th、pd、pd涂布的ag、pd涂布的v、pd涂布的ti、稀土金属、其它耐火金属和本领域技术人员已知的其它所述金属。h反应物可为形成氢化物的元素或化合物,诸如碱金属、碱土金属、过渡金属、内过渡金属和稀土金属、合金或其混合物和氢储存材料,诸如本发明的氢储存材料。示例性电池为[ni(h2)/lioh-libr/ni(li,ti,la,ce)]。其它示例性电池为[ni(h2)+moh/m'x-m”x'的熔融盐(m和m'=碱金属,x和x'=卤离子或其它阴离子,m”为诸如碱金属、碱土金属、过渡金属、内过渡金属和iii至vi族的金属,其中该盐对与混合物的反应稳定且m'x-m”x'的各元素的化学计量呈中性)。m'x-m”x'可包含nicl2、mni2、eubr2、sni2、fecl2、agcl、fecl2、incl、cocl2、crcl2、cscl、cucl、cucl2、mncl2、nicl2、pbcl2、rbcl、sncl2、ticl2、和zncl2中的至少一种]。电池可诸如在阴极处还包含诸如空气或o2气体的氧源。可通过电解、添加h2或机械使电池再生。在一实施方式中,反应容器可包含耐熔融氢氧化物腐蚀的材料,诸如镍或蒙乃尔合金(monelalloy)。在一实施方式中,阴极和阳极中的至少一种经锂化,诸如为锂化ni电极,诸如包含linio的ni。在实施方式中,以波形连续或间歇放电(诸如第一次充电且第二次放电,其中电流可在至少一个所述时段期间维持恒定)的熔融盐或水性碱性电池的阳极,该阳极可包含诸如镍氢化物、lani5h6或la2coni9h6的氢化物。在阴极处自还原氧而形成过氧离子(诸如和hoo-)的适合熔融氢氧化物电解质为lioh和naoh。形成分数氢催化剂(诸如oh、h2o、o2、nh和no(n为整数)中的至少一种)的示例性反应为阴极阳极在一实施方式中,电池反应物包含过氧化物源或过氧化物。适合过氧化物为li2o2和na2o2。过氧化物或过氧离子可形成分数氢催化剂,诸如oh和h2o中的至少一种。示例性反应路径由方程式(138至148)和(165至168)给出。适合电池为[ni(h2)/lioh和naoh和可能另一盐(诸如lix或nax(x=卤离子)和过氧化物或碱金属过氧化物(诸如li2o2或na2o2)中的至少一种/ni)。在一实施方式中,电解质包含氢氧化物和通过还原氧促成一或多种氧物质形成的其它盐的混合物中的至少一种。选择电解质以最佳化氧至所要氧还原产物的还原,其还最佳化相关催化剂形成和形成分数氢的反应。在一示例性实施方式中,添加naoh或koh中的一种或多种至lioh-libr的低共熔混合物以最佳化来自形成分数氢的电功率。在另一实施方式中,添加h2o或h2o源至阴极反应物以导致高价氧化物(诸如过氧化物和超氧化物)转化为氢氧化物。适合反应为还原o2和h2o以直接或经由中间物质(诸如过氧离子、超氧离子和氧离子中的至少一种和hoo-和hooh)形成oh-。在一实施方式中,氧在阴极处被还原为充当催化剂的物质或充当可还反应形成催化剂的中间物的物质。该物质或还反应产物可为至少一种包含o和h中的至少一种的物质,诸如h2、h、h+、o2、o3、o、o+、h2o、h3o+、oh、oh+、oh-、hooh、ooh-、o-、o2-、和在另一实施方式中,阴极反应可与阳极反应协同。涉及氧的阴极反应可形成产生皆在阳极处形成的h与催化剂之间的能量匹配的物质,其中h可反应形成分数氢。在阴极处形成的示例性物质为o-、o2-、oh-、hoo-、h、h2、o、oh、h2o、o2、o3和阳极反应可包含ho-至oh、h2o、o和o2中的至少一种的氧化,其中oh、h2o、o和o2中的至少一种可充当催化剂。在一实施方式中,协同反应可包含oh-至oh和h2o中的至少一种的阳极反应(方程式(123)和(131)),且阴极反应可包含o2至的还原(方程式(165))。优先形成的适合电解质包含lioh和naoh中的至少一种。在一实施方式中,还提供h2o以与至少一种还原氧物质反应。至少一种产物可为oh-。氧和水中的至少一种的来源可为空气。可控制氧和h2o中的一种或多种的浓度以控制来自形成分数氢的电和热功率输出中的至少一种。在一实施方式中,使电池的电功率输出最佳化。在一实施方式中,在流入电池的前自空气移除co2和co。移除可通过使用本领域技术人员已知的洗涤器来达成。在一实施方式中,氢氧化物电解质包含诸如氧化物的添加剂以抑制自co和co2形成碳酸盐。适合添加剂为高水浓度的mg、sb和si的氧化物和氧阴离子(诸如焦磷酸盐和过氧硫酸盐)。特定实例为sio2、mgo、sb2o3、na2s2o8和na4p2o7。在包含熔融电解质的一实施方式中,可通过与活性金属(诸如碱金属)反应移除诸如熔融碱金属氢氧化物盐、碳酸盐。在包含间歇充电和放电电池的一实施方式中,使电池接近消除(avoid)co和co2的空气。在一实施方式中,至少一种半电池反应的氧来自电解,诸如h2o和oh-中的至少一种的氧化。在一实施方式中,熔融氢氧化物电解质和包含熔融氢氧化物的混合物还包含氧化物,诸如碱性氧化物(m2o)或碱土氧化物(m'o)。浓度可为高达饱和。氧化物可与氢氧化物或水反应形成平衡浓度。示例性反应为:li2o+h2o→2lioh(169)li2o+2oh-→2lio-+h2o(170)熔融氢氧化物电解质可还包含碱金属(m)。在一实施方式中,电解质包含熔融氢氧化物、视情况选用的另一盐和m、mh、m2o、mo2或m2o2中的至少一种,其中m为诸如碱金属的金属。在一实施方式中,使氧化物、h2o、过氧化物和超氧化物平衡中的至少一种移动。在一实施方式中,形成催化剂(诸如h2o、oh、o2、nh和no(n=整数)中的至少一种)的电池反应的能量等于在真空中发生的反应的能量。反应可在气相或凝相(诸如液相或固相)中发生。液体可为水性或熔融盐介质(诸如电解质)。形成催化剂的反应可包含半电池反应。在一实施方式中,形成催化剂的半电池反应的相对半电池反应可在相对于标准氢电极(she)为约0v的电压下发生。适合电压在相对于she为约-0.5v至+0.5v、-0.2v至+0.2v和-0.1v至+0.1v范围的内。催化剂形成半电池反应的催化剂可为h2o、oh、o2、nh和no(n=整数)中的至少一种。催化剂形成反应和相对半电池反应可为阳极:oh-+h2→h2o+e-+h(1/p)(171)阴极:o2+2h2o+4e-→4oh-(172)总反应可为3/2h2+1/2o2→h2o+h(1/p)(173)其中h2o、oh、o2、nh和no(n=整数)中的至少一种可充当催化剂。在熔融氢氧化物盐电解质的情况下,可控制供应至电池的水分压以促成oh-产生反应优于其它o2和h2o还原反应(诸如形成过氧化物、超氧化物和氧化物中的至少一种的o2和h2o还原反应)。在一实施方式中,控制温度、o2压力、h2o压力、h2压力和oh-浓度中的至少一种以促成催化剂形成半电池反应和导致分数氢的最佳形成的相对反应。一或多种相应反应可由方程式(171至173)给出。适合示例性电池为[ni(h2)/lioh-libr/ni+空气]、[ni(h2)/naoh-nabr/ni+空气]、[ni(h2)/naoh-nai/ni+空气]、[ni(h2)/sr(oh)2/ni+空气]和本发明的类似电池,其中空气包含一些h2o。在一实施方式中,形成h2o催化剂的反应为约1.2伏特(已针对操作温度作热力学校正)。在一实施方式中,形成催化剂的半电池反应的电压相对于25℃和she为约1.2v。适合电压在相对于she和25℃为约1.5v至0.75v、1.3v至0.9v和1.25v至1.1v范围的内。电池可在约200℃至1000℃的温度范围内或在约250℃至600℃的范围内操作。适合反应为如由方程式(171)和(172)和方程式(197)和(198)给出的形成h2o的反应,其中h2o可充当催化剂。达成所要电压的适合电解质为熔融碱性氢氧化物或碱土氢氧化物,其可还包含另一盐(诸如卤化物)。适合混合物为共溶盐混合物,诸如碱金属氢氧化物和碱金属卤化物,诸如lioh-libr、naoh-nabr和naoh-nai。示例性碱土氢氧化物为sr(oh)2。可通过渗透或通过鼓泡将氢供应至阳极。适合酸性电解质为酸性电解质水溶液,诸如h2so4或hx(x-卤离子)水溶液;或酸性离子液体,诸如本发明的酸性离子液体。在碱性水性电池实施方式中,催化剂形成反应可由方程式(171)给出,且具有相对于she为约0v的还原电位的对抗半电池反应为以下中的至少一种:o2+2h2o+2e-→hooh+2oh-(175)在一实施方式中,可改变o2浓度或阴极材料以达成具有所要电位的反应。适合示例性电池为[mh/koh(饱和水溶液)/sc、pd、pt、au、ag或其它氧还原阴极+空气]和本发明的类似电池,其中mh为诸如lani5hx的金属氢化物。在包含氢氧化物电解质(诸如水性或熔融氢氧化物或混合物(诸如碱金属氢氧化物,诸如lioh))的电解电池的一实施方式中,通过电解h2o,在阴极处产生h2,且在阳极处产生o2。电解质的氢氧化物可通过溶解水性碱(诸如碳酸盐,诸如m2co3(m=碱金属))来形成。电池可在诸如在约25℃至300℃的范围内的高温下操作,但可在更高温度下操作。电池可经加压以在接近沸点和沸点以上的温度下操作。在一实施方式中,在阴极处oh-在h存在下氧化为h2o和在阳极处o2和h2o中的至少一种还原为oh-的反应中的至少一种随分数氢的形成而发生。在一实施方式中,阳极处形成的氧在阳极处被h2o还原为oh-,且阴极处形成的h2在阴极处与oh-反应被氧化为h2o,以致oh-路径分别根据方程式(172)和(171)在阳极和阴极处发生。催化剂可为阴极处形成的h2o,其与也在阴极处形成的h反应。阴极可为形成氢化物的金属,诸如为贵金属(诸如pd、pt或au)或过渡金属或合金(诸如ni或lani5)。阴极可以二功能电极形式作用(perform)以将h2o还原为h2且在h存在下将oh-氧化为h2o。阳极可包含诸如金属(诸如贵金属,诸如pt、pd或au;或过渡金属或合金,诸如ni或lani5)的导体,其以二功能电极形式作用以将水性电解质氧化为o2且将o2和h2o中的至少一种还原为oh-。电极的形态可增加其表面积。诸如ni的示例性电极为线、烧结、薄片或垫ni。在一实施方式中,具有碱性电解质(诸如包含氢氧化物和碳酸盐中的至少一种的碱性电解质)的熔融盐电池包含包括镍、氧化镍、钴、氧化钴和经铬掺杂的镍中的至少一种的阳极;可为镍、nio、钴、氧化钴、ag、氧化银(诸如ag2o2)、经ag掺杂的ni和锂化氧化镍的阴极;且可包含电解质载体,诸如mgo、li2tio3或lialo2。电极(诸如阳极)可包含nio和稳定nio的另一化合物(诸如mgo或fe2o3,其可分别形成ni1-xmgxo和nife2o4)。在一实施方式中,可通过由诸如o2-来源的来源增加碱性来稳定化诸如阳极(诸如nio)的电极。增加电解质的碱性的适合源为mgo、cdo、zno、fe2o3、nio、li2o、moo2、sio2、al2o3、cr2o3、tio2、zro2、wo2和充当o2-源的类似氧化物。另一化合物可经添加至电极或可包含电解质添加剂或基质。分数氢反应电流贡献在相对于电解电流的方向的方向且可导致电池中的额外热产生。在另一实施方式中,至少一种气体可在半电池之间穿透,以致发生由方程式(171)和(172)给出的反应中的至少一种以形成分数氢。电极间隔可为最小以促进气体穿透。气体可在电池中穿透,以致由方程式(172)给出的oh-系统至少部分发生于阴极处且由方程式(171)给出的oh-系统至少部分发生于阳极处。催化剂可为自穿透h在阳极处形成的h2o,其与自阴极穿透至阳极的额外h反应。阳极可为形成氢化物的金属(诸如为贵金属,诸如pd、pt或au;或过渡金属或合金,诸如ni或lani5),其以二功能电极形式作用以将水性电解质氧化为o2且在穿透氢存在下将oh-氧化为h2o。阴极可为形成氢化物的金属,诸如为贵金属(诸如pd、pt或au)或过渡金属或合金(诸如ni或lani5)。阴极可以二功能电极形式作用以将h2o还原为h2且可另外将穿透o2和h2o中的至少一种还原为oh-。因此,阴极可包含氧和h2o还原催化剂中的至少一种。通过穿透反应释放电能和热能中的至少一种,其中电流具有与电解电流的极性相同的极性,但电压具有反极性。因此,在进行恒定电流电解的情况下,在一实施方式中,电池电压减小且电池温度增加。示例性电解电池为[pt/0.1m至饱和lioh水溶液/pd]。在其它实施方式中,两个电极皆为ni或一个为ni且另一个为不同材料(诸如pt、pd、dsa材料、其它贵金属、碳、ag、本发明的材料或于载体上的此类材料或本发明的其它材料中的一种或多种,诸如pt/ti),且电解质为约0.1m至饱和的浓度范围内的koh或k2co3水溶液(aqueous,aq)。特定实例为[ptti/0.1m至饱和k2co3或koh水溶液/ni]。在一实施方式中,氢氧化合物(oxyhydroxide)(诸如pdooh、ptooh或niooh)、氢氧化物(诸如pt(oh)2、pt(oh)4、pd(oh)2或ni(oh)2)和水合物(诸如pt(h2o)4)中的至少一种可在电极(诸如阳极)处形成。电极(诸如阳极)的一或多种氧化产物与oh-的氧化反应可形成催化剂(诸如h2o和h),其还反应形成分数氢。pt阳极处的示例性反应为ptooh+2oh-→pto+h2o+h(1/4)+o2+2e-(177)pt(oh)2+oh-→pto2+h2o+h(1/4)+e-(178)3pt(oh)2+oh-→pt3o4+3h2o+h(1/4)+e-(179)阳极处的氢氧化合物、氢氧化物或水合物的反应会降低电解电池电压。形成分数氢的反应释放可呈热能和电能中的至少一种形式的能量。在电解或间歇电解电池的一实施方式中,通过在电解期间在负极处还原h2o来形成h,且该反应为至少部分可逆,以致形成催化剂(诸如h2o),其与h还反应形成分数氢。形成h2o催化剂的反应可为反应oh-+h→h2o+e-。在电解电池或ciht电池(诸如包含h2渗透阳极的电池或在间歇电解下操作的电池)的一实施方式中,至少一个电极形成氧化物且还包含来自诸如h2气体渗透、由电解(诸如连续电解或间歇电解)在表面上产生中的至少一种的来源的氢,且由自反电极或自外源(诸如供应h2气体)的h2穿透吸收h2。氧化物可通过电解质与金属和电解质中的溶解氧与金属中的至少一种的反应形成。氧可来自诸如大气或供应氧气中的至少一种的来源或来自可在电池中进行的h2o的电解。电解质可包含氢氧化物。氢氧化物可与金属氧化物反应形成h2o催化剂,其可与氢(诸如电极上的原子氢)还反应形成分数氢。形成分数氢中所释放的能量表现为电能和热能中的至少一种。氧化镍与氢氧化物反应形成h2o催化剂的代表性反应为2koh+nio→k2nio2+h2o(180)3koh+nio→knio2+h2o+k2o+1/2h2(181)4koh+ni2o3→2k2nio2+2h2o+1/2o2(182)反应物和反应(诸如对应于方程式(180至182)的反应物和反应)可包含形成分数氢的化学反应或固体燃料且在化学反应器部分中给出者。在实施方式中,形成分数氢的反应需要原子氢和催化剂。形成原子氢的适合反应为于大表面积解离体(诸如过渡金属,诸如ni、ti或nb;或贵金属,诸如pt、pd、ir、rh和ru)上的氢解离。解离体可为纳米粉末,诸如具有约1nm至50微米范围内的粒度的粉末。作为选择,通过经由氢可渗透膜(诸如ni)氢渗透或通过喷射提供原子氢。可通过电解在表面上或在电解质中产生原子氢。可间歇地维持电解。可形成一或多个h原子层,其至少在间歇循环的放电阶段期间反应形成分数氢。图1中所示的电解电池400包含具有阴极405的阴极室401、具有阳极410的阳极室402和视情况选用的隔板或盐桥420。通过应用于终端之间的电源供应电解功率。电源可为电源供应器或蓄电器单元(其可为至少第二ciht电池或电容器)。可通过包含电源的第一ciht电池使蓄电器(诸如第二ciht电池或电容器)充电。电子控制器可使用电源在使第一ciht电池充电和放电之间切换且控制充电和放电参数(诸如电压、电流、功率和负载)。电解质可为水性、熔融盐或其组合,诸如为本发明的电解质。在一电解电池实施方式中,电解电压为间歇或脉冲。电解质可为熔融盐,诸如熔融氢氧化物共溶盐,诸如碱性或碱土氢氧化物和卤化物盐。示例性电解质为lioh-libr。电解质也可为水性电解质,其可为碱性、酸性或大致中性。示例性碱性电解质为氢氧化物电解质水溶液,诸如碱金属氢氧化物(诸如koh)水溶液。示例性酸性电解质为酸水溶液,诸如h2so4或hx(x=卤离子)水溶液。在一实施方式中,电解质可包含碱性水溶液。间歇或脉冲循环的充电期可包含h2o电解为h2和o2。阴极和阳极反应可分别包含方程式(171)和(172)的反向,除分数氢形成为不可逆以外。阴极放电半电池反应可包含h2o和氧中的至少一种的还原。该还原可由方程式(172)给出。还原反应的过电位可导致半电池电压为约零。在一实施方式中,碱性水溶液中o2和h2o至oh-的还原(方程式(172))的还原电位相对于she和25℃为约0.4v。电极上的还原的过电位为约0.4v,以致还原半电池反应在约0v下发生。阳极放电半电池反应可包含oh-的氧化和与h形成h2o的还反应(方程式(171))。h2o可充当形成分数氢的催化剂。在一实施方式中,oh-的氧化和与h形成h2o的还反应(方程式(171))的还原电位相对于she和25℃为约1.23v。电极上的氧化的过电位使得氧化半电池反应在约1.23v下发生。在其它实施方式中,催化剂可包含自原子氢接受m27.2ev的物质,诸如本发明的物质,其中催化剂可为半电池物质或在电解或放电阶段期间形成。在充电和放电期中的至少一种期间形成分数氢。关于放电期,氧化反应的半电池电位相对于she和25℃可为约1.23v或在约0.6v至1.5v范围的内,且还原反应的半电池电位相对于she和25℃可为约0v或在约-0.5v至+0.5v范围的内。在电解截止或放电阶段期间电解阴极与阳极之间的电池电位相对于she和25℃可为约1.2v或在约0.6v至2v范围的内。在具有高温的实施方式中,针对操作温度对此类室温范围作热力学校正。在不给定的情况下,否则本发明的电压为相对于she和25℃。在包含水性电解质的形成分数氢和电和热功率中的至少一种的ciht或电解电池的一实施方式中,应用至少一个系统变化或方法以增加形成分数氢的速率,该系统变化或方法包含使用多孔阳极以提供形成新生h2o的区域;通过诸如改变电解电流的方法改变气体流速以改变气体/电解质/电极界面层性质以促成游离或新生h2o(非大批h2o)形成作为催化剂(在本文中当h2o表示为催化剂时,其固有地是指分数氢催化活性或新生h2o);和改变电解质组成、浓度、温度和其它所述物理参数以导致其性质变化(诸如离子周围的溶剂圈的变化)(其改变电池反应的容量)以形成游离或新生h2o催化剂和分数氢。在诸如包含熔融盐或水性电解电池的至少一种的一实施方式中,在每电池恒定电压下使电池充电,该恒定电压对应于h2和o2至h2o的反应的电池电位的负性。充电电位可包含具有过电位的h2o电解电位以和热力学电压分量。也可在恒定电流、功率或负载或可变电压、电流、功率或负载下使电池充电。可随后在恒定电压、电流、功率或负载下使电池放电。可使用维持所要放电电压的负载达成恒定电压。在其它实施方式中,放电可为在可以电压、电流、功率和负载控制器中的至少一种控制的可变电压、电流、功率或负载下。电压和电流参数可包含向任一方向的匀变,(例如)诸如当充电时自最小向最大和当放电时自最大向最小。在一实施方式中,放电在通过使半电池还原电位与达成最佳化的还原电位匹配来最大化分数氢反应速率的条件下。在一实施方式中,在每电池恒定电压下维持放电,该恒定电压对应于反应h2和o2至h2o的电池电位。匹配电位可包含过电位以和热力学电压分量。在其它实施方式中,电压和电流中的至少一种为可变以达成导致分数氢催化剂反应在最大速率下发生的放电电压。电池电位为可包含过电位以和热力学电压分量的半电池还原电位的差。可调节频率和其它充电-放电参数以最大化分数氢催化剂反应速率。在一实施方式中,调节循环的波形以匹配适合负载或使负载与波形匹配。在一实施方式中,充电-放电频率可为标准的充电-放电频率,诸如动力栅格(powergrid)的充电-放电频率。频率可为50hz,或其可为60hz。可调节波形为交流,诸如60hz或50hz的交流。频率可包括两个电池之间不在充电-放电循环期的互易充电,以致一个电池可使另一电池充电,反的也然。在另一实施方式中,可整流电流。在放电期间可将电流以可为大致恒定电流的直流形式供应至负载。可定时多个ciht电池以在比任何既定个体电池的循环的持续时间均更长的持续时间内提供恒定电流。在一实施方式中,电池自h2o产生氢和氧中的至少一种。在一实施方式中,可在间歇电解期间分别在放电阳极和阴极上形成h2和o2。作为选择,自发地自h2o形成气体,其可与电解无关。驱使自h2o自发产生h2和o2中的至少一种的能量为分数氢的形成。气体h2和o2中的至少一种为形成催化剂和分数氢中的至少一种的反应物。该机制可包括电化学和离子化反应中的至少一种。可在放电期间形成催化剂(诸如h2o),其还与h反应形成分数氢。在放电期间形成h2o的反应可为在电池操作的任何阶段可逆,以致h在放电阳极处直接形成且视情况与通过电解形成的h无关。另外或其它,相对于在放电阳极和阴极处分别电解h2o为h2和o2,h形成可因释放的能量而为自发以形成分数氢,其中两个反应皆可同时发生。在一实施方式中,电池电压使得h2o电解随分数氢形成自发发生。分数氢反应可至少部分维持或支撑达成h2o电解的传播和分数氢形成反应的传播中的至少一种的电池电压。在一实施方式中,电池电压为约0.8v±0.5v。可以约0.8v±0.2v的电池电压在约280℃至500℃的温度范围内操作包含[ni/具有视情况选用的基质(诸如mgo)的lioh-libr/ni]和一定量(asupplyof)h2o的示例性电池。可通过间歇电解和随分数氢形成的自发电解中的至少一种辅助电压。间歇电解的示例性电池波形可包含充电至0.8v±0.2v且当电池放电时维持彼电压持续设定时间的步骤。电池波形可在诸如在恒定电流下的条件下使电池还放电至诸如0.6v±0.2v的限制电压或持续诸如4秒±3秒的限制时间。h2o的自发电解可具有一或多个中间步骤,其包括阳极材料、电解质和电池中的固体、液体和气体中的至少一种的反应。举例而言,h2o可与阳极金属m反应形成mo和h2。示例性固体、液体和气体为固体基质,诸如mgo、lialo2、li2tio3、livo3、ceo2、tio2和本发明的其它固体基质;h2o2;o2、co2、so2、n2o、no和no2。作为选择,电解质可经氧化和还原中的至少一种,且h2o也为反应物。示例性自发h2o电解反应为放电阳极:2h→2h(1/p)(184)其中例如通过方程式(171)的反应来形成h2o催化剂。放电阴极:总反应可为h2o→1/2o2+2h(1/p)(186)h2o→1/2o2+h2(187)其它示例性自发h2o电解反应为放电阳极:2oh-→h+hoo-+e-(188)h→h(1/p)(189)其中例如通过方程式(171)的反应来形成h2o催化剂。放电阴极:hoo-+1/2h2o+e-→2oh-+1/4o2(190)总反应可由方程式(186)和(187)给出。放电阳极:3oh-→o2+h2o+h+3e-(191)h→h(1/p)(192)其中例如也通过方程式(171)的反应来形成h2o催化剂。放电阴极:1/2o2+h2o+2e-→2oh-(193)总反应可由方程式(186)和(187)给出。方程式(183)、(185)、(188)、(190)和(191)的氢和氧可分别根据方程式(171)和(172)反应形成oh-和h2o。其它氧物质(诸如氧化物、过氧化物、超氧化物和hoo-)和本发明中给出的反应(诸如方程式(138至153))可与h2o自发电解形成h、催化剂和分数氢中的至少一种的来源有关。在一实施方式中,可在放电阳极和阴极处形成h,其中在一个电极(诸如阳极)处优先形成分数氢,这是因为在那里形成了催化剂。示例性电池为具有ni放电阳极和nio放电阴极的电池,其中在ni电极处优先形成分数氢。除前述反应的外,放电阴极处的反应可为h2o至oh-和h2的还原,且阳极处的反应可为在以上反应中所给出的oh-的氧化且可还包含形成阳极的金属氧化物的反应。作为选择,可在阴极处还原诸如金属氧化物(诸如nio)的氧化物。还原也可包括其它反应物,诸如h2o。示例性还原反应为nio至ni和包含氧的负离子(诸如氧离子、过氧离子和超氧离子)和nio和h2o至ni和氢氧化物的还原。另外,在一实施方式中,在放电阳极处形成催化剂(诸如h2o)。在一实施方式中可以连续放电模式运作电池,其中h和随后分数氢的自发产生足以维持自电池的所要电输出。可将h2o供应至电池以维持电输出。或者且组合,可与根据本发明的系统和方法的间歇电解一起运作电池。可收集来自间歇或自发电解的任何过量氢用于另一商业用途。在一实施方式中,由来自分数氢反应的能量维持的过剩电流可表现为如方程式(183至193)的反应示例的水的自发电解或以此形式传播。在一实施方式中,包括h2o转化为分数氢、电和氧或包含氧的化合物或物质的分数氢反应可包含水解反应。在一实施方式中,控制水蒸气压以维持自发电解反应。可维持反应混合物的水蒸气压或组成以支撑维持自发电解的离子,诸如oh-、氧离子、过氧离子、超氧离子和hoo-中的至少一种。优先维持某些离子以促成水的电解、催化剂和h的形成和分数氢的形成。在方程式(183至193)的示例性反应中,维持水蒸气压以支撑用于形成分数氢的相应反应路径的超氧离子的稳态浓度。可使用水蒸气或蒸汽产生器来控制水蒸气压,其中维持水库的温度于系统的最低温度下。系统可包含水产生器、至电池的水蒸气线和电池。与反应物处于平衡或在稳态下的水蒸气压可在约1微托至100atm、约1毫托至1atm或约1托至100托的范围内。电解质可为熔融盐;或碱性水溶液,诸如氢氧化物或碳酸盐电解质(诸如碱金属氢氧化物或碳酸盐或其以任意所要比率的混合物)水溶液。诸如水性电解质的电解质可包含m2co3、moh、m2so4、m3po4、mno3(m=碱金属)的混合物。示例性电解质为koh、k2co3、naoh、na2co3、lioh和li2co3或其混合物,其可在约0.01m至饱和的浓度范围内。在脉冲或间歇施加电压或电流电解实施方式中,阴极和阳极中的至少一种可包含二功能电极。电极可包含不同材料以达成所要反应。各阴极和阳极对于所要氧化或还原反应可具选择性且可为以下的一种或组合:过渡金属或合金,诸如ni或lani5;碳;经碳涂布的ni;经贵金属掺杂的碳,诸如pt/c或pd/c;或经其它金属掺杂的碳,诸如经mo或ni掺杂的碳;pt-ni合金;经pt涂布的ni、ag、pb;和贵金属或合金,诸如pt、pd或au。具有氧化和还原的适当能力的其它稳定导体为本领域技术人员所已知的导体。氢电极(诸如负极)可包含氢溢出催化剂(诸如pt或pd/c)或经氢解离体掺杂的其它大表面积载体。氢电极可包含提供低h2析出的过电位的金属或合金,诸如ni、fe、co和mo中的至少两者的合金,诸如ni35.63fe24.67mo23.52co16.18或类似比率。电极可为可经导体掺杂的碳化物、硼化物或氮化物,诸如zrc或tic;碳黑;ac、zrc、tic、tin、ti3sic2、ticn、sic、yc2、tac、mo2c、wc、c、hfc、cr3c2、zrc、vc、nbc、b4c、crb2、zrb2、gdb2、mgb2和tib2。电极可包含二功能和双金属阴极和阳极中的至少一种。氢电极或阳极可包含ni,诸如nicelmet、ni纤维垫、ni粉末;mo、mo纱网、mo纤维垫、mo粉末;或其任何组合;或其它大表面积材料。可通过形成至少一种氧化物涂层且并入来自电解质的物质(诸如碱离子)(诸如在形成示例性锂化氧化镍的情况下)来活化电极。可通过在至少一种部分氧氛围中操作电极和通过暴露于氧源来形成氧化物涂层。可以初进料的氧(其随时间耗尽)使电池间歇地充电和放电。耗尽可利用惰性气体(诸如稀有气体或n2)的流。可通过在适合氧化溶液中预处理电极(诸如阳极)来形成氧化物涂层。在ni上形成氧化物层的示例性适合溶液为过氧化物的碱性溶液,诸如0.6mk2co3/3%h2o2。活化可改变至少一个半电池反应的电压,以致形成分数氢的反应变得更有利。活化可包含涉及电解质的半电池反应的电压变化,其中形成分数氢的催化剂反应变得有利,当不存在活化时,其为不利。在一实施方式中,电解质为与电池的半电池反应有关的至少一种且为形成催化剂和h中的至少一种的反应物。活化可包括使催化剂在其自电解质形成期间的能量一致以匹配自氢接受能量以形成分数氢所需的能量。示例性电解质为碱金属氢氧化物或盐的混合物(诸如氢氧化物和另一盐(诸如卤化物)的混合物)。活化电池的示例性电解质混合物可包含lioh-libr、naoh-nabr、koh-kbr和氢氧化物和卤化物(诸如碱金属卤化物)的其它组合。包含形成以活化电极用于形成分数氢的氧化物涂层的本发明的其它金属可充当氢电极或阳极。在另一实施方式中,可活化电解质。活化可通过暴露于氧或氧源进行。活化可包含形成氧物质,诸如氧化物、过氧化物和超氧化物中的至少一种。电解质可包含氢氧化物(诸如碱金属氢氧化物)且可还包含另一盐(诸如卤化物(诸如碱金属卤化物))。通过在诸如约100℃至1000℃的范围内的高温下暴露于氧而活化的示例性电解质为koh-kbr。氧物质的形成可改变碱性,其促成分数氢形成。在另一实施方式中,通过活化改变半电池反应和电压中的至少一种以促成分数氢形成。在一实施方式中,添加氧或氧源至电池以导致活化。氧可呈痕量(诸如在0.1ppm至10体积%范围内),但足以维持电极(诸如阳极)上的氧化物涂层以增进分数氢反应。增进的机制可包含以下中的至少一种:提供原子h和使至少一个半电池的半电池反应电压一致以匹配更有利于使h催化剂形成分数氢的电压。氧可影响半电池电压,诸如o2还原反应(诸如o2和h2o至oh-的反应)和阳极形成h2o的反应中的至少一种。影响可经由h和o化学反应为直接或通过以诸如形成氧化物涂层的方法改变电极表面而为间接。氧化物涂层可影响至少一个半电池反应的过电位,从而导致分数氢形成反应变得更有利。示例性电极为包含ni、ni-al或ni-cr合金(诸如约10%cr)中的一种的阳极和包含nio、ni、co、coo、ag和cu中的至少一种的阴极。ag阴极可为分散于碳上的ag粒子。最佳负载在约20重量%至30重量%范围的内。阳极可包含形成氧化物的金属,其中每至少一种金属原子或氧原子的生成自由能为大致与自h2和o2形成h2o的生成自由能相同。能量可在约10%至300%或约10%至100%或约10%至50%内匹配。示例性金属为ni、mo、cd、sn、w和pb。其它适合阳极金属或其合金为选自以下的组的至少一种:cu、ni、cuni、nimo、cumo、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和sn。在一实施方式中,阴极和阳极皆为实质上浸没,以致在放电期间消耗的氧中若非全部则大多数系在间歇电解电池的电解期间产生。示例性电池为[cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl或sn中的至少一种/lioh-libr/ni/nio,间歇电解]。在一实施方式中,可磁化至少一个电极(诸如阳极)。磁化电极可包含铁磁金属,诸如ni、fe、co或合金。在一实施方式中,阳极可包含不同材料(诸如导体(诸如金属))的层。阳极可包含双金属或多金属电极。一个层可为提供使分数氢反应传播的有利能量建立最佳电压,且另一层可载运电流。形成双金属电极(诸如阳极)的示例性材料为ni、mo和h242合金中的至少两者。阴极也可包含多个层,诸如多金属(诸如双金属)电极,诸如包含ni和ag或本发明的阴极材料的其它组合的电极。阴极可包含氧还原电极,诸如氧化锰,诸如mno2/c、mn2o3/c或mnooh。其它适合o2还原阴极为pt/c或pt合金/c(诸如ptru/c)、la0.5sr0.5coo3/c、cotpp/c、la0.6ca0.4coo3/c、pt/cnt/c、pr0.8ca0.2mno3、cotmpp/c、lamno3/c和mnco2o4/c中的至少一种。因为在间歇循环期间放电阳极也充当电解阴极,所以除常规电极的外,可使用不同于常规碱性燃料电池中的放电阳极材料。候选物为其它过渡金属,诸如ti和v;内过渡金属和合金,诸如nb和hg和汞齐(诸如aghg);稀土金属和合金,诸如lani5;和iii、iv、v和vi族金属或非金属和合金。在一实施方式中,放电阳极包含形成稳定氢化物的材料。适合阳极材料包含多孔材料,诸如粉末。粉末可包含稳定剂或活性损失的抑制剂。活性损失可来自通过诸如烧结的机制的表面积损失。适合稳定剂或抑制剂为例如合金,诸如ni-cr合金(诸如约2重量%至10重量%cr);和添加至多孔ni或co的氧化锆(诸如20重量%zro2)。其它适合阳极材料包含life5o8、lacro3、mno和经nb或ta掺杂的tio2、镀ni或cu的陶瓷(诸如lialo2或al2o3和srtio3)。适合阴极材料包含nio、coo、mnio2、m2nio2、mcoo2、m2coo2、mfeo2、m2feo2、li2mno3、mg-li2mno3、mn-lifeo2、lamno3、srtio3、licro2、lialo2、lanio3、lacoo3、zr-zno、mm'o2、m2m'o2、mm'ox、m2m'ox(x=整数,m=碱金属,m'=过渡金属或其它金属(诸如al))和经镁掺杂的m2m'ox(诸如life1-ymgyo(y>0.03))。在一实施方式中,电极孔隙率在约20%至95%或约50%至75%范围的内。孔隙直径可在约1μm至50μm或约3μm至10μm范围内。电极(诸如阴极)的适合氧还原反应(orr)催化剂包含ni、ni-al合金(诸如约5原子%至15原子%al、ni3al)和ni-nb合金、mno2、ag、混合价数coox-mnox、金属四甲氧基苯基卟啉(诸如(cotmpp、fetmpp-cl/c))、金属氮化物和过渡金属的混合氧化物(诸如尖晶石、钙钛矿和烧绿石(诸如a2b2o6o'))中的至少一种。在一实施方式中,示例性orr催化剂为基于个体氧化物或混合物或具有尖晶石、钙钛矿或烧绿石结构,诸如为nio、nio/ni、nio+dy(例如约1重量%至10重量%)、co3o4、la2o3、mgo和fe2o3中的至少一种、锂化nio、于载体(诸如ptfe)上的ni、mno2、ag、co3o4、la2o3、lanio3、尖晶石ab2o4(诸如a=mn,b=co)、nico2o4、lamno3和lanio3。阳极和阴极中的至少一种可为锂化nio,其中本发明中的ni电极的名称可包含至少部分nio和视情况部分锂化或经锂掺杂的nio以和ni。电极(诸如orr阴极)可包含co-酞菁和类似化合物,诸如co-c-n和fe-c-n;pt或其它贵金属或合金,诸如pt与fe、co或ni、pd、pd合金(诸如pd-fe、pd-co、pd-co-au和pd3fe/c纳米粒子)、ru或钌化合物(诸如结晶谢弗雷尔相(chevrel-phase)硫族化物(例如m6x8,其中m=高价过渡金属且x=s、se、te;(mo,ru)6se8)、纳米结构化ru和ru-se簇合物、ru-n螯合物、ru硒化物(诸如mo4ru2se8和ruxsey));碳;和经掺杂的碳纳米管和石墨薄膜(graphene)(诸如经n掺杂的碳纳米管)。电极可还包含碳黑、粘合剂、集电体和特氟隆(teflon)薄膜。可使用溶胶-凝胶和逆微胞方法来形成催化剂在碳上的均匀大表面积分布。电池可还包含对于离子交换为选择性的隔板。离子可为碱性电池的氢氧离子。在适合示例性实施方式中,薄膜可包含含有侧位四级胍基的聚(伸芳基醚砜)。电极可包含用于氧还原和析出的复合电极。后者可用于例如间歇电解电池。电极可为能够氧还原和析出的二功能,其中通过相应独立催化剂层提供活性,或电催化剂可为二功能。电极和电池设计可为此项技术中已知用于金属-空气电池(诸如fe或zn-空气电池)的设计或本领域技术人员所已知的其适合修改。适合电极结构包含集电体、可包含碳和粘合剂的气体扩散层和可为二官能催化剂的活性层。作为选择,电极可包含于集电体的一侧的o2还原层和于另一侧的o2析出层。o2还原层可包含与氧源接触的外部气体扩散层和与集电体接触的多孔疏水性催化剂层;然而,o2氧化层可包含于层的一侧与电解质接触的多孔亲水性催化剂层和于另一侧的集电体。二功能空气电极可包含la1-xaxfe1-ymno3(a=sr或ca)、la0.6ca0.4co0.8b0.2o3(b=mn、fe、co、ni或cu)、la0.6ca0.4coo3-d和la0.7ca0.3coo3-d。其它示例性or催化剂和二功能催化剂阴极为pdo2/pdo3、碳化物(诸如tac+wc+w2c+tic的混合物)、co/经ce涂布的ni、mno2+c+ptfe;异丙醇mn+活性c+12%ptfe;5%mno2+75%c(30%ec-600jd和70%ab-50的混合物)+20%ptfe;5%mno2(mn3+/mn4+)+70%c(60%pwa+40%碳黑)(ptfe-特氟隆30b);gdl:30%ec-600jd+70%ab-50;mno2+c(活性碳+bp2000)+ptfe;粒度分布mno2—20μm至26μm30%mno2+20%活性碳+20%碳黑+30%ptfe;20%mno2+66%c+14%ptfe;催化剂层:20%mno2+70%活性碳+10%ptfe;gdl:15%碳黑+85%ptfe;11%γmno2+41%c(bp2000)+48%ptfe;mno2阴极+ptfe+2%至20%吸收材料(诸如用于阳极的胶凝材料);mno2;ag/cnc;于ni泡沫上的ag;agw2c/c;agmno4+5%至10%mno2+c+ptfe;雷尼(raney)银催化剂+ptfe=5:1(重量%)(24mgcm-2);ag2o+10%lanio3;5%ag+15%bp2000+10%daxad+60%特氟隆rpmt-30;50%(20%cotmpp/c)+50%(15%coox+5%mnox/c);2.5%mnox+7.5%coox/c;4%cotmpp+15%bp2000+60%特氟隆rtmt-30;mno2和/或agno3(pt、co3o4);10%cotmpp/c+纳菲(nafion)+fep+经fep涂布的ptfe纤维;cotmpp+mnox/c;60%mn4n/c+ptfe;nico2o4尖晶石;mnxco3-xo4+ptfe(0<x<1)尖晶石;钙钛矿;lamno3;lacoo3;lanio3;lacro3;lafeo3;la0.8sr0.2feo3;la0.6sr0.4fe0.6co0.4o3;la0.6sr0.4fe0.6mn0.4o3;lanio3;lacosro3;pb2m2-xpbxo7-y;ni、co、氢氧化fe+碳黑+ptfe;ag+pt+mno2+c+ptfe10%pt/c;铁-空气燃料电池(类似于zafc),具有碱性电极:cuso4、niwo4、wc+20%co;ws2+wc或wc+1%至20%co;ws+c+ptfe;wc+ag+cptfe(fep);30份ag+30份wc(经12%co涂布)+32份ptfe+90份碳黑;3%(5%至10%)ag(orr)+约[7%(10%至15%fewo4)+7%(10%至15%)wc+约12%(10%至15%)co(oer)+约54%c]+约22%ptfe,ag负载-2mgcm-2;[orr-ag]+[oer-cowo4+wc+ws2+nis+10%至15%co]+ptfe;orr催化剂[(0.3%至2%)cotmmp+(4%至10%)lani1-xcox+(1%至4%)ag+(18%至32%)coxoy+oer催化剂(1%至20%)wc+(1%至20%)co+(1%至7%)fewo4+(1%至7%)nis]+ab-50+ptfe;催化剂层:63.5%xc500+15%ptfe+13%mnso4+8.5%la2o3;15%ptfe+69%xc500+8%mno2+8%la2o3;58%xc500+15%ptfe+19%agno3+8%mnso4;gdl:65%c+35%ptfe;oer电极30%ag+70%lanio3;la1-xaxfe1-ymnyo3(a=sr、ca);la0.6ca0.4co0.8fe0.2o3,和具有本领域技术人员所已知的此类或类似物质组成和物质组成的比率的其它类似实施方式。在另一实施方式中,阴极可包含氧化物、氢氧化物或氢氧化合物,其可还包含阳极的金属。在适合实例中,阴极包含mo、w、hf或ta的氢氧化合物,且相应阳极分别包含金属或金属mo、w、hf或ta的合金。电极(诸如阳极)可包含单独或经另一金属掺杂的ni垫、箔、粉末或线,该另一金属诸如为贵金属、过渡金属、内过渡金属(诸如mo)、稀土金属和iii、iv、v或vi族金属中的至少一种,诸如pt、ru、rh、pd、ag、la、hf、hf合金(诸如hf与zr、fe、ti、nb、ta、ni和w中的至少一种)、re、ir、au、co、mn、cu、zn、al、sn、pb、bi和te。阳极可包含金属或/和其合金中的至少一种,诸如镍或镍合金,诸如ninb、nicr、nico、nicu、moni、hfni、tani、wni、vni、zrni、cdni、nbni和tini;sn或sn合金,诸如snag、snal、snas、snau、snba、snbe、snbi、snca、sncd、sncd、snce、snco、sncr、sncu、snfe、snga、snge、snhf、snhg、snin、snk、snla、snli、snmg、snmn、snna、snnb、snnd、snni、snp、snpb、snpd、snpr、snpt、sns、snsb、snse、snsi、snsr、snte、snti、snu、snv、snyb、snzn和snzr;al或合金,诸如alas、alau、alb、alba、albe、albi、alca、alcd、alce、alco、alcr、alcs、alcu、aldy、aler、alfe、alga、algd、alge、alhf、alhg、alho、alin、alk、alla、alli、almg、almn、almo、alna、alnb、alnd、alni、alpb、alpd、alpr、alpt、alpu、alre、alru、alsb、alsc、alse、alsi、alsm、alsn、alsr、alta、alte、alth、alti、altimo、altl、alu、alv、alw、aly、alyb、alzn和alzr;hf或合金,诸如hf与zr、fe、ti、nb、ta、ni和w中的至少一种,诸如hfal、hfb、hfbe、hfc、hfco、hfcr、hfcu、hffe、hfge、hfir、hfmn、hfmo、hfnb、hfni、hfo、hfre、hfsn、hfta、hfth、hfti、hfu、hfw、hfzr和hfin;mo、mo合金或化合物,诸如mosi2、tzm(mo(约99%)、ti(约0.5%)、zr(约0.08%))、mob、moc、mocu、moco、mocr、mofe、moge、mohf、moir、moos、monb、moni、mopd、mopt、more、morh、moru、mos、mosi、mota、moth、moti、mou、mov、mow、氮化钼、nicrmotanb和moy;cr、cr合金;w、w合金,诸如wal、wb、wc、wco、wcr、wfe、whf、wmo、wnb、wni、wos、wpb、wpd、wpt、wre、wrh、wsi、wta、wti、wv和wzr;ta和ta合金,诸如taal、tab、tac、taco、tacr、tafe、tahf、tamo、tanb、tani、tapd和tarh;钒合金,诸如vb、vcu、vfe、vga、vla、vmn、vmo、vnb、vni、vpd、vpt、vre、vrh、vsi、vta、vti、vu、vw、vy和vzr;在电池温度下形成不稳定氧化物的金属合金,诸如ag或hg合金,诸如agmo、agni、hgmo、hgni或aghg。其它示例性合金为motial、moval、nizrmo、nimgmo、nialmo、nicumo、nimosi、nicrsi、英高镍合金(inconelalloy)(诸如625(21%cr、9%mo、4%nb-ni合金)、英高镍(inconel)622、c-276和686)、赫史特(hastelloy)合金(赫史特c22)、ni-cr-mo-w合金、56ani-22cr-13mo-3w-3fe-2.5*co-0.50*mn-0.35*v-0.08*si-0.010*c(a为平衡*最大)、碳钢、合金20、242或556(例如hayesint.);mg合金(诸如mgmo、mgag、mgal、mgbi、mgcd、mgaco、mgcu、mgfe、mgga、mggd、mghg、mgin、mgla、mgmn、mgni、mgpb、mgpr、mgsb、mgsc、mgsi、mgti、mgy、mgzn和mgzr)、tial、cu6co4、bmo合金、ca合金、la合金(诸如latial)、moag合金、mosi和mocr合金、snzrmo、crnimo、mnnimo、moti、mopb、tac合金、mos合金、包含ti、nb、fe、mo中的至少一种的合金、和tzm。电极(诸如阳极)可包含碳或合金,诸如coc、crc、cuc、fec、gec、hfc、irc、lac、lic、mnc、moc、nbc、nic、rec、sic、tac、tic、vc、wc、yc和zrc。其它示例性合金为momn、mosi-过渡金属(诸如mocusi、mocosi和monisi)、mosic、过渡金属-sic(ysic、lasic、zrsic、hfsic、nbsic、tasic、wsic)、monic、nimofe、mococ、mocuc、lanic、mohfni、nizrhf、motini、tinbmo、cocuc、cocusi、nizrta、nimota、nimow、nimonb、crmow、vnbta、tizrhf、lanimo、lanihf、lanita、lanimo、laniw、laninb、lanicr、laniv、laniti、lanizr、lanisc、laniy、nizrw、nizrnb、过渡金属-zr-mo(诸如motizr)、mosi、moc、ni-tzm、mozrni、lani5mo、lani5hf、lani5ta、lani5mo、lani5w、lani5nb、lani5cr、lani5v、lani5ti、lani5zr、lani5sc、lani5y和lani5c。比率可为任何所要,诸如对于双金属为约50重量%-50重量%且对于三金属为33重量%-33重量%-33重量%。示例性电池为[nimo、mosi、moc、ni-tzm、mozrni、rumo、rhmo、osmo/lioh-libr/nio或co2o3-cuo-nio,间歇电解]。在其它实施方式中,电极金属或合金可包含可通过电解(诸如通过电镀)或通过气相或等离子体沉积(诸如本发明的方法)而沉积的层或涂层。包含r-ni放电阳极的示例性电池为[r-ni/0.6mk2co3水溶液/纳菲或celgard/碳或ni,间歇电解]。在一实施方式中,电极可包含流化床,诸如三相流化床。在一实例中,电解质包含碱性溶液或熔融,且电极为具有穿孔ni板作为集电体的雷尼银,其中将氧源(诸如氧或空气)以最佳化功率输出至所要位准的流速馈入电极中。在另一实施方式中,阳极为r-ni,其中h2置换氧源。在电极材料可溶于电解质的情况下,可添加腐蚀抑制剂。抑制剂可包含诸如氧阴离子或卤离子的化合物,其包含阳极的金属,诸如mo、w、hf、ta和过渡金属(诸如ti)。举例而言,具有包含lioh的电解质的mo阳极可变得氧化以形成可溶于碱性中的moo2、li2moo3或li2moo4。可使得此产物达到饱和或将其添加至电解质以达成饱和以抑制腐蚀。在一实施方式中,li2moo3或li2moo4的浓度为约0.1重量%至10重量%或约0.5重量%至3重量%。作为选择,添加剂还抑制腐蚀,诸如硼酸锂;硅酸锂;mgo;moxn(x=卤化物,n=整数),诸如mobr2或mobr3;mos2;mose2;mote2;bi3m'mo2o12,其中m'可包含过渡金属,诸如fe或sc;m'moo4,其中m'可包含碱土或过渡金属,诸如mg、ca、sr、ba、mn、fe、co、cu和zn;或m'2moo4,其中m'为碱金属。m'moo4或m'2moo4可分别还充当催化剂源,形成m(oh)2或m'oh,其中oh-可与h反应形成催化剂h2o。添加剂可包含聚阴离子(诸如w或mo中的一种),包含聚钨酸盐或聚钼酸盐离子或化合物。在一实施方式中,阳极、阴极或电解质组分中的至少一种可包含w或mo青铜。在一实施方式中,添加剂可移动能斯特方程(nernstequation)的电位以促成水的形成,而不是阳极金属的氧化。在另一实施方式中,moo2、li2moo3或li2moo4添加剂包含基质材料,其中电极(诸如阳极)可包含除mo以外的金属或导体。示例性电池为[ni/lioh-libr+moo2、li2moo3或li2moo4/ni+空气;间歇电解]。在一实施方式中,阴极可包含包括阳极的金属(诸如mo)的化合物。示例性电池为[mo/lioh-libr/mo6se8或钼氢氧化合物,间歇电解]。在一实施方式中,阴极和阳极可包含同一金属、合金或元素的来源,其可自一个电极迁移至另一电极。阳极和阴极可在间歇充电放电期间周期性逆转,以致放电阳极周期性变为放电阴极。示例性迁移金属、合金或元素为cd、ni、cdni、mo和moni。因为mo溶解于碱中且ni不溶解,所以具有ni阳极、具有mo基质(诸如li2moo4)的示例性实施方式为[ni/lioh-libr(li2moo4基质)/ni-nio两个电极皆浸没,间歇电解]。在一实施方式中,可添加在阳极处形成稳定合金的化合物至电解质。一个实例为在包含mo阳极的电池(诸如[ni/lioh-librnibr2/ni-nio间歇电解])中与mo阳极形成稳定moni合金的可溶ni化合物(诸如nibr2)。在一实施方式中,可通过施加负电位以还原经氧化的放电阳极来使放电阳极再生。可在比导致再生的典型负电压更高的负电压下进行电解。因此,对于再生步骤使放电阳极成为电解阴极。可在此步骤期间产生氢以也造成过量氧化物还原,以致可使阳极恢复至功能状态。所施加电池电压的量值可在约0.5v至5v或约1v至2v或约1v至1.5v范围内。在另一实施方式中,电解质包含使氧化阳极元素沈淀的阴离子。举例而言,pbso4和pbf2不溶于h2o。在熔融盐电解质中同样也可为此情况。因此,在一示例性实施方式中,在pb阳极的情况下添加lif或li2so4至电解质。其它实例为ag的硝酸盐、ag和pb(ii)的氯化物、溴化物和碘化物,其中添加此类离子至具有包含ag或pb的阳极的电池的电解质,或增加复盐(诸如libr-lioh或licl-lioh)的浓度。在电解质(诸如lioh)可与电极(诸如阳极,诸如mo阳极)反应的情况下,可添加至少一种产物(诸如li2o和moo2中的至少一种)以抑制腐蚀。可添加s源(诸如s或包含s的化合物(诸如硫化物或硫化氢))至电解质以减少电极腐蚀。s源(诸如li2s、mgs或lihs)可充当h缓冲剂以将反应o物质转化为较小反应性物质,诸如将过氧化物转化为氢氧化物。s物质可包含可用氧物质(诸如o、oh、oh-、ooh、ooh-中的一种或多种)交换h的h缓冲剂。示例性反应为sh-+o→oh-+s(194)s物质可改变熔融碱性盐的碱性。s物质(诸如s)可充当分数氢的吸气剂。在一实施方式中,可保护至少一个电极(诸如阳极)免于腐蚀。防腐蚀电极(诸如阳极)可包含合金,诸如ni(诸如nicr)或mo(诸如moni或moc)的合金。电池可包含催化剂以将反应性氧还原产物(诸如过氧化物或其离子或超氧化物)转化为氢氧化物以保护至少一个电极(诸如阳极)免于腐蚀。适合催化剂为可于载体(诸如al2o3或碳)上的贵金属(诸如pt或pd)。其它适合催化剂为co或fe物质。作为选择,可使用h2o添加物以将过氧化物或超氧化物转化为氢氧化物。可将mo阳极嵌入催化剂或载体催化剂(诸如pt/al2o3)以形成氢氧化物。可通过使用抗腐蚀合金(诸如包含ni的耐腐蚀合金,诸如nimo)来避免由过氧化物和其它反应性氧物质的阳极腐蚀。也可通过使用浸没阴极或以其它方式用控制气体氛围或充当空气扩散屏障的固体电解质层限制o2压力来防止过氧化物腐蚀。在限制或排除电池氛围中的o2的一实施方式中,不浸没阴极。可通过使用电解质盐混合物来维持动力学,该电解质盐混合物具有考虑氧还原速率趋势lioh~naoh<<koh而为适当的氧还原速率。也可用温度控制速率,其中速率随温度降低而降低,反的也然。可通过使用包含氧还原催化剂的阴极降低过氧化物浓度,该氧还原催化剂促成oh-、四电子还原、经过氧化物路径、二电子还原路径。因为水为反应物,所以用较高h2o压力促成oh-路径。又,水与过氧离子反应且通过转化为oh-使其去活化。另外,可在阳极或阴极处使用过氧化物至氢氧化物转化催化剂以保护阳极免于过氧化物腐蚀。pt(诸如pt/al2o3)或fe物质(诸如铁卤化物)或co物质(诸如钴钙钛矿)可充当转化催化剂。也可通过提供物质与反应性氧中间物反应或通过化学保护阳极来保护阳极。举例而言,可通过诸如施加h2氛围或通过氢渗透的方法在阳极处提供还原性反应物(诸如额外氢)。添加剂(诸如与过氧化物反应形成例如moo42-的moo2或反应为co32-和1/2o2的co2)为其它示例性反应物。可通过使金属与hg(诸如高达50%)混合达成阳极金属腐蚀的抑制。示例性汞齐阳极为aghg。在一实施方式中,以保护层(诸如mos2、mose2或特氟隆中的一种)涂布可腐蚀阳极(诸如mo或tzm)。在另一实施方式中,间歇电解循环的充电电压为足够高,可导致一些金属自阳极溶解于电解质中或以待电镀于阳极上的化合物(诸如盐)形式添加至电解质。在阳极包含mo的情况下,所添加的盐可为钼酸盐化合物,诸如li2moo3或li2moo4。电解质可包含可包含氢氧化物的熔融共溶盐。电解质可包含熔融共溶盐,诸如碱金属卤化物盐混合物,向其添加氢氧化物。示例性电解质为licl-kcl或licl-kcl-lif,向其添加lioh。lioh可为少数物质。添加剂可为li2moo3或li2moo4。摩尔%可为任何所要或在约0.1摩尔%至20摩尔%或约1摩尔%至3摩尔%范围内。电极可为mo或于其上电镀mo的另一金属(诸如ni)。电池电压可为高于1v以再电镀mo。电池电压可为约0.9v至2v的范围或约大于1.14v。在一实施方式中,可在多个电压(诸如第一以电镀阳极金属和第二以产生氢)下进行电解。在一实施方式中,阳极金属形成可溶化合物或络合物(诸如氢氧离子络合物)。可在间歇循环的电解阶段期间将金属电镀于阳极上。适合络合物为zn(oh)42-、sn(oh)42-、sn(oh)62-、pb(oh)42-、cr(oh)4-、al(oh)4-和sb(oh)4-,其中放电阳极包含相应金属。待自电解质再镀的适合示例性金属为cu、ni、nicu、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、te、tl和sn。在ciht或电解电池的一实施方式中,至少一个电极包含导电化合物,诸如配位化合物。可将配位化合物固定于集电体(诸如金属,诸如ni或pt)上。配位化合物可包含聚合物,其中聚合物可给配位化合物提供导电性。配位化合物可包含夹心化合物,诸如环戊二烯基化合物,诸如过渡金属离子(诸如fe或ni)中的一种。适合示例性化合物和聚合物为正丁基二茂铁、1,1'-二甲基二茂铁、二茂铁衍生物、诸如1,2,4-三唑na的盐、诸如咪唑na的盐、1,2,5-三氰基苯(tcb)、四氰基对醌二甲烷(tcnq)、聚苯胺、聚噻吩、聚乙炔、聚吡咯、聚乙烯二茂铁、聚乙烯二茂镍或聚乙烯二茂钴、碳纳米管和富勒烯中的至少一种。电池在化合物或聚合物的热分解温度以下(诸如在低温下)操作。ciht电池可在约10℃至150℃的温度范围内操作。电池可包含液体电解质(诸如水性电解质),该液体电解质也可包含其它溶剂(诸如有机溶剂)和离子型液体且可还包含诸如本发明的溶质的溶质。电解质可为中性、碱性或酸性。示例性电解质为水性氢氧化物(诸如碱金属氢氧化物,诸如koh)、碳酸盐(诸如碱金属碳酸盐,诸如k2co3)和酸(诸如h2so4或h3po4)。在一实施方式中,至少一个电极可包含至少一种金属氧化物、氢氧化物或氢氧化合物或其混合物,诸如过渡金属氧化物、氢氧化物或氢氧化合物。可将氧化金属电镀于导电载体上。示例性金属氧化物、氢氧化物和氢氧化合物为可电镀于ni上的cuo、feo、fe2o3、feooh、nio、niooh、ni2o3和co2o3中的至少一种。在一实施方式中,阳极与电解质和空气还原产物(诸如来自水和o2的还原的至少一种)中的至少一种反应。反应可释放氢。氢可经历与电解质反应形成催化剂和反应形成分数氢中的至少一种。可通过由间歇电解还原阳极氧化产物来使阳极再生。在一示例性实施方式中,mo或mo合金金属阳极与氢氧化物电解质(诸如lioh)反应形成金属氧化物。反应产物可为moo2、li2o、li2moo3和氢中的至少一种。氢可与oh-反应形成催化剂(诸如h2o)。催化剂可与额外h反应形成分数氢。可通过应用间歇电解在阳极上置换mo。可使用适合选择性电压和电流参数来电镀溶解于电解质中的钼的氧化物。随后,在间歇循环期间,通过化学反应来形成h2,随后形成分数氢(其产生电功率),且通过电解使电池阳极间歇地再生。在一实施方式中,可用氢氛围来保护阳极免于腐蚀。可通过施加氢气或通过经由薄膜氢渗透来提供氢,其可至少部分构成阳极。也可通过浓缩通过间歇电解原位形成的氢提供氢保护。阳极包含至少一种类型的h结合中心(诸如金属中心)和至少一种载体,其中载体使相应中心表面上产生的氢可移动以移动至且优先结合至中心以增加彼等中心上的有效h原子浓度。适合示例性中心为金属,诸如本发明的阳极金属和合金,诸如mo、ni、pd和pt,且适合示例性载体为本发明的载体,诸如碳、碳化物、氮化物和硼化物。示例性电池为[碳、ni碳、mo碳、nimo碳、ptc、pdc/lioh-libr/蒸汽碳(steamcarbon,sc)、nio、ptnio或agnio;空气阴极或浸没阴极]。电池可包含电解质基质材料(诸如li2moo4)或薄膜间隔剂(诸如特氟隆)。示例性电池为[碳粉末(诸如石墨、ac、碳黑、玻璃石墨(glassycarbon)、vulcanxc-72)+mo或ni粉末/特氟隆薄片-lioh-libr/蒸汽碳]和[碳粉末+mo粉末/li2moo4+lioh-libr/nio]。阳极(诸如包含碳的阳极)可包含锂离子电池的阳极或其它变化形式,诸如本发明的或本发明人在先美国专利申请案中的阳极,所述申请案诸如为hydrogencatalystreactor,pct/us08/61455,pct4/24/2008申请;heterogeneoushydrogencatalystreactor,pct/us09/052072,pct7/29/2009申请;heterogeneoushydrogencatalystpowersystem,pct/us10/27828,pct3/18/2010申请;和electrochemicalhydrogencatalystpowersystem,pct/us11/28889,pct3/17/2011申请,所述申请案以全文引用的方式并入本文中。在一实施方式中,适合阳极对水和空气是稳定的。可将金属浸渍于碳基质中。金属可为簇合物,诸如纳米簇合物。碳可充当阳极且吸收氢以给金属提供还原环境。还原环境可防止金属腐蚀。可以用能分解活性氧物质(诸如过氧化物)的材料(诸如贵金属)至少部分或稀薄地涂布阳极的外表面。在一实施方式中,电解质包含吸湿化合物,诸如可自诸如氛围的来源吸收h2o的盐。化合物可维持水合状态以充当ciht电池的电解质。水合电解质在低于干燥盐(诸如低共熔混合物,诸如lioh-libr)的熔点的温度的温度下可为离子导电。电解质可包含盐的混合物以维持诸如li2co3、li2o、lioh和libr的混合物的浆液。可添加其它吸湿添加剂,诸如本发明的吸湿添加剂,诸如kmgcl3、mgcl2、cacl2和koh。水合化合物可充当埋藏(interment)电解电池的电解质。作为选择,氢电极可包含氢-喷射电极。电池可在低温下(诸如在室温至非水合电解质的熔点的温度范围内)运作。可在电解期间在阳极处形成氧且在阴极处形成氢。可通过自诸如o2气体或空气的来源喷射来提供o2。在电解截止或放电阶段期间,o2和h2o可在电解阳极处经还原以形成oh-(方程式(172))且可使oh-氧化且与h反应以在电解阴极处形成h2o(其可充当形成分数氢的催化剂)(方程式(171))。因此,电池可在充电和放电期间维持恒定极性,电流的极性在各循环阶段期间逆转。输出可为功率或经调节的波形。在另一实施方式中,由方程式(171)给出的反应在两个电极处可逆地发生,除分数氢产物为不可逆以外。(本发明中给出的间歇充电-放电电池的名称呈放电模式,诸如[放电阳极/电解质/放电阴极]。在一实施方式中,此名称对应于[负极/电解质/正极],但在其它实施方式中可使极性逆转。电流可在间歇电解循环的放电和充电阶段期间间歇地逆转。)示例性电池为[pt/0.1m至饱和lioh水溶液/pd+空气,间歇充电-放电]。在其它实施方式中,两个电极皆为ni或一个为ni且另一个为不同材料(诸如pt、pd、dsa材料、其它贵金属、碳、ag、本发明的材料或于载体上的此类材料或本发明的其它材料中的一种或多种,诸如pt/ti),且电解质为约0.1m至饱和的浓度范围内的koh或k2co3水溶液。特定实例为[ptti/0.1m至饱和k2co3或koh水溶液/ni+空气,间歇充电-放电]。在一实施方式中,可在恒定电池电压(诸如约1至1.6v或约1.4v)下进行水性电解第一时间段(诸如约1秒至10秒或2秒),且可在恒定电流(诸如约0.01ma/cm2至10ma/cm2或0.2ma/cm2)下进行放电第二时间段(诸如约1秒至100秒或约10秒)。在具有长持续时间充电或放电时期(诸如>5秒)中的至少一种的一实施方式(诸如包含碱性电解质的实施方式)中,放电阳极包含在电解循环期间形成氢化物的材料,诸如lani5h6或pd。在一实施方式中,放电阴极可包含本发明的其它者,诸如水合物、氧化物、过氧化物、超氧化物、氢氧化合物和氢氧化物中的至少一种。阴极可为不溶于电解质(诸如熔融盐电解质)的金属氧化物。适合示例性金属氧化物为nio;coo;pbo2;ag2o2;ago;ruo2;mno2;mnio2;m2nio2;mcoo2;m2coo2;lifeo2;mfeo2;m2feo2;li2mno3;mtio3;m2tio3;litio3;m3tao4;m2wo4;k2wo4;li3tao4;m3vo4;li3vo4;mg-li2mno3;mn-lifeo2;lamno3;srtio3;licro2;lialo2;lanio3;lacoo3;zno;mgo;m2sno3;li2sno3;zr-zno;mm'o2;m2m'o2;mm'ox;m2m'ox(x=整数,m=碱金属,m'=过渡金属或其它金属(诸如al));经镁掺杂的m2m'ox,诸如life1-ymgyo(y>0.03);经掺杂n型钙钛矿和相关化合物,诸如经nb5+掺杂的catio3和srtio3和经nb5+或ta5+掺杂的pbzro3;钡铁氧体(bariumferrite);钇铁石榴石;p型钙钛矿;诸如镧-viii族化合物;ni、cu、co、mn、cr、zn、zr、y、al、u、ti和fe的金属或化合物;和v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w的组的氧化物。阴极材料(诸如mm'o2、m2m'o2)可在氧化环境(诸如空气或o2氛围)和包含m的电解质(诸如lioh、naoh或koh)存在下自m'原位形成。适合示例性金属氢氧化合物为alo(oh)、sco(oh)、yo(oh)、vo(oh)、cro(oh)、mno(oh)(α-mno(oh)锰榍石和γ-mno(oh)水锰矿)、feo(oh)、coo(oh)、nio(oh)、rho(oh)、gao(oh)、ino(oh)、ni1/2co1/2o(oh)和ni1/3co1/3mn1/3o(oh)。适合示例性氢氧化物为li、na、k、rb、cs、mg、ca、sr、ba、al、v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w的氢氧化物。涉及氢氧化合物(oxyhydroxide)的示例性放电阴极反应由方程式(130)给出。可在间歇电解的电解阶段期间使阴极再充电。电池可包含间歇电解电池、渗透电池、以化学或电解再生的电化学放电电池、氢喷射电池或其组合。在一实施方式中,可使渗透电池间歇地放电。在另一实施方式中,气体可自至少一个阳极穿透至阴极,反之亦然。随后,在放电期间,可切换至少一个半电池反应,以致o2(方程式(172))还原在电解阴极处发生且oh-氧化和与h的反应(方程式(171))在电解阳极处发生。随后,电流极性保持恒定,但电极的电压极性随循环期而切换或其在同一方向上的量值随循环期而变化。可将电极间距减至最小以促进气体穿透。可通过薄膜(诸如多孔烯烃薄膜,诸如celgard或碱相容纳菲膜)分隔电极。电极之间的电路可包含二极管以维持电流的恒定极性。在实施方式中,来自形成分数氢的功率表现为超过消耗电解功率的过量电和热功率中的至少一种。已自h接受81.6ev的分数氢催化剂h2o可分解为h2和1/2o2;因此,即使当不存在电解电压或电流时也可存在h2o电解的组分。此可以法拉第(faradaic)效率大于100%形式观测到且可为h2和o2气体源。o2和h2的每一种可在相应电解源电极处或在穿透的后在相应反电极处反应。在间歇放电的放电阶段期间,氧和氢的分数氢支撑反应可分别由(方程式(172))和(方程式(171))给出。在其它实施方式中,或在电池的操作期间形成的电池的其它催化剂可因催化剂的离子化和在形成分数氢的催化剂反应期间的能量释放而导致水电解。在一实施方式中,电解阴极可包含能够还原h2o和o2以形成oh-和h2中的至少一种以和在氢存在下氧化oh-为h2o的二功能电极。h2源可为阴极处h2o的还原。o2源可为来自电解阳极的穿透气体。阳极和阴极间隔可为较小,以致电解阳极处产生的o2扩散至阴极。可通过薄膜(诸如多孔烯烃薄膜,诸如celgard或碱相容纳菲膜)分隔电极。氧和氢的分数氢支撑反应可分别由(方程式(172))和(方程式(171))给出。反应可以可能在电极上的不同位点处的协同方式发生。两个反应皆可在间歇电解的电解期或放电期中的至少一种期间在电解阴极上同时发生。示例性二功能电极为经碳部分涂布的镍阴极,其可通过碳酸盐电解质(诸如k2co3)的电解来形成。氧化和还原反应的过电位在单独的电极区域上因碳涂层的量而为不同。在另一实施方式中,由h2穿透气体供应的电解阳极以二功能电极形式起此作用以至少在放电阶段期间形成分数氢。在一实施方式中,电池电流在放电阶段期间间歇地变为约零,其中因至少在放电阶段期间在阴极或阳极上发生的分数氢反应而释放额外热能。在另一实施方式中,具有电容的至少一个电极充当电子受体且在放电阶段期间被充电。电极可自h、oh-和h2o中的至少一种接受电荷,即氧化。氧化反应可包含方程式(171)的氧化反应。用于氧化的能量可来自分数氢的形成,其可为形成形成分数氢的反应物的协同反应的一部分。在一示例性实施方式中,将电荷储存于具有电容的电解阴极(诸如碳阴极或经碳涂布的镍阴极)上。可使充电电容在间歇电解循环的另一期中放电。放电可包括还原局部产生或穿透o2。还原反应可为由方程式(172)给出的还原反应。在一实施方式中,间歇充电和放电电池的电解阴极可显现厚的不导电氧化物涂层。ni电极上的示例性涂层为nio。在一实施方式中,可通过施加适合还原电池电压(诸如在nio情况下在约1v至1.5v范围内)来还原涂层。可将还原应用于放电阳极。可在恒定电压或适合电压下维持电解适合时间以充分还原氧化物涂层,以致实质上恢复电极导电性。随后,可再应用充电-放电循环。在高放电电流实施方式中,通过在可为恒定电压的峰值限制电压下充电来避免在放电阳极上形成氧化物涂层。可在充电期间限制电流。在限制至少充电电压和电流的一实施方式中,充电可为在恒定功率下。放电可为在恒定电流、负载、功率或电压下。在一实施方式中,使诸如[ni/lioh-libr/ni空气,间歇地充电放电]的电池在约0.8v至1.2v的电池电压范围(诸如恒定0.9v)内充电。作为选择,充电可为在约0.1mwcm-2至100mwcm-2的范围内的限制或峰值恒定功率下。示例性放电电流密度可在约0.001macm-2至1000macm-2、0.1macm-2至100macm-2和1macm-2至10macm-2的范围内。在一实施方式中,互换电解阴极和阳极以还原任何过量氧化物涂层。交换可为间歇性的。时期可不同于间歇电解的间歇充电-放电循环的时期。在一实施方式中,两个电极皆能够氢喷射,其中将氢交替地供应至一个电极和随后另一电极以还原在其作为氧电极操作期间形成的任何过量氧化物涂层。在诸如[ni/lioh-libr/ni+空气;间歇填充-放电]的电池的一实施方式中,通过此项技术中已知的方法机械或化学移除氧化物涂层(诸如nio涂层)。移除可随再使用电极而为周期性。在另一实施方式中,施加氢于氢可渗透电极(诸如阳极)的腔室。电池温度可低于相对于由电池产生的功率而发生显著渗透速率所处的温度。然而,低流量或阳极处因渗透所致的氢的存在可保护电极免于氧化(诸如氧化形成nio)。在另一实施方式中,间歇电解电池的电极能够且作为氢渗透电极操作,其中通过自诸如氢气的来源渗透将氢提供至电池;随后,将电极切换为电解模式。在一实施方式中,经切换的电极充当电解阴极和放电阳极。预处理可调节电极以按需要以间歇电解模式作用。在一实施方式中,当通过诸如渗透或喷射的方法将氢供应至电极(诸如放电阳极)时,同时进行间歇电解。作为选择,可提供包含h2的氛围至电池。可经由相应电极的选择性来达成所要氢反应和反电极反应(诸如本发明的反应)的选择性。举例而言,分别通过阴极和阳极的相应选择性来使得阴极氧还原反应和与oh-形成h2o催化剂的阳极氢反应的选择性具选择性。供应至阳极的氢可为保护性的,因为反应nio+h2→ni+h2o(195)是有利的。在另一实施方式中,增加电解的工作循环,以致产生足够氢以保护放电阳极免于腐蚀。选择参数以达成能量增益(诸如电能增益),同时产生抗腐蚀保护的足够氢。也可控制电池温度以改善腐蚀,同时控制通过诸如渗透和电解的方法供应的氢。可选择适用于电池的操作条件的抗腐蚀的放电阴极。对于小于约350℃至450℃的温度,阴极可包含ni。对于较高温度,可使用适合稳定阴极,诸如包含氧化物(诸如nio或coo)或载体ag(诸如ag-al2o3)的阴极。在一实施方式中,通过渗透供应的氢用以改变电池的电压和通过可基于渗透速率对电池电压的效应的回馈机制控制渗透速率中的至少一种。在一实施方式中,通过调节氢渗透速率调节电池电压。可通过诸如控制电池温度、穿过氢可渗透膜的氢压梯度、薄膜厚度、薄膜材料和通过调节电池电压中的至少一种的方法调节渗透速率。在一实施方式中,除控制渗透速率的外的调节电池电压的方法包含控制放电和视情况充电参数(诸如负载和施加电压和电流特性和参数),其中充电参数可关于间歇电解实施方式。在一实施方式中,维持电池电压在约0.5v至1.5v或约0.8v至1.2v范围内。控制电压范围以使在该实施方式的间歇电解的电解阶段期间形成的氢的产率最佳化。在另一实施方式中,通过控制负载控制渗透速率。在一实施方式中,渗透速率随负载的电阻减小而增加。在一实施方式中,渗透速率随放电电流而增加。可调节渗透速率以使来自形成分数氢的功率增益相对于自h2o形成h2的功率最佳化。在一实施方式中,通过在氧化环境(诸如氧气氛围)中退火ni电极来涂布保护性薄层nio涂层。控制涂层的厚度为产生碱性电解质的稳定性同时维持高离子导电性的厚度。在一实施方式中,可添加物质至电解质以稳定化电极(诸如阳极)。添加剂可形成更稳定ni化合物,诸如nif2或niso4。在另一实施方式中,物质可包含形成更稳定ni合金的金属或氧化物添加剂(诸如浸渍于nio中的ceo)。氧化铈的重量%可在约0.1%至5%或0.3%以1%范围内。在另一实施方式中,添加物质(诸如v2o5)以增加电解阴极处h2的产生,其中电解可为间歇且电解质可为熔融盐或水性。添加剂可为氧化物、氢氧化物或氢氧化合物,诸如本发明的氧化物、氢氧化物或氢氧化合物,诸如fe2o3或feooh。其它适合示例性添加剂为alo(oh)、sco(oh)、yo(oh)、vo(oh)、cro(oh)、mno(oh)(α-mno(oh)锰榍石和γ-mno(oh)水锰矿)、feo(oh)、coo(oh)、nio(oh)、rho(oh)、gao(oh)、ino(oh)、ni1/2co1/2o(oh)和ni1/3co1/3mn1/3o(oh)。添加剂可增加功率和保护电极(诸如阳极)中的至少一种。举例而言,添加剂(诸如可分别形成ni1-xmgxo和nife2o4的mgo或fe2o3)可稳定化电极(诸如阳极)的nio。在一实施方式中,放电阴极包含还包含mnxoy(x和y为整数)、nio、coo、ag、pt、pd、au、其它贵金属和mnio2(m=碱金属)中的至少一种的本发明的氧还原催化剂(诸如包含大表面积(诸如网)的ni)。其它适合氧还原电极为碱土钌酸盐、经锂掺杂的镧镍酸盐、ni-co尖晶石、pb-ru烧绿石、na-pt青铜、和ag/aghg。其它阴极材料包含中的至少一种。mnio2;m2nio2;mcoo2;m2coo2;lifeo2;mfeo2;m2feo2;li2mno3;mtio3;m2tio3;litio3;m3tao4;m2wo4;k2wo4;li3tao4;m3vo4;li3vo4;mg-li2mno3;mn-lifeo2;lamno3;srtio3;licro2;lialo2;lanio3;lacoo3;zno;mgo;m2sno3;li2sno3;zr-zno;mm'o2;m2m'o2;mm'ox;m2m'ox(x=整数,m=碱金属,m'=过渡金属或其它金属(诸如al));经镁掺杂的m2m'ox,诸如life1-ymgyo(y>0.03);经掺杂n型钙钛矿和相关化合物,诸如经nb5+掺杂的catio3和srtio3和经nb5+或ta5+掺杂的pbzro3;钡铁氧体;钇铁石榴石;p型钙钛矿;诸如镧-viii族化合物;ni、cu、co、mn、cr、zn、zr、y、al、u、ti和fe的金属或化合物。阴极可包含多孔材料的掺杂剂,诸如可包含纳米粒子的ni。掺杂剂可为本发明的氧还原催化剂。阴极可包含可经稳定化的nio。稳定化的适合方法为用诸如稳定金属(诸如钴)的材料的囊封。因此,氧还原催化剂可包含钴囊封的nio。氧还原阴极可经热、化学或电化学调节,诸如通过化学或热方法的氧化或阳极化或在其充当阴极前的阴极化。调节可为原位进行。可在随后减小的大电流下操作阴极,其中前一步骤调节阴极。电极(诸如阴极)可包含诸如碳、碳化物、氮化物、碳氮化物、腈或硼化物的导电基质或表面涂层或包含此类材料。在一实施方式中,电解阳极包含催化剂(诸如金-钯纳米粒子),其形成反应性氧物质(诸如hoo-或hooh);或包含氧的化合物(诸如pdo、ago、ag2o、ag2o3或hgo),其当电极充当放电阴极时在放电阶段期间以比o2更高的速率经还原。化合物可包含在充电和放电期间可逆地形成的金属的氧化物以提供氧至间歇循环的非电解放电期。化合物可具有小于h2o的生成自由能的生成自由能。放电反应可由方程式(145)给出。引线(诸如阴极引线)可为对电解质(诸如碱性电解质)和空气或o2稳定的材料。适合引线为贵金属线(诸如金线),其可被点焊至阴极。在一实施方式中,由于氧离子在koh电解质中的移动率更高,因此氧还原速率在包含koh的电解质(诸如熔融电解质)中比包含lioh或naoh的电解质大100倍。在一实施方式中,将机械搅拌源(诸如音波、超音波、旋转或此项技术中已知的其它源)施加于阴极和周围电解质中的至少一种以补偿较低离子移动率。在另一实施方式中,可通过诸如马达的装置旋转阴极。在另一实施方式中,机械搅拌阴极和阳极中的至少一种。在对于音波搅拌为约0.1mhz至1mhz或约10hz至100hz和对于超音波搅拌为1khz至100khz的频率范围中使电极音波或超音波地振动。功率可小于电池电输出功率且可为最佳化考虑因搅拌所致的输出贡献与相应搅拌功率消耗相比的功率增益的功率。在一实施方式中,电解质(诸如熔融或水性电解质,诸如熔融或水性氢氧化物或混合物)包含添加的h2o,其增加阴极处形成的氧离子的扩散以增加氧还原速率。电池可经加压以在接近沸点和沸点以上的温度下操作。可通过电解原位产生氢和氧。也可在压力下添加h2o、氧和氢中的至少一种至电池。电池电压可在约低于大气压至500atm或约2atm至100atm范围内。在另一实施方式中,通过使用至少一种其它盐以包含促进氧离子的更高移动率的混合物来增加熔融电解质(诸如包含氧阴离子的熔融电解质,诸如碱性电解质,诸如包含氢氧化物的碱性电解质)中阴极处形成的氧离子的扩散速率。在一实施方式中,电解质包含金属离子和阴离子的混合物,诸如碱金属、碱土和其它金属离子(诸如过渡、内过渡、稀土和iii、iv、v和vi族金属离子)中的至少一种。阴离子包含本发明的氢氧化物、硫酸盐、碳酸盐、硝酸盐、磷酸盐、卤离子和其它离子中的至少一种。在一实施方式中,氧离子移动率随电解质中的h2o含量增加而增加。在一实施方式中,适合电解质为吸湿的。适合吸湿盐为溴化锂、氯化钙、氯化镁、氯化锌、碳酸钾、磷酸钾、光卤石(诸如kmgcl3·6(h2o))、柠檬酸铁铵、氢氧化钾和氢氧化钠。在酸性水性实施方式中,吸湿电解质包含浓硫酸和磷酸。在其它实施方式中,电极包含对电池的电解质和操作条件为足够稳定的导体。碱性电池的适合电极为ni。可在碱性、酸性或大致中性电解质(其为水性或熔融盐)的情况下使用其它导电金属、合金、化合物或元素,诸如c、al、ga、in、ge、sn、pb、as、sb、te和碱金属、碱土、过渡、内过渡和稀土金属中的至少一种。载体金属和材料也为适合,诸如尺寸稳定阳极和pt/ti、ag-al2o3、nio-sio2-al2o3和载于基质(诸如al2o3、c或沸石)上的pt、pd或其它金属或贵金属。通常可通过与电解质或空气反应而形成不导电氧化物涂层的材料在电池的操作条件下(诸如在间歇电解条件下,其中可周期性还原电极)可为适合。示例性电极为zr,其周期性为电解阴极和放电阳极。电极材料可为经导体掺杂的非导体。其它元素或化合物(诸如碳、碳化物、硼化物、氮化物、甲腈(诸如ticn)或腈)可构成电极(诸如阳极)。适合示例性材料为碳黑、ac、zrc、tic、ti3sic2、ticn、tin、sic、yc2、tac、mo2c、wc、c、hfc、cr3c2、zrc、vc、nbc、b4c、crb2、zrb2、gdb2、mgb2和tib2。材料可包含粉末。除形成h2(1/4)作为h2o催化剂的产物的外,包含具有oh-源(诸如熔融或水性氢氧化物电解质)的碱性溶液的反应混合物也可形成至少一种其它分数氢产物,诸如分子分数氢h2(1/2)。催化剂可包含o或h,其中各自通过自原子h接受约27.2ev而具有27.2ev的势能,其使其充当催化剂以形成h(1/2),h(1/2)可还反应以形成h2(1/2)和h-(1/2)。另外,oh可充当催化剂,因为oh的势能为h状态p=1与p=2之间的能量差为40.8ev。因此,oh可自h接受约40.8ev以充当形成h(1/2)的催化剂。可在阳极处通过氧化自oh-形成oh。通过充当h至相应分数氢状态的催化剂的h2o和oh来形成h2(1/4)和h2(1/2)的示例性电池为[mo/lioh-libr/nio间歇电解]和[ni/lioh-libr/nio间歇电解]。可通过电解质或阳极气体的质子nmr来鉴别分数氢产物,其中可通过酸消化加工阳极以将分数氢气体释放至nmr溶剂中。在一实施方式中,催化剂形成反应可由以下给出:o2+5h++5e-→2h2o+h(1/p)(197)相对半电池反应可为h2→2h++2e-(198)总反应可为3/2h2+1/2o2→h2o+h(1/p)(199)其中h2o、oh、o2、nh和no(n=整数)中的至少一种可充当催化剂。可通过还原h+在阴极处产生氢,其中一些氢与催化剂反应形成分数氢。作为选择,可将过量氢供应至阴极,以致其与催化剂反应形成分数氢。在一实施方式中,控制温度、o2压力、h2o压力、h2压力和h+浓度中的至少一种以促成催化剂形成半电池反应和导致分数氢的最佳形成的相对反应。在一实施方式中,在25℃下阴极半电池电位相对于she为约1.23v(在约±0.5v内)。在一实施方式中,阳极半电池电位相对于she为约0v(在约±0.5v内)。适合示例性半电池反应分别由方程式(197)和(198)给出。形成分数氢的总反应可由方程式(199)给出。适合示例性电池为[pt/c+h2/纳菲/pt/c+空气+h源(诸如h2或氢化物或本发明的其它h储存材料]和[pt/c+h2/h2so4/pt/c+空气+h源(诸如h2或氢化物或本发明的其它h储存材料],可在酸性电解质(诸如h2so4水溶液)的情况下使用隔板(诸如纳菲)。关于方程式(198),在其它实施方式中,对抗半电池反应可通过不同于h2和视情况除h2的外的氢源的氧化来提供h+。氢源可为烃。反应可还产生co和co2中的至少一种,其中烃可包含至少一个o。适合烃为醇,诸如甲醇。适合示例性电池为[ptru+ch3oh/纳菲(nafion)/pt/c+空气+h源(诸如h2或氢化物或本发明的其它h储存材料]。包含质子导电或酸性熔融或酸性水性电解质以维持由方程式(199)给出的反应的电池可包含间歇或脉冲电解电池。反应(诸如由方程式(197)和(198)给出的反应)可在相应电极上或在气体穿透的后在相应反电极上可逆地发生。在一个实施方式中,电解质可包含酸性水溶液。间歇或脉冲循环的充电期可包含h2o至h2和o2的电解。电解阴极和阳极反应可分别包含方程式(198)和(197)的反向,除分数氢形成为不可逆的以外。阴极放电半电池反应可包含氧、h+和h2o中的至少一种的还原。该还原可由方程式(197)给出。在放电期间的阴极产物可为h和h2o。h2o可充当形成分数氢的催化剂。还原反应的过电位可导致半电池电压相对于she和25℃为约1.23v。阳极放电半电池反应可包含h2形成h+的氧化(方程式(198))。在一实施方式中,在酸性水溶液中h2至h+的氧化(方程式(198))的还原电位相对于she和25℃为约0v。电极上的氧化的过电位为约0v,以致氧化半电池反应在约0v下发生。在其它实施方式中,催化剂可包含自原子氢接受m27.2ev的物质,诸如本发明的物质,其中催化剂可为半电池物质或在电解或放电阶段期间形成。在充电和放电期中的至少一种期间形成分数氢。关于放电期,还原反应的半电池电位相对于she和25℃可为约1.23v或在约0.6v至1.4v范围的内,且氧化反应的半电池电位相对于she可为约0v或在约-0.5v至+0.5v范围的内。在电解截止或放电阶段期间电解阴极与阳极之间的电池电位相对于she和25℃可为约1.2v或在约0.3v至2v范围的内。在具有高温的实施方式中,针对操作温度对此类室温范围作热力学校正。电解质可为酸性水溶液,诸如酸性电解质水溶液。适合酸性电解质为h2so4、hcl、hx(x-卤离子)、h3po4、hclo4、hno3、hno、hno2、h2s、h2co3、h2moo4、hnbo3、h2b4o7(四硼酸m)、hbo2、h2wo4、h2cro4、h2cr2o7、h2tio3、hzro3、malo2、hmn2o4、hio3、hio4、hclo4或有机酸(诸如甲酸或乙酸)的水溶液,其可在约7.1m至纯酸的ph值的ph值范围内。酸可为水性或熔融(诸如为熔融磷酸)。示例性熔融电池为[pt或c/h3po4(l)(t>43℃)/c或pt]。在脉冲或间歇施加电压或电流电解实施方式中,阴极和阳极中的至少一种可包含二功能电极。电极可包含不同材料以达成所要反应。各阴极和阳极对于所要氧化或还原反应可具选择性且可为以下的一种:贵金属或合金(诸如pt、pd或au)、ag、ti、ta、zr、nb、nb合金、ni-mo合金(诸如赫史特(hastelloy)b、赫史特c、赫史特b-3合金、赫史特c22合金或赫史特c276合金)、碳或尺寸稳定阳极(dsa)或电极(诸如tio2稳定化导电金属氧化物,诸如载于导体(诸如ti)上的ruo2和iro2)。适合示例性dsa为ta2o5和ti/ir0.3ti0.7o2。可负载电极材料,诸如贵金属。适合载体为碳、金属和陶瓷。载体电极材料的相应实例为pt/c、pd/c和ru/c;pt/ti;pt/al2o3和ag/al2o3。具有氧化和还原的适当能力的其它稳定导体为本领域技术人员所已知的导体。可在电解期间在阳极处形成h+和o2且在阴极处形成氢。在电解截止或放电阶段期间,h2可在电解阴极处经氧化为h+(方程式(198))且h+和o2可在电解阳极处经还原以形成h和h2o(方程式(197)),其中h2o可充当在电解阳极处形成分数氢的催化剂。因此,电池可在充电和放电期间维持恒定极性,电流的极性在各循环阶段期间逆转。输出可为功率或经调节的波形。在另一实施方式中,由方程式(197)给出的反应在两个电极处皆可逆地发生,除分数氢产物为不可逆以外。示例性电池为[ptti/h2so4或h3po4(水溶液)/pt,间歇电解]和[pb/h2so4(水溶液)/pb或pbo,间歇电解]。酸可在任何所要浓度内,诸如为约0.1m至饱和。示例性浓度为14.7mh3po4和5mh2so4。在另一实施方式中,气体可自至少一个阳极穿透至阴极,反的也然。随后,在放电期间,可切换至少一个半电池反应,以致o2(方程式(197))还原在电解阴极处发生且h2氧化(方程式(198))在电解阳极处发生。随后,电流极性保持恒定,但电极的电压极性随循环期切换。可将电极间距减至最小以促进气体穿透。可通过薄膜(诸如质子交换膜,诸如纳菲膜)分隔电极。电极之间的电路可包含二极管以维持电流的恒定极性。在实施方式中,来自形成分数氢的功率表现为超过消耗电解功率的过量电和热功率中的至少一种。酸性电解质可包含酸或混合物、离子液体或混合物(诸如本发明的离子液体或混合物)和有机溶剂或混合物(诸如本发明的有机溶剂或混合物)中的至少一种的水性混合物。适合的有机溶剂为与水可混溶的有机溶剂,诸如醇、胺、酮、醚、腈和羧酸。示例性电池为[ptti/纳菲膜(nafion)+酸、离子液体和有机溶剂中的至少一种+h2o/ptti+空气]。适合的示例性离子液体选自以下的组:硝酸乙铵、以磷酸二氢盐掺杂的硝酸乙铵(诸如约1%掺杂)、硝酸、nh4po3-tip2o7、和lino3-nh4no3的低共熔盐,lino3、三氟甲磺酸铵(tf=cf3so3-)、三氟乙酸铵(tfac=cf3coo-)、四氟硼酸铵(bf4-)、甲烷磺酸铵(ch3so3-)、硝酸铵(no3-)、硫氰酸铵(scn-)、胺基磺酸铵(so3nh2-)、氟氢化铵(hf2-)、硫酸氢铵(hso4-)、双(三氟甲烷磺酰基)亚胺化铵(tfsi=cf3so2)2n-)、双(全氟乙烷磺酰基)亚胺化铵(beti=cf3cf2so2)2n-)、硝酸、nh4no3、nh4tf和nh4tfac的混合物,铵或烷基铵卤化物、和芳族化合物(诸如咪唑、吡啶、嘧啶、吡嗪)、高氯酸盐、氯化1-乙基-3-甲基咪唑鎓-alcl3和基于吡咯锭的质子离子液体。适合的示例性溶剂选自以下的组:醇、胺、酮、醚、腈、羧酸、二噁烷、二甲氧基乙烷(dme)、1,4-苯并二噁烷(bdo)、四氢呋喃(thf)、二甲基甲酰胺(dmf)、二甲基乙酰胺(dma)、二甲亚砜(dmso)、1,3-二甲基-2-咪唑啶酮(dmi)、六甲基磷酰胺(hmpa)、n-甲基-2-吡咯啶酮(nmp)、甲醇、乙醇、胺(诸如三丁胺、三乙胺、三异丙胺、n,n-二甲基苯胺)、呋喃、噻吩、咪唑、吡啶、嘧啶、吡嗪、喹啉、异喹啉、吲哚、2,6-二甲吡啶(2,6-二甲基吡啶)、2-甲吡啶(2-甲基吡啶)和腈(诸如乙腈和丙腈)、4-二甲胺基苯甲醛、丙酮和丙酮-1,3-乙基二甲酯。在水性间歇电解电池的一个实施方式中,h+和氧气可在电解阳极处形成,和oh-和h2可在电解阴极处形成,如示例性反应所给出:电解阳极h2o→1/2o2+2h++2e-(200)电解阴极2h2o+2e-→h2→2oh-(201)溶液反应可为2h++2oh-→2h2o(202)总反应可为h2o→h2+1/2o2(203)放电阶段期间,可形成分数氢,其中h2o、oh、o2、nh和no(n=整数)中的至少一种可充当催化剂。形成可充当催化剂的h2o和分数氢的示例性反应为阴极1/2o2+3h++3e-→h2o+h(1/p)(204)阳极h2+oh-→h2o+e-+h(1/p)(205)溶液反应可为3h++3oh-→3h2o(206)总反应可为3h2+1/2o2→h2o+4h(1/p)(207)电解溶液可为约中性ph。为约中性的适合的电解质为强酸的金属盐,诸如水性硝酸盐、硫酸盐、卤化物、高氯酸盐、过碘酸盐、铬酸盐和本发明的其它类似物。阳离子可为铵或金属或诸如碱金属、碱土金属、过渡金属、内过渡金属、稀土金属和第iii、iv、v或vi族金属。浓度可为可溶的任何所需浓度,诸如0.01m至饱和。间歇波形可为相对于输入电使输出电最佳化的波形。间歇电解的频率可在约0.001hz至10mhz、约0.01hz至100khz、或约0.01hz至10khz范围内。每电池的电解电压可在约0.1v至100v、约0.3v至5v、约0.5v至2v、或约0.5v至1.5v范围内。每单位有效形成分数氢的电极面积的电解电流在约1μacm-2至10acm-2、约0.1macm-2至5acm-2、和约1macm-2至1acm-2范围内。每单位有效形成分数氢的电极面积的电解功率在约1μwcm-2至10wcm-2、约0.1mwcm-2至5wcm-2、和约1mwcm-2至1wcm-2范围内。间歇波形可为充电和放电中的至少一种的恒定电流、功率或电压。在一个示例性实施方式中,每单位有效形成分数氢的电极面积的恒定电流在约1μacm-2至1μacm-2的范围内;每单位有效形成分数氢的电极面积的恒定功率在约1μwcm-2至1wcm-2的范围内;每电池的恒定电解电压可在约1v至20v范围内,且每电池的恒定放电电压可在约0.1v至20v范围内。电解时间间隔可在约10-4s至10,000s、10-3s至1000s、或10-2s至100s、或10-1s至10s范围内。放电可为可在与电解相同的范围内的恒定或可变电流、电压和功率。放电电阻可恒定或可变。其可在约1mω至100mω、约1ω至1mω、和10ω至1kω范围内。在一个实施方式中,放电电流、电压、功率或时间间隔中的至少一种大于电解阶段以在循环中产生功率或能量增益中的至少一种。在一个实施方式中,充电和放电时间中的至少一种小于物质自一个电极扩散至另一个的时间。在一个实施方式中,物质可为活性氧物质,诸如过氧化物、过氧化物离子、超氧化物、hooh、hoo-、o、o22-和o2-中的至少一种。在一个实施方式中,充电和放电时间中的至少一种为小于约100s、10s、1s、0.1s、0.01s、0.001s、0.0001s、0.01ms、1μs或0.1μs。在一个实施方式中,充电-放电循环的频率高于将容许放电阴极处所形成的活性物质迁移并扩散至放电阳极的频率。充电-放电时间可为例如小于1s以致活性氧物质(过氧化物离子)的迁移禁止达到阳极(诸如mo或mo合金阳极或本发明的其它类似物)和与阳极反应。此处,引起离子迁移的电解电场和电流中的至少一种转换方向的时间比至阳极的迁移时间快速。充电期间形成反应性氧物质的放电阴极在放电期间可破坏所述物质以致其禁止扩散至放电阳极和腐蚀放电阳极。在一个实施方式中,示例性间歇充电-放电电路可为gamryinstruments的电路,诸如modeleis300的电路或本领域技术人员已知的其变体。在一个实施方式中,间歇充电或放电电压、电流、功率和负载中的至少一种可为恒定或可变的。可控制参数以达成电功率或能量增益。每电池的电解电压可处于或略高于电流阈限,诸如在高于阈限约0至0.5v范围内。每电池的电解电压的适合范围为约0.25v至2v或0.25v至1.7v。每电池的放电电压可在维持相反极性电流至电解电流的范围内。每电池的放电电压可在约0.01v至最大电解电压范围内。每电池的放电电压的适合范围为约0.01v至2v或0.01v至1.7v。考虑有效形成分数氢的电极面积,放电电流可在约1μacm-2至1acm-2、0.01macm-2至20acm-2、或0.01macm-2至10acm-2范围内。放电负载可在约1μω至1mω范围内。适合的负载可维持约1μacm-2至1acm-2、0.01macm-2至20acm-2、或0.01macm-2至10acm-2范围内的电流。每单位有效形成分数氢的电极面积的适合负载的电导率在约10-5至1000ω-1cm-2、10-4至100ω-1cm-2、10-3至10ω-1cm-2、或10-2至1ω-1cm-2范围内。功率可由适合的电压、电流和电阻中的至少一种确定。每单位有效形成分数氢的电极面积的适合功率密度在约1μwcm-2至1wcm-2、0.01mwcm-2至20wcm-2、或0.01mwcm-2至10wcm-2范围内。在一个实施方式中,示例性间歇充电-放电电路可为arbininstruments的电路,诸如modelbt2000的电路或本领域技术人员已知的其变体。在熔融电解质的一个实施方式中,维持电池温度为至少电解质的熔点以上。电解质可为熔融氢氧化物,可为与至少一种其它化合物(诸如盐,诸如卤化物盐)的混合物。示例性的适合氢氧化物混合物电解质为lioh-libr、lioh-lix、naoh-nabr、naoh-nai、naoh-nax、koh-kx(x=卤离子)。盐可为低共熔混合物。高于熔点的温度可在高于熔点约0至1500℃、高于熔点约0至1000℃、高于熔点约0至500℃、高于熔点0至约250℃或高于熔点约0至100℃范围内。在一个实施方式中,包含氢渗透性膜,电池的温度维持在达成所需透过速率的高温下。也选择膜材料、厚度和氢气压力以达成所需透过速率。在一个实施方式中,电池温度在约25至2000℃、100至1000℃、200至750℃、250℃至500℃范围内。若电池包含渗透膜和熔融盐电解质,则维持电池温度高于电解质熔点和处于达成所需透过速率的位准。因此,在一个实施方式中,维持电池温度为至少盐的熔点以上。高于熔点的温度可在高于熔点约0至1500℃、高于熔点约0至1000℃、高于熔点约0至500℃、高于熔点0至约250℃或高于熔点约0至100℃范围内。膜厚度可在约0.0001至0.25cm、0.001至0.1cm、或0.005至0.05cm范围内。氢气压力可维持在约1托至500atm、10托至100atm、或100托至5atm范围内。氢气透过速率可在约1×10-13mols-1cm-2至1×10-4mols-1cm-2、1×10-12mols-1cm-2至1×10-5mols-1cm-2、1×10-11mols-1cm-2至1×10-6mols-1cm-2、1×10-10mols-1cm-2至1×10-7mols-1cm-2、或1×10-9mols-1cm-2至1×10-8mols-1cm-2范围内。维持间歇电解电池或包含氢喷射或鼓泡电极的电池的电池温度高于电解质的熔点。在包含具有约(43%-57%)的低共熔混合物的电解质lioh-libr的一个示例性电池中,诸如电池[ni/lioh-libr/ni+空气;间歇电解]或[ni(h2)/lioh-libr/ni+空气],其中氢电极(指定为ni(h2))包含h2喷射或鼓泡电极,低共熔电解质熔点为约265℃。电池可维持在此温度下和高于此温度。每几何面积h2鼓泡或喷射电极的氢气流动速率可在约1×10-13mols-1cm-2至1×10-4mols-1cm-2、1×10-12mols-1cm-2至1×10-5mols-1cm-2、1×10-11mols-1cm-2至1×10-6mols-1cm-2、1×10-10mols-1cm-2至1×10-7mols-1cm-2、或1×10-9mols-1cm-2至1×10-8mols-1cm-2范围内。在一个实施方式中,相对电极处的反应速率匹配或超出氢反应所在电极处的反应速率。在一个实施方式中,h2o和o2中的至少一种的还原速率足以维持h或h2的反应速率。相对电极具有足以支持足够速率的表面积和材料。电极和电解质系统可在相对大气封闭的容器中。在包含熔融氢氧化物盐电解质的间歇电解电池的情况下,可控制供应至电池的水分压以相对于其它o2和h2o还原反应(诸如形成过氧化物、过氧化物和氧化物中的至少一种的反应)更有利于产生oh-的反应。在一个实施方式中,控制温度、o2压力、h2o压力、h2压力和oh-浓度中的至少一种以有利于催化剂形成半电池反应和使得分数氢形成最佳化的逆反应。一或多个相应反应可由方程式(171-173)给出。电池相对于空气可为封闭的。在一个实施方式中,至少一个半电池反应的氧来自电解,诸如h2o和oh-中的至少一种的氧化。经受间歇或脉冲电解的适合的示例性电池为[ni(h2)/lioh-libr/ni]、[ni(h2)/naoh-nabr/ni]、[ni(h2)/naoh-nai/ni]、[ni(h2)/sr(oh)2/ni]和本发明的类似电池,其中存在一些h2o。h2o可反添加以替代任何消耗以形成分数氢的h2o。也可移除过量氧。可由连接至电池的发生器控制水蒸汽压力。h2o蒸汽发生器的温度可低于电池温度以控制h2o蒸汽压力。在一个实施方式中,水蒸汽产生器可包含雾化器或喷雾器,诸如超音波雾化器或喷雾器。h2o蒸汽可由流传递,诸如惰性气体(诸如稀有气体或n2)流。气体可再循环。作为选择,可控制h2o质量平衡以达成所需h2owt%的电解质或半电池反应物。在一个实施方式中,电解质通过诸如氢氧化物(诸如lioh)挥发而损失可通过降低电池温度、维持高电池电压和运转气体可由间歇电解和选择性方向流动的管线供应的至少部分封闭的电池来减少。水蒸汽发生器或水质量平衡也可控制具有酸性电解质的封闭式间歇电解电池的水含量和压力中的至少一种。涉及h2o的示例性反应由方程式(197-199)给出。在一个实施方式中,电池的h2o来源可使电解质(诸如氢氧化物)脱水。碱金属氢氧化物(诸如lioh)的示例性反应为2lioh→li2o+h2o(208)可能发生脱水反应,即使其吸收由间歇电解、分数氢形成反应和热中的至少一种供应的能量。在一个实施方式中,ciht或电解电池阳极包含与h2o发生放能反应的材料,诸如金属,诸如mo或mo合金,诸如haynes242、moni、mocu或moco。电池h2o来源可为阳极的脱水反应,其总反应为吸收能量的。示例性反应为lioh电解质与mo形成mo氧化物、li2o和氢的反应。随后,电池可运转适合的持续时间以形成能量,而阳极不显著降解。可改变电池的条件(诸如操作温度)以使电解质可在阳极不发生实质性反应下再生。举例而言,可降低电池温度,和向电解质中添加h2o以使其复水。再生电池随后可在典型操作条件下进一步操作。在一个实施方式中,电解质包含氢氧化物,诸如碱金属氢氧化物,诸如lioh,且还包含脱水形式,诸如呈混合物形式的氧化物,其中诸如li2o的脱水形式的浓度在阳极对氧化稳定的范围内。在一个实施方式中,诸如mo阳极的阳极与水合形式(诸如lioh)反应且在脱水形式(诸如li2o)存在下为稳定的。两种形式的浓度范围使得氧化电势向阳极提供对氧化的稳定性。浓度范围还提供能池操作期间形成过量能量,其中h来源可来自间歇电解。在一个实施方式中,电解质在操作期间可还脱水。电解质可连续或周期性或间歇复水。在后者情况下,h2o添加可在低于操作温度的温度下发生以防止阳极(诸如mo阳极)在水合期间氧化。一旦复水,电池可在高于标准的操作温度下加热并操作。电解质可还包含脱水形式的氢氧化物与至少一种其它盐(诸如卤化物,诸如碱金属卤化物,诸如libr)的混合物。在一个实施方式中,间歇电解电池的电池以叠堆形式安置。各电池可包含熔融电解质(诸如熔融氢氧化物和视情况选用的至少一种其它盐)或熔融水性电解质(诸如水性碱性电解质)。各电池的阴极可包含空气或氧电极。在实施方式中,电池的氧来源为空气、外部氧气和电解产生的氧气中的至少一种。在一个实施方式中,阴极可包含至少曝露于氧来源(诸如空气或o2气体)的部分。曝露部分可自电池叠堆和电解质伸出以允许o2或还原的o2流入阴极-电解质界面处的电解质中。在另一实施方式中,电池可为封闭的,且氢气和氧气可电解产生。系统可包含加热器以维持叠堆处于所需高温。温度可为约或高于熔融电解质熔点。在一个实施方式中,电池包含果酱卷或瑞士卷设计。在一个实施方式中,隔板或间隔物和电解质施加在可包含卷起的薄片的电极之间。果酱卷或瑞士卷可为封闭的。电池可密封卷拢,氧气由电解提供。在一个实施方式中,氧还原电极(诸如阴极)可完全浸没于电解质中。供应氢和氧的间歇电解电极可为不同材料,诸如不同金属或本发明的不同材料,所述不同电极选自金属、碳、碳化物、硼化物、氮化物和腈的组。阴极材料可在电解期间吸收氧且在间歇循环的放电阶段期间释放。在一个实施方式中,形成催化剂的半电池反应的电压相对于25℃和she为约1.2v。适合的电压相对于she和25℃在约1.5v至0.75v、1.3v至0.9v和1.25v至1.1v范围内。适合的反应为形成h2o的反应,诸如由方程式(171)和(197)所给出的反应。在一个实施方式中,电池理论电压为约0v。电池反应可包含阴极处水还原成oh-和h2和阳极处oh-与1/2h2反应形成h2o。在一个实施方式中,理论电池电压为约0v的电池反应与理论电池电压约大于0v的至少一个其它电池反应一起发生。在一个示例性实施方式中,电池反应可包含阴极处水还原成oh-和h2和理论电池电压为约0v的阳极处oh-与1/2h2反应形成h2o,以和理论电池电压大于0v的形成水的净电池反应(方程式(173))。水可经由半电池反应形成,诸如由方程式(171)和(172)所给出的反应。电池[ni(h2)naoh/base/nacl-mxcly]的其它示例性电池反应为naoh+1/2h2+1/ymxcly=nacl+6h2o+x/ym,其中示例性化合物mxcly为alcl3、becl2、hfcl4、kagcl2、mncl2、naalcl4、sccl3、ticl2、ticl3、ucl3、ucl4、zrcl4、、eucl3、gdcl3、mgcl2、ndcl3和ycl3。电池电压为约0v的适合电池为[ni(h2)naoh/base/nacl-sccl3,在约800-900k下]、[ni(h2)naoh/base/nacl-ticl2,在约300-400k下]、[ni(h2)naoh/base/nacl-ucl3,在约600-800k下]、[ni(h2)naoh/base/nacl-ucl4,在约250-300k下]、[ni(h2)naoh/base/nacl-zrcl4,在约250-300k下]、[ni(h2)naoh/base/nacl-mgcl2,在约900-1300k下]、[ni(h2)naoh/base/nacl-eucl3,在约900-1000k下]、[ni(h2)naoh/base/nacl-ndcl3,在约>1000k下]和[ni(h2)naoh/base/nacl-ycl3,在约>1000k下]。在另一实施方式中,涉及形成催化剂以形成分数氢的理论电池电压可为约0v。另一示例性电池反应包含阴极处氢还原成h-和阳极处h-氧化成h,其中nh(n=整数)可充当h形成分数氢的催化剂。h可诸如根据本发明反应还反应,其中理论电池电压高于0v。适合的反应例如为h与金属(诸如li或合金,诸如mg3li)反应形成相应氢化物或h与li-n-h系统的物质反应形成linh2或li2nh。示例性电池为[li、mg3li或li3n/licl-kcllih/ni(h2)、lah2、ceh2、tih2或zrh2]。在实施方式中,催化剂可为nh、no(n=整数)、o2、oh、h2o和mh或mh-催化剂中的至少一种(诸如表3中的催化剂)以和任何分数氢催化剂(诸如表1中的催化剂)。在一个实施方式中,催化剂(诸如mh或mh-,诸如表3的催化剂)由电池反应形成,其中理论电池电压为约0v。在约700k电池操作温度下理论电池电压e为约0v的示例性反应由方程式(61)给出,其中在包含[na/base/naoh]的示例性电池中,nah充当mh-型催化剂。在实施方式中,理论电池电压可为约0v,在约+/-0.75v、+/-0.5v、+/-0.25v或+/-0.1v范围内。在一个实施方式中,电池包含h-传导电解质,诸如熔融盐,诸如低共熔盐混合物。示例性的适合熔融盐电解质在表4中给出。电池还包含形成氢化物离子的h来源和与h形成化合物的反应物。电池可包含用于阴极与阳极的氢储存材料。适合的示例性阳极为li、mg3li和li3n。适合的阴极包含氢渗透性h电极(诸如ni(h2)和本发明的其它类似物)或氢化物(诸如zrh2、tih2、lah2和ceh2)。电解质可还包含氢化物,诸如lih。示例性电池为[li、mg3li和li3n/低共熔熔融盐(诸如licl-kcl)+氢化物(诸如lih)/ni(h2)或氢化物(诸如lah2)]。在一个实施方式中,电池间歇式充电和放电。一或多个阴极和阳极处形成h引起形成分数氢,其中nh(n=整数)可充当催化剂。在一个实施方式中,向电池供应过量氢化物,阳极可包含电解质元素的合金,且阴极可包含可形成氢化物的导体,诸如金属,诸如过渡金属,诸如ni或贵金属(诸如pd)。呈充电状态的示例性电池为[lial或mg3li/低共熔熔融盐(诸如licl-kcl)+氢化物(诸如lih)/nih、tih或pdh],可间歇式充电和放电。除分数氢产物以外的示例性可逆反应为:阴极:al+li++e-→lial(209)或3mg+li++e-→mg3li(210)阳极:2h-+ni+→nih+h(1/p)+2e-(211)总反应可为2lih+2al+ni→2lial+nih+h(1/p)(212)或2lih+6mg+ni→2mg3li+nih+h(1/p)(213)电池可通过施加间歇电解电压间歇再生。施加的电池电压可使得在电解阴极处形成lial或mg3li(方程式(209-213))。在氢渗透性电极的一个实施方式中,在电极内部电解产生或化学产生氢。在一个实施方式中,氢渗透性电极包含电解产生氢的电池阳极。氢可通过氧化电解质的氢化物来产生。氢可在电解期间经由阳极扩散。示例性电池为[ni、ti或pd/低共熔熔融盐(诸如licl-kcl)+氢化物(诸如lih)/al或mg],其中h在阳极处形成,且锂合金在相应阴极处形成,根据方程式(209-213)。阴极可在包含h渗透性电极的同心管阳极的中心。在另一实施方式中,氢渗透性电极包含电解产生氢的电池阴极。氢可通过还原电解质的水来产生。氢可在电解期间经由阴极扩散。示例性电池为[ni/koh(水溶液)/ni],其中h在阴极处形成且氧在相应阳极处形成。阳极可在包含h渗透性电极的同心管阴极的中心。在另一实施方式中,化学产生ciht电池的氢渗透性电极的氢。氢可来自氢化物的分解,诸如碱金属、碱土金属、过渡金属、内过渡金属或稀土金属氢化物或合金、或氢储存材料(诸如本发明的氢储存材料)。在一个示例性实施方式中,h可由lih和linh2的反应产生。h渗透性电极可通过反向电解和反添加h、通过单独反添加h或通过反添加反应物(诸如h2o)来再生。h渗透性电极可充当ciht电池的阳极和阴极中的至少一种。适合的示例性ciht为[ni(h2)/lioh-libr/ni+空气或o2],其中ni(h2)为电解或化学产生的氢电极。电解产生的氢电极的一个实施方式如图4中所示,其中电极604替代隔板608且包含h渗透性膜,且电池电极具有相对电极603。氢通过在609与604之间在608的位置处并替代608施加来自来源616的电压来产生。在一个实施方式中,ciht电池的电极或氢电极处的氢来源,诸如h2渗透性膜和h2气体,诸如ni(h2)或氢化物(诸如lani5h6),可由诸如h2鼓泡金属管的氢气体来源替代,其中金属可为多孔的,诸如包含烧结金属粉末(诸如ni粉末或r-ni粉末)的h2多孔管或其它多孔材料,诸如金属纤维、长丝、垫或海绵,诸如celmet(celmetcni#4、#6或#8,sumitomoelectricindustries,ltd.)。h2鼓泡电极可替代电池的阳极或阴极,在相应电极处或在相应半电池中以氢作为反应物。举例而言,h2鼓泡电极可替代本发明电池的电极,诸如水性碱电池的阳极、包含含氢氧化物的熔融盐的电池的阳极或包含具有h-迁移离子的熔融盐的电池的阴极。在后者情况中,所替代的电极可包含氢透过电极。在包含酸性电解质(诸如酸水溶液)的另一电池实施方式中,氢电极可包含阳极。阳极可包含鼓泡或喷射电极以和氢透过电极。氢也可通过水电解供应。氢在放电期间可经受氧化形成h+。因此,氢电极的一般名称可为m(h2),其中m可为过渡金属(诸如ni或ti)、或v、nb、ta、pd或pt、或为对电解质稳定、氢渗透性和为与电解质和电池操作条件兼容的适合电解电极中的至少一种的本发明另一金属。示例性电池为[导体(鼓泡h2)/koh(饱和水溶液)/sc+空气]、[导体(鼓泡h2)/包含碱金属氢氧化物的低共熔盐电解质,诸如lioh-naoh、lioh-lix、naoh-nax(x=卤离子或硝酸根)或lioh-li2x或naoh-na2x(x=硫酸根或碳酸根)/导体+可为o2还原催化剂的空气]、和[导体(鼓泡h2),诸如包含pt的导体/h2so4/pt+空气]。在一个碱性电池实施方式中,电池氛围可包含h2与o2的混合物和视情况选用的h2o,其中阴极对o2和h2o中的至少一种的还原具选择性,且阳极对h和电解质的物质中的至少一种的氧化具选择性。阳极反应可还包含氢反应形成诸如h2o的产物。阳极和阴极可为本发明或本领域技术人员已知的阳极和阴极。电池可包含至少一个为氢来源的阳极,氢来源称为m(h2),其中m可为过渡金属(诸如ni或ti)或v、nb、ta、pd或pt或为对电解质稳定和氢渗透性中的至少一种的本发明另一金属。阳极可包含氢喷射或鼓泡电极(诸如多孔导体,诸如多孔金属)或氢渗透性电极。氢阳极,诸如透过电极或氢喷射或鼓泡电极,诸如多孔导体阳极,可还包含氢解离体和大表面积氢载体,诸如r-ni或贵金属/载体,诸如pt/au,载体例如可为碳、碳化物、硼化物或腈。氢电极可包含多孔材料,诸如氢管线周围的金属多孔体(例如ni,诸如celmet#4、#6或#8,sumitomoelectricindustries,ltd.)的紧密结合组装,氢管线可还包含外部氧化铝管,其中氢气经由该管喷射且在与电解质接触的多孔材料表面上扩散。在实施方式中,包含氢透过电极、氢喷射或鼓泡电极(诸如多孔导体,诸如多孔金属)的本发明电池可替代该氢透过电极。在另一实施方式中,氢电极包含电解电极,其中氢通过电解产生。因此,氢电极的一般名称可为m(h2),其中m可为过渡金属(诸如ni或ti)、或v、nb、ta、pd或pt、或为对电解质稳定、氢渗透性和为与电解质和电池操作条件兼容的适合电解电极中的至少一种的本发明另一金属。电池可还包含为o2和h2o还原阴极中的至少一种的阴极和熔融氢氧化物电解质。适合的阳极材料为金属,诸如镍,且适合的阴极材料为金属,诸如ag。ag阴极可为分散于碳上的ag粒子。最佳负载在约20至30wt%范围内。阴极可包含氧化锰,诸如mno2/c、mn2o3/c或mnooh。其它适合的o2还原阴极为以下中的至少一种:pt/c或pt合金/c,诸如ptru/c、la0.5sr0.5coo3/c、cotpp/c、la0.6ca0.4coo3/c、pt/cnt/c、pr0.8ca0.2mno3、cotmpp/c、lamno3/c、mnco2o4/c、碱土金属钌酸盐、锂掺杂镧镍酸盐、ni-co尖晶石(诸如nico2o4)、pb-ru烧绿石(诸如pb2ru2o6.5)、na-pt青铜、ag/aghg、ni、nio、ag、au、pt、fe、nio-sio2-al2o3、feti合金、fe2ti、过渡金属和其氧化物,视情况呈金属陶瓷形式。氧还原阴极也可包含含氧溢出催化剂的氧溢出阴极或阴极。在一个实施方式中,阴极包含浸没于电解质中的部分或由电解质润湿的部分和未浸没或未由电解质润湿的另一部分。后者部分可直接曝露于氧来源,诸如空气或o2气体。氧可与o2来源曝露部分反应并迁移至电解质浸没或电解质润湿部分中。氧溢出阴极可包含部分浸没的镍垫、泡沫或烧结或多孔ni阴极。在一个实施方式中,氧气还原电流通过增加曝露于空气中的材料来增加,对于既定电解质界面面积,通过增加更多曝露于空气的阴极表面积。在另一实施方式中,氧还原电极(诸如阴极)可完全浸没于电解质中。来自来源的氧可通过诸如喷射含氧气体(诸如o2或空气)的方法或通过间歇电解供应。间歇电解电极可为不同材料,诸如不同金属或不同的本发明材料,所述不同电极选自金属、碳、碳化物、硼化物、氮化物和腈的组。在一个实施方式中,氧还原电极(诸如阴极)可曝露在空气中,其中电池在电解质-空气界面处包含电解质固体层以限制还原的氧气流入电解质中。固体层可因电解质中的温度梯度所致的固化而形成。在一个实施方式中,电池可包含盐桥,诸如base或nasicon。阴极可包含h2o或o2还原催化剂。h2o和视情况选用的o2可通过经由多孔电极喷射来供应,多孔电极诸如由外部氧化铝管内ni多孔体(celmet#6,sumitomoelectricindustries,ltd)的紧密结合组装组成的多孔电极。在另一实施方式中,h2o注射或滴入电解质主体中,且保留足够时间以在因电解质溶剂化而蒸发的前维持电池电压。h2o可周期性或连续反添加。在一个实施方式中,阳极(诸如氢渗透性阳极)得到清洁。示例性ni(h2)阳极可通过磨蚀或通过浸泡在3%h2o2/0.6mk2co3中接着用蒸馏h2o清洗来清洁。磨蚀也将增加表面积。单独的地选择阳极的形态和几何形状中的至少一种以增加阳极表面积。表面积可通过电镀黑色或粗糙金属涂层或通过酸蚀刻表面(诸如金属表面)来增加。在另一实施方式中,至少一个电极的表面积通过涂布通过气相沉积技术涂布的涂层(诸如黑色金属涂层)来增加,气相沉积技术诸如连续气相沉积(cvd)、溅镀、等离子体沉积、原子层沉积(ald)、物理气相沉积(pvd)(诸如等离子体喷涂、阴极弧沉积、电子束物理气相沉积、蒸发沉积、脉冲激光沉积和溅镀沉积)、化学气相沉积(cvd)、金属有机气相处延(movde)和金属有机化学气相沉积(mocvd)。其它适合的方法包含喷涂、漆刷、迈尔杆涂布(mayerrodapplication)、丝网印刷和带铸。在其它实施方式中,电解质层可通过此类方法或此项技术中已知的其它方法涂布。在一个实施方式中,熔融盐电解质电池的阳极包含至少一种氢化物(诸如lani5h6)和来自本发明的其它类似物(诸如水性碱性电池的其它类似物)和金属(诸如来自以下的组中的一种:li、na、k、rb、cs、mg、ca、sr、ba、al、v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w)。示例性电池为[m或mh/mg(oh)2-nacl/ni芯(h2o和视情况选用的o2)]、[m或mh/mg(oh)2-mgcl2-nacl/ni芯(h2o和视情况选用的o2)]、[m或mh/mg(oh)2-mgo-mgcl2/ni芯(h2o和视情况选用的o2)]、[m或mh/mg(oh)2-naf/ni芯(h2o和视情况选用的o2)]、[m或mh/lioh-lix、naoh-nax、koh-kx、rboh-rbx、csoh-csx、mg(oh)2-mgx2、ca(oh)2-cax2、sr(oh)2-srx2或ba(oh)2-bax2,其中x=f、cl、br或i/ni芯(h2o和视情况选用的o2)]、[m或mh/csno3-csoh、csoh-koh、csoh-lioh、csoh-naoh、csoh-rboh、k2co3-koh、kbr-koh、kcl-koh、kf-koh、ki-koh、kno3-koh、koh-k2so4、koh-lioh、koh-naoh、koh-rboh、li2co3-lioh、libr-lioh、licl-lioh、lif-lioh、lii-lioh、lino3-lioh、lioh-naoh、lioh-rboh、na2co3-naoh、nabr-naoh、nacl-naoh、naf-naoh、nai-naoh、nano3-naoh、naoh-na2so4、naoh-rboh、rbcl-rboh和rbno3-rboh/ni芯(h2o和视情况选用的o2)]、和[m或mh/lioh、naoh、koh、rboh、csoh、mg(oh)2、ca(oh)2、sr(oh)2或ba(oh)2+以下中的一种或多种:alx3、vx2、zrx2、tix3、mnx2、znx2、crx2、snx2、inx3、cux2、nix2、pbx2、sbx3、bix3、cox2、cdx2、gex3、aux3、irx3、fex3、hgx2、mox4、osx4、pdx2、rex3、rhx3、rux3、sex2、agx2、tcx4、tex4、tlx和wx4,其中x=f、cl、br或i/ni芯(h2o和视情况选用的o2)],其中mh=lani5h6和本发明的其它类似物;m=来自以下的组中的一种:li、na、k、rb、cs、mg、ca、sr、ba、al、v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w。气体压力(诸如h2、o2和空气的压力,诸如施加于电池的所述压力)、h2透过压力或任何喷射进入电池中的气体的压力可为任何所需压力。适合的压力在约0.001托至200,000托、约1托至50,000托和约700托至10,000托范围内。反应物浓度比率可为任何所需值。适合的浓度比率为使功率最大化、成本最小化、增加耐久性、增加再生能力和增强本领域技术人员已知的其它操作特征的比率。所述标准也适用于本发明的其它实施方式。适于电解质的的示例性浓度比为约低共熔混合物的浓度比。在另一实施方式中,电池以在整个持续时期相对于o2或h2o添加为封闭的分批模式操作。h2可添加至电池中,或电池在分批期间也可相对于h2添加为封闭的。阳极处形成的h2o和h2可在阴极处在内循环中反应,或阳极气态产物可动态移除。反应混合物可在分批后再生。在一个实施方式中,熔融氢氧化物电解质包含额外盐。单独、与碱(诸如moh,m=碱金属)组合和于任何组合中的示例性电解质为碱金属或铵卤化物、硝酸盐、高氯酸盐、碳酸盐、磷酸盐和硫酸盐和nh4x(x=卤化物)、硝酸盐、高氯酸盐、磷酸盐和硫酸盐。电解质可包含氢氧化物或其它盐(诸如卤化物、碳酸盐、硫酸盐、磷酸盐和硝酸盐)的混合物。一般而言,示例性的适合盐单独或组合为moh、m2s、m3po4、m2so4、m2co3、mx(x=卤离子)、mno3、mno、mno2、mx(x=卤离子)、m2co3、m2so4、mhso4、m3po4、m2moo4、mnbo3、m2b4o7(m的四硼酸盐)、mbo2、m2wo4、m2cro4、m2cr2o7、m2tio3、mzro3、malo2、mcoo2、mgao2、m2geo3、mmn2o4、m4sio4、m2sio3、mtao3、mvo3、mio3、mfeo2、mio4、mclo4、mscon、mtion、mvon、mcron、mcr2on、mmn2on、mfeon、mcoon、mnion、mni2on、mcuon、mznon、(m为可与氢氧化物的阳离子相同的碱金属或铵,且n=1、2、3或4),和有机碱性盐,诸如m的乙酸盐或m的甲酸盐。电解质也可包含所述和其它阴离子和任何可溶于熔融物中的阳离子,诸如碱土金属、过渡金属、内过渡金属、稀土金属和第iii、iv、v和vi族的其它阳离子(诸如al、ga、in、sn、pb、bi和te)。wt%可为任何所需值。额外盐可为氢氧化物电解质的微量添加剂。氢氧化物电解质(诸如lioh-libr)可为还包含添加盐的低共熔混合物。示例性电池为[ni(h2)/moh的熔融电解质和构成混合物的视情况选用的另一盐和选自以下的组的添加剂:m2s、m3po4、m2so4、m2co3、mx(x=卤离子)、mno3、mno、mno2、m2moo4、m2cro4、m2cr2o7、malo2、mnbo3、m2b4o7、mbo2、m2wo4、m2tio3、mzro3、mcoo2、mgao2、m2geo3、mmn2o4、m4sio4、m2sio3、mtao3、mvo3、mio3、mfeo2、mio4、mclo4、mscon、mtion、mvon、mcron、mcr2on、mmn2on、mfeon、mcoon、mnion、mni2on、mcuon和mznon、(n=1、2、3或4)和m的乙酸盐/ni+空气]和[ni(h2)/lioh-libr和选自以下的组的添加剂:li2s、li3po4、li2so4、li2co3、lino3、lino、lino2、li2moo4、li2moo3、li2cro4、li2cr2o7、lialo2、linbo3、li2b4o7、libo2、li2wo4、li2tio3、lizro3、licoo2、ligao2、li2geo3、limn2o4、li4sio4、li2sio3、litao3、livo3、liio3、lifeo2、liio4、liclo4、liscon、lition、livon、licron、licr2on、limn2on、lifeon、licoon、linion、lini2on、licuon和liznon(n=1、2、3或4)和乙酸锂/ni+空气]。涉及示例性电池[na/base/naoh]且也可在遵循与方程式(101-104)和(113)类似的机制的电解电池中具操作性的由方程式(128)和(61)表示的反应的另一形式为na+3naoh→2na2o+h2o+1/2h2;h→h(1/p)(214)oh和h2o中的至少一种可充当催化剂。在一个实施方式中,包含可形成h2o的氢氧化物的电池(诸如[na/base/naoh])可还包含水合物(诸如bai22h2o),或可向阴极添加h2o。电池可还包含经由渗透性膜(诸如ni(h2))供应的h来源(诸如氢化物或h2气体)。在一个实施方式中,阴极包含水来源和氧气中的至少一种。阴极可为水合物、氧化物、过氧化物、超氧化物、氢氧化合物和氢氧化物。阴极可为不可溶于电解质中的金属氧化物,诸如熔融盐电解质。适合的示例性金属氧化物为pbo2、ag2o2、ago、ruo2、mno2和以下的组的氧化物:v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w。适合的示例性金属氢氧化合物为alo(oh)、sco(oh)、yo(oh)、vo(oh)、cro(oh)、mno(oh)(α-mno(oh)锰榍石和γ-mno(oh)水锰矿)、feo(oh)、coo(oh)、nio(oh)、rho(oh)、gao(oh)、ino(oh)、ni1/2co1/2o(oh)和ni1/3co1/3mn1/3o(oh)。适合的示例性氢氧化物为以下的氢氧化物:li、na、k、rb、cs、mg、ca、sr、ba、al、v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w。在一个实施方式中,熔融盐电解质电池的阳极包含至少一种氢化物(诸如lani5h6)和来自本发明的其它类似物(诸如水性碱性电池的其它类似物)和金属(诸如来自以下的组中的一种:li、na、k、rb、cs、mg、ca、sr、ba、al、v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w)。适合的氢化物或金属适合地不可溶于熔融电解质中。阳极可包含氢电极,包含氢透过、喷射或间歇电解氢电极。示例性电池为[氢化物(诸如lani5h6)/包含氢氧化物的熔融盐电解质/ni或ni芯(h2o和视情况选用的o2)]、[氢化物(诸如lani5h6或m(h2))/包含氢氧化物的熔融盐电解质/氧化物,诸如以下组中的一种:pbo2、ag2o2、ago、ruo2、mno2和以下组的氧化物:v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w],其中m为h2渗透性金属,诸如ni、ti、nb、v或fe,[氢化物(诸如lani5h6或m(h2))/包含氢氧化物的熔融盐电解质/氢氧化合物,诸如以下组中的一种:alo(oh)、sco(oh)、yo(oh)、vo(oh)、cro(oh)、mno(oh)(α-mno(oh)锰榍石和γ-mno(oh)水锰矿)、feo(oh)、coo(oh)、nio(oh)、rho(oh)、gao(oh)、ino(oh)、ni1/2co1/2o(oh)和ni1/3co1/3mn1/3o(oh)],其中m为h2渗透性金属,诸如ni、ti、nb、v或fe,和[氢化物(诸如lani5h6或m(h2))/包含氢氧化物的熔融盐电解质/氢氧化物,诸如包含来自以下组的阳离子的氢氧化物中的一种:li、na、k、rb、cs、mg、ca、sr、ba、al、v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w],其中m为h2渗透性金属,诸如ni、ti、nb、v或fe。在一个实施方式中,电解质(诸如熔融盐或水性碱性溶液)可包含离子化合物,诸如具有可以一种以上氧化态存在的阳离子的盐。能够呈多价的适合示例性阳离子为fe3+(fe2+)、cr3+(cr2+)、mn3+(mn2+)、co3+(co2+)、ni3+(ni2+)、cu2+(cu+)和sn4+(sn2+)、过渡金属、内过渡金属和稀土金属阳离子(诸如eu3+(eu2+))。阴离子可为卤离子、氢氧根、氧离子、碳酸根、硫酸根或本发明的另一种。在一个实施方式中,oh-可氧化且在阳极处与h反应形成h2o。oh和h2o中的至少一种可充当催化剂。氢化物阳极反应可由方程式(92)给出。能够呈多价的阳离子可在阴极处还原。示例性净反应为lani5h6+koh+fecl3或fe(oh)3→kc或koh+fecl2或fe(oh)2+lani5h5+h2o(215)在包含能够呈多价的阳离子的化合物不可溶的情况下,其可包含阴极半电池反应物。其可与导电载体(诸如碳、碳化物、硼化物或腈)混合。本发明的另一氢化物或金属可充当阳极(诸如来自以下的组中的一种:v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w),其中阳极反应可由方程式(116)给出。金属可与电解质(诸如氢氧化物)反应形成氢和催化剂(诸如oh和h2o中的至少一种)。其它氢氧化物(诸如本发明的氢氧化物)可充当电解质且可替代koh。具有能够呈多价的阳离子的其它盐(诸如k2sn(oh)6或fe(oh)3)可替代fecl3。在一个实施方式中,化合物的还原电势高于h2o的还原电势。示例性电池为[可氧化金属(诸如以下中的一种:v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w)、金属氢化物(诸如lani5h6)或h2和氢渗透性膜(诸如以下中的一种:v、nb、fe、fe-mo合金、w、mo、rh、ni、zr、be、ta、rh、ti、th、pd、pd涂布的ag、pd涂布的v和pd涂布的ti)/koh(饱和水溶液)+具有能够呈多价的阳离子的盐(诸如k2sn(oh)6、fe(oh)3或fecl3)/导体(诸如碳或粉末金属)]、[可氧化金属(诸如以下中的一种:v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w)、金属氢化物(诸如lani5h6)或h2和氢渗透性膜(诸如以下中的一种:v、nb、fe、fe-mo合金、w、mo、rh、ni、zr、be、ta、rh、ti、th、pd、pd涂布的ag、pd涂布的v和pd涂布的ti)/koh(饱和水溶液)/具有能够呈多价的阳离子的盐(诸如fe(oh)3、co(oh)3、mn(oh)3、ni2o3或cu(oh)2)与导体(诸如碳或粉末金属)混合]、[ni(h2)、v(h2)、ti(h2)、nb(h2)、pd(h2)、pdag(h2)、fe(h2)或430ss(h2)/lioh-lix、naoh-nax、koh-kx、rboh-rbx、csoh-csx、mg(oh)2-mgx2、ca(oh)2-cax2、sr(oh)2-srx2或ba(oh)2-bax2(其中x=f、cl、br或i)和具有能够呈多价的阳离子的盐(诸如k2sn(oh)6、fe(oh)3或fecl3/ni)]、[ni(h2)、v(h2)、ti(h2)、nb(h2)、pd(h2)、pdag(h2)、fe(h2)或430ss(h2)/csno3-csoh、csoh-koh、csoh-lioh、csoh-naoh、csoh-rboh、k2co3-koh、kbr-koh、kcl-koh、kf-koh、ki-koh、kno3-koh、koh-k2so4、koh-lioh、koh-naoh、koh-rboh、li2co3-lioh、libr-lioh、licl-lioh、lif-lioh、lii-lioh、lino3-lioh、lioh-naoh、lioh-rboh、na2co3-naoh、nabr-naoh、nacl-naoh、naf-naoh、nai-naoh、nano3-naoh、naoh-na2so4、naoh-rboh、rbcl-rboh和rbno3-rboh+具有能够呈多价的阳离子的盐(诸如k2sn(oh)6、fe(oh)3或fecl3/ni)]、[ni(h2)、v(h2)、ti(h2)、nb(h2)、pd(h2)、pdag(h2)、fe(h2)或430ss(h2)/lioh、naoh、koh、rboh、csoh、mg(oh)2、ca(oh)2、sr(oh)2或ba(oh)2+以下中的一种或多种:alx3、vx2、zrx2、tix3、mnx2、znx2、crx2、snx2、inx3、cux2、nix2、pbx2、sbx3、bix3、cox2、cdx2、gex3、aux3、irx3、fex3、hgx2、mox4、osx4、pdx2、rex3、rhx3、rux3、sex2、agx2、tcx4、tex4、tlx和wx4(其中x=f、cl、br或i)+具有能够呈多价的阳离子的盐(诸如k2sn(oh)6、fe(oh)3或fecl3/ni)]、[lani5h/koh(饱和水溶液)/有机金属(诸如二茂铁sc)]、和[lani5h6/koh(饱和水溶液)/有机金属(诸如二茂铁)]。电池可通过电解或机械再生。在一个实施方式中,分数氢反应通过活化能来源传播。活化能可通过加热和化学反应中的至少一种提供。在包含在高电池操作温度下挥发的水性电池或溶剂或反应物的一个实施方式中,给电池加压,其中电池外壳或至少一个半电池隔室包含压力容器。提供活化能的化学反应可为氧化或还原反应,诸如阴极处氧的还原或阳极处oh-的氧化和与h反应形成h2o。h来源可为氢化物,诸如lani5h6。阳极反应也可包含金属的氧化,金属诸如zn、co、sn、pb、s、in、ge和本发明的其它类似物。能够呈多价的阳离子(诸如fe3+(fe2+)、cr3+(cr2+)、mn3+(mn2+)、co3+(co2+)、ni3+(ni2+)、cu2+(cu+)和sn4+(sn2+)中的一种)的还原可提供活化能。透过氢渗透性膜且形成诸如金属氢化物(诸如lih)的化合物的在阴极处形成的h的透过可提供活化能。在一个实施方式中,ciht电池的反应也用于产生热以用于诸如维持电池操作(诸如供应反应的活化能)或维持使用的熔融电解质的目的。热输出也可用于加热外部负载。作为选择,反应可在无电极下进行以产生维持分数氢反应的热并向外部负载供应热。在间歇电解电池(诸如[ptti/h2so4(5m水溶液)/ptti]间歇充电-放电)的一个实施方式中,电极会在放电期间短路或因电阻加热器短路而产生可消耗于ciht电池中的热。在一个实施方式中,氧物质(诸如o2、o3、o、o+、h2o、h3o+、oh、oh+、oh-、hooh、ooh-、o-、o2-、和中的至少一种)可与h物质(诸如h2、h、h+、h2o、h3o+、oh、oh+、oh-、hooh和ooh-中的至少一种)进行氧化反应,形成充当形成分数氢的催化剂的oh与h2o中的至少一种。h物质来源可为诸如氢化物(诸如lani5h6)、氢氧化物或氢氧化合物的化合物、h2或h2来源与氢渗透性膜(诸如ni(h2)、v(h2)、ti(h2)、fe(h2)或nb(h2))中的至少一种。o物质可由h2o或o2在阴极的还原反应提供。o物质的o2来源可来自空气。作为选择,o物质可供应给电池。o物质(诸如oh-、hooh、ooh-、o-、o2-、和)的适合来源为氧化物、过氧化物(诸如碱金属的过氧化物)、超氧化物(诸如碱金属和碱土金属的超氧化物)、氢氧化物和氢氧化合物(诸如本发明的氢氧化合物)。示例性氧化物为过渡金属的氧化物(诸如nio和coo)和锡的氧化物(诸如sno)、碱金属的氧化物(诸如li2o、na2o和k2o)和碱土金属的氧化物(诸如mgo、cao、sro和bao)。诸如nio或coo的氧化物来源可添加至熔融盐电解质中。其它示例性氧化物为来自cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn和w的组的一。示例性电池为[ni(h2)、v(h2)、ti(h2)、fe(h2)或nb(h2)或氢化物(诸如lani5h6)/包含碱金属氢氧化物的低共熔盐电解质(诸如lioh-naoh、lioh-lix、naoh-nax(x=卤离子或硝酸根)或lioh-li2x或naoh-na2x(x=硫酸根或碳酸根))和li2o、na2o、k2o、mgo、cao、sro或bao或cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn或w的氧化物、过氧化物(诸如碱金属的过氧化物)或超氧化物(诸如碱金属和碱土金属的超氧化物)/ni或可与阳极相同的其它金属]。在一个实施方式中,oh-可在阳极处被氧化且与h反应,形成可充当使h形成分数氢的催化剂的h2o。在两种情况下,h可来自诸如氢化物(诸如lani5h6)或渗透性过膜(诸如ni、ti、v、nb、pd、pdag或fe)的h2的来源,来自流过管线642和调节器644的氢来源,诸如槽或供应器640(图5)。来源可为水性电解电池640,其具有h2与o2隔板,以供应实质上纯的h2。h2o可在阴极处还原成h2和oh-。在图5所示的一个实施方式中,ciht电池包含h2o和h2收集和再循环系统。ciht电池650包含容器651、阴极652、阳极653、负载654、电解质655和用于收集来自ciht电池的h2o蒸气(诸如在阳极形成的h2o蒸气)的系统657。h2o收集系统包含连接至电池的第一腔室658,其经由自电池至h2o收集腔室658的蒸气通道659接收h2o蒸气。收集系统包含h2o吸收器与h2o冷凝器中的至少一种660。收集的水可以h2o蒸气或液体水形式,经由通道661,在由泵663或由用加热器665加热收集的水所产生的压力辅助下,返回到ciht电池。水流量和任何蒸气压力可在腔室中由阀666、667和668控制,由计量器669监测。水可返回到阴极652,其可为返回的h2o所渗透性。ciht电池还包含系统671以收集来自ciht电池的h2。h2收集系统包含含有h2吸气剂673的第二腔室672,其中来自阳极来源的未反应h2与在阴极形成的h2可由h2吸气剂收集。具有至少部分由h2o收集系统移除的水的h2经由气体通道675自第一腔室流至第二腔室。在一个实施方式中,h2选择性膜存在于腔室之间,以防止h2o进入第二腔室且与吸气剂反应。吸气剂可包含过渡金属、碱金属、碱土金属、内过渡金属、稀土金属、金属组合、合金和氢储存材料(诸如本发明的氢储存材料)。收集的h2可经由通道676,在由泵678或由用加热器680加热吸气剂或收集的h2所产生的压力辅助下,返回到ciht电池。h2流量和压力可在腔室中由阀681和682控制,由计量器684监测。在针对电池打开阀681和关闭阀682的情况下,吸气剂可收集氢,其中加热器维持其在适于再吸收h2的一个温度下。接着可关闭阀681,且温度升高至引起释放的氢经计量器684测量达到所需压力的温度。可打开阀682,以允许经加压的氢流向电池。可流向包含h2渗透性壁的阳极653。在重复循环中,可关闭阀682,加热器680的温度发生降低,且打开阀681,以用吸气剂673收集h2。在一个实施方式中,加热器、阀和计量器的动力可由ciht电池提供。在一个实施方式中,当引入h2或h2o至电池中时收集系统与电池之间的温度差可用以达到所需压力。举例而言,h2可在密封室中处于第一温度和压力下,该密封室浸于热盐中以在较高盐温度下达到第二较高压力。在一个实施方式中,ciht电池包含多个氢渗透性阳极,所述阳极可经由共同的气体歧管供应氢。在图5所示的系统的另一实施方式中,o2来源系于阴极651处供应,诸如空气、o2、氧化物、h2o、hooh、氢氧化物和氢氧化合物中的至少一种。氧来源也可经由可为多个的选择性阀或膜646供应给电池,其中膜为o2渗透性膜,诸如特氟隆膜。接着系统657包含h2与其它电池气体(诸如氮气、水蒸气和氧气中的至少一种)的隔板,其中系统671收集未使用的氢且使其诸如经由h2渗透性阳极653返回到电池。系统657可冷凝水。系统667可另外或视情况包含选择性h2渗透性膜和阀668,其可位于系统657的出口上,保留o2、n2和可能存在的水且允许h2选择性地传至系统671。在一个实施方式中,控制阴极651和电池的一种或多种处的水蒸汽压以控制电池动力输出。在一个实施方式中,h2渗透性电极经h2鼓泡阳极653置换。h2可在不移除h2o的情况下使用至少一个泵(诸如678)再循环。若氧气诸如经由选择性阀或膜646或在o2渗透性阴极652处供应给电池,则其可通过系统657自h2移除。通过喷射供应h2、h2o、空气和o2中的至少一种的一个示例性多孔电极包含在外部氧化铝管内ni多孔体(celmet#6,sumitomoelectricindustries,ltd)的紧密结合的组装。若空气供应给电池,则n2视情况自再循环的h2气体中移除。经消耗以形成分数氢或自系统中损失的任何h2可被置换。h2可由h2o电解置换。电解动力可来自ciht电池。控制渗透性阳极的氢渗透速率或鼓泡阳极的流动速率以相对于氢与氧形成水的传统反应而因分数氢反应使动力增益最佳化。考虑诸如暴露于电解质的外表面的物理尺寸所界定的活性表面积,适合的流动速率在以下范围内:约10-12至10-2molcm-2s-1、约10-11至10-6molcm-2s-1、约10-10至10-7molcm-2s-1、和约10-9至10-8molcm-2s-1。诸如在空气中o2、h2o、和o2与h2o的混合物中的至少一种的阴极还原速率可为在阳极处维持既定氢渗透速率或流动速率的电池反应的任何所需的速率。以每有效表面的电流表示的适合的速率在约0.001至1000macm-2、约0.1至100macm-2、和约0.5至10macm-2范围内。在一个实施方式中,阴极气体可包含o2、h2o和n2的混合物。摩尔分数可为任何所需值。虽然适合的摩尔分数为约空气的摩尔分数(o2约20%、n2约80%、h2o约0.5-3%),但任何既定组分可在约0.1至99mol%范围内变化。在其它实施方式中,o2/n2/h2omol%分别在约1至99%、1至99%、和0.0001至99%范围内,总计构成约100%。也可提供诸如空气的ar的其它气体。在一个实施方式中,自进入电池的气体中除去co2。在一个实施方式中,ciht电池包含共轴设计,其中h2渗透性渗透性管位于中心,且电解质和阴极管同心在外,其中外管充当阴极。在其它设计中,电极为可包含空气扩散电极的漫射阳极和阴极的相对h2渗透性。该设计可类似于水性碱性电池的设计。在产生结合能增加的氢物质和化合物和热能的一个实施方式中,图5中所示的电池可包含供应h的氢渗透性膜和氢腔室653且可能缺乏阴极652。随后,分数氢热反应器包含渗透性膜653,其隔开填充有加压氢气的由封闭膜653界定的氢腔室与填充有碱性溶液和能够与氢反应形成至少催化剂nh、oh、no、o2和h2o(n=整数)以形成分数氢的氧化剂的反应腔室655。氢渗透性膜和氢腔室653可具有大表面积。适合的系统为长螺旋管,诸如ni管或本发明的另一材料的管,诸如经ni涂布的v、ta、ti、不锈钢(ss)430或nb。在一个实施方式中,氢透过膜进入反应腔室中以引起在反应腔室中形成催化剂和原子h,且通过形成分数氢而产生热力。反应器可还包含入口和出口管线(例如659)以传递氧化剂或其它反应腔室反应物和移出反应腔室产物。电池可连续地操作。反应产物可通过以下方法再生:本发明方法;本发明人在先申请案中揭示的方法:hydrogencatalystreactor,pct/us08/61455,pct4/24/2008申请;heterogeneoushydrogencatalystreactor,pct/us09/052072,pct7/29/2009申请;heterogeneoushydrogencatalystpowersystem,pct/us10/27828,pct3/18/2010申请;和electrochemicalhydrogencatalystpowersystem,pct/us11/28889,pct3/17/2011申请(所述文献以全文引用的方式并入本文中);或本领域技术人员已知的方法。氢腔室可具有氢管线,诸如676;和系统,诸如槽或供应器640、管线642和用于监测和控制氢气压力和流量的调节器644。在一个实施方式中,h2和氧化剂o2可由电解单元640产生。在另一实施方式中,电池可包含氢渗透性膜653,其中h可与氧来源(诸如oh-或氧阴离子,诸如本发明者)反应以形成可充当使另一h形成分数氢的催化剂的oh和h2o中的至少一种。以协同方式,氧化剂可经受还原。还原反应可形成氧阴离子,诸如oh-。反应可包含本发明燃料电池实施方式的氧化还原反应。电池可还包含可电连接至充当阳极的氢膜的阴极652。作为选择,容器壁(诸如651)可充当还原反应的相对电极。氧化剂可包含可间歇或连续供应至电池655的氧气。氧化剂可在阴极处供给。溶液可包含碱,诸如moh、m2co3(m为碱金属)、m'(oh)2、m'co3(m'为碱土金属)、m”(oh)2、mco3、(m”为过渡金属)、稀土金属氢氧化物、al(oh)3、sn(oh)2、in(oh)3、ga(oh)3、bi(oh)3和本发明其它氢氧化物和羟基氧化物的组中的至少一种。溶剂可为水性溶剂或本发明的其它溶剂。氢渗透性过膜,且与oh-反应,形成可充当形成分数氢的催化剂的oh与h2o中的至少一种。反应混合物可还包含促进形成oh与h2o催化剂中的至少一种的反应的氧化剂。氧化剂可包含h2o2、o2、co2、so2、n2o、no、no2、o2,或充当o来源或充当如本发明中所给出或本领域技术人员已知的氧化剂的另一化合物或气体。其它适合的示例性氧化剂为p2o5、coo2、mno2、mn2o3、m2s2o8、mno3、mmno4、mocl、mclo2、mclo3、mclo4(m为碱金属)和羟基氧化物,诸如wo2(oh)、wo2(oh)2、vo(oh)、vo(oh)2、vo(oh)3、v2o2(oh)2、v2o2(oh)4、v2o2(oh)6、v2o3(oh)2、v2o3(oh)4、v2o4(oh)2、feo(oh)、mno(oh)、mno(oh)2、mn2o3(oh)、mn2o2(oh)3、mn2o(oh)5、mno3(oh)、mno2(oh)3、mno(oh)5、mn2o2(oh)2、mn2o6(oh)2、mn2o4(oh)6、nio(oh)、tio(oh)、tio(oh)2、ti2o3(oh)、ti2o3(oh)2、ti2o2(oh)3、ti2o2(oh)4和nio(oh)。一般而言,氧化剂可为mxoyhz,其中x、y和z为整数且m为金属,诸如过渡、内过渡或稀土金属,诸如金属羟基氧化物。氧化剂可包含与氢反应形成诸如oh与h2o中的至少一种的催化剂的氧来源。对于x和y为整数,适合的氧来源为o2、h2o2、mno2、氧化物、碳的氧化物,优选为co或co2、氮的氧化物、nxoy,诸如n2o和no2、硫的氧化物、sxoy,优选为氧化剂,诸如m2sxoy(m为碱金属),clxoy,诸如cl2o、clo2、naclo2,浓酸和其混合物,诸如hno2、hno3、h2so4、h2so3、形成销离子的酸、naocl、ixoy,优选地i2o5、pxoy、sxoy,无机化合物的氧阴离子,诸如亚硝酸根、硝酸根、氯酸根、硫酸根、磷酸根的一,金属氧化物,诸如氧化钴,氢氧化物、氢氧化合物、高氯酸盐、和过氧化物,诸如m2o2(其中m为碱金属),诸如li2o2、na2o2和k2o2,和超氧化物,诸如mo2(其中m为碱金属),诸如nao2、ko2、rbo2和cso2,和碱土金属超氧化物。离子过氧化物可还包含ca、sr或ba的离子过氧化物。其它适合的氧来源包含以下组中的一种或多种:so2、so3、s2o5cl2、f5sof、m2s2o8、soxxy(诸如socl2、sof2、so2f2、sobr2)、p2o5、poxxy(诸如pobr3、poi3、pocl3或pof3)、teo2、mno3、mno、mno2、m2co3、mhco3、m2so4、mhso4、m3po4、m2hpo4、mh2po4、m2moo4、mnbo3、m2b4o7(m的四硼酸盐)、mbo2、m2wo4、m2cro4、m2cr2o7、m2tio3、mzro3、malo2、mcoo2、mgao2、m2geo3、mmn2o4、m4sio4、m2sio3、mtao3、mvo3、mio3、mfeo2、mio4、mclo4、mscon、mtion、mvon、mcron、mcr2on、mmn2on、mfeon、mcoon、mnion、mni2on、mcuon和mznon(其中m为碱金属,且n=1、2、3或4)、氧阴离子、强酸的氧阴离子、氧化剂、分子氧化剂(诸如v2o3、i2o5、mno2、re2o7、cro3、ruo2、ago、pdo、pdo2、pto、pto2、i2o4、i2o5、i2o9、so2、so3、co2、n2o、no、no2、n2o3、n2o4、n2o5、cl2o、clo2、cl2o3、cl2o6、cl2o7、po2、p2o3和p2o5)、nh4x,其中x为硝酸根或本领域技术人员已知的其它适合阴离子,诸如包含以下的组中的一种:no3-、no2-、so42-、hso4-、coo2-、io3-、io4-、tio3-、cro4-、feo2-、po43-、hpo42-、h2po4-、vo3-、clo4-和cr2o72。在另一实施方式中,o来源或o物质可包含至少一种化合物或化合物的混合物,其包含o、o2、空气、氧化物、nio、coo、碱金属氧化物、li2o、na2o、k2o、碱土金属氧化物、mgo、cao、sro和bao、来自cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn和w的组的氧化物、过氧化物、碱金属过氧化物、超氧化物、碱金属或碱土金属超氧化物、氢氧化物、碱金属、碱土金属、过渡金属、内过渡金属和第iii、iv或v族金属氢氧化物、氢氧化合物、alo(oh)、sco(oh)、yo(oh)、vo(oh)、cro(oh)、mno(oh)(α-mno(oh)锰榍石和γ-mno(oh)水锰矿)、feo(oh)、coo(oh)、nio(oh)、rho(oh)、gao(oh)、ino(oh)、ni1/2co1/2o(oh)和ni1/3co1/3mn1/3o(oh)。诸如金属氧化物的化合物可为纳米粉末。粒子尺寸可在约1nm至100μm、10nm至50μm、或50nm至10μm范围内。电池可在高温下操作,诸如在约25℃至1000℃或约200℃至500℃的温度范围中。容器651可为压力容器。氢气可于高压下供应,诸如在约2至800atm或约2至150atm范围内。可添加诸如约0.1至10atmn2或ar的惰性气体保护层,以防止诸如水溶液的溶液沸腾。反应物可呈任何所需摩尔浓度比率。一示例性电池为ni(h250-100atm)koh+k2co3,其中koh浓度在0.1m至饱和的摩尔范围内,k2co3浓度在0.1m至饱和的摩尔范围内,且容器在约200-400℃的操作温度下。在另一实施方式中,碱可包含熔融盐,诸如氢氧化物熔融物。熔融物可还包含至少一种其它化合物,诸如盐,诸如金属卤化物。混合物可为低共熔混合物。适合的氢氧化物混合物在表4中给出。混合物可还包含至少一些h2o,诸如0.1至95wt%、0.1至50wt%、0.1至25wt%、0.1至10wt%、0.1至5wt%或0.1至1wt%。在另一实施方式中,h2渗透膜可用h2鼓泡或喷射电极(诸如本发明电极)代替。氢来源可包含多孔材料,诸如氢管线周围的金属多孔体(例如ni,诸如celmet#4、#6或#8,sumitomoelectricindustries,ltd.)的紧密结合组装,氢管线可还包含外部氧化铝管,其中氢气经由该管喷射且在与熔融物接触的多孔材料表面上扩散。在一个实施方式中,收集未反应的h2并再循环。氢气可通过已知方法(诸如膜分离、共气体的选择性反应或低温分离方法)与所存在的任何其它气体分离。经消耗以形成分数氢的氢气和任何水可添加回至电池供应处。在实施方式中,选择膜材料、厚度和氢气压力以达成所需透过速率。在一个实施方式中,电池温度在约25至2000℃、100至1000℃、200至750℃、或250℃至500℃范围内。若电池包含渗透膜和熔融反应混合物,则维持电池温度高于混合物的熔点且处于达成所需透过速率的程度。因此,在一个实施方式中,维持电池温度至少反应物的熔点和高于熔点。高于熔点的温度可在高于熔点约0至1500℃、高于熔约0至1000℃、高于熔点0至500℃、高于熔点0至约250℃、或高于熔点0至100℃范围内。膜厚度可在约0.0001至0.25cm、0.001至0.1cm、或0.005至0.05cm范围内。氢气压力可维持在约1托至1000atm、10托至100atm、或100托至5atm范围内。氢气渗透性速率可在约1×10-13mols-1cm-2至1×10-4mols-1cm-2、1×10-12mols-1cm-2至1×10-5mols-1cm-2、1×10-11mols-1cm-2至1×10-6mols-1cm-2、1×10-10mols-1cm-2至1×10-7mols-1cm-2、或1×10-9mols-1cm-2至1×10-8mols-1cm-2范围内。每h2鼓泡或喷射氢来源的几何面积氢气流动速率可在约1×10-13mols-1cm-2至1×10-4mols-1cm-2、1×10-12mols-1cm-2至1×10-5mols-1cm-2、1×10-11mols-1cm-2至1×10-6mols-1cm-2、1×10-10mols-1cm-2至1×10-7mols-1cm-2、或1×10-9mols-1cm-2至1×10-8mols-1cm-2范围内。在多孔电极材料的一个实施方式中,孔径在约1nm至1mm、10nm至100μm、或0.1至30μm范围内。在形成结合能增加的氢气物质和化合物和热系统的另一化学反应器的一个实施方式中,nh(n=整数)可充当催化剂。反应混合物可包含可形成氢化物的元素或化合物,诸如氢储存材料和氢来源。材料可经可逆性氢化以引起形成充当反应物和催化剂的原子氢而形成分数氢。氢储存材料(诸如形成氢化物的金属)可为一或多种本发明氢储存材料。适合的示例性相应金属氢化物为选自r-ni、lani5h6、la2co1ni9h6、zrcr2h3.8、lani3.55mn0.4al0.3co0.75、zrmn0.5cr0.2v0.1ni1.2的至少一种,和能够储存氢的其它合金,诸如选自的一种:ab5(laceprndnicomnal)或ab2(vtizrnicrcomnalsn)型,其中该「abx」名称系指a型元素(laceprnd或tizr)与b型元素(vnicrcomnalsn)的比,ab5型:mmni3.2co1.0mn0.6al0.11mo0.09(mm=密铈合金(mischmetal):25重量%la、50重量%ce、7重量%pr、18重量%nd),ab2型:ti0.51zr0.49v0.70ni1.18cr0.12合金、基于镁的合金、mg1.9al0.1ni0.8co0.1mn0.1合金、mg0.72sc0.28(pd0.012+rh0.012),和mg80ti20、mg80v20、la0.8nd0.2ni2.4co2.5si0.1、lani5-xmx(m=mn、al)、(m=al、si、cu)、(m=sn)、(m=al、mn、cu)和lani4co、mmni3.55mn0.44al0.3co0.75、lani3.55mn0.44al0.3co0.75、mgcu2、mgzn2、mgni2,ab化合物、tife、tico和tini,abn化合物(n=5、2或1),ab3-4化合物、abx(a=la、ce、mn、mg;b=ni、mn、co、al)、zrfe2、zr0.5cs0.5fe2、zr0.8sc0.2fe2、yni5、lani5、lani4.5co0.5、(ce、la、nd、pr)ni5、密铈合金-镍合金、ti0.98zr0.02v0.43fe0.09cr0.05mn1.5、la2co1ni9和timn2。可逆氢化物材料可为纳米粉末。粒子尺寸可在约1nm至100μm、10nm至50μm、或50nm至10μm范围内。电池可维持在某一温度范围内或在某一温度范围内循环。在一个实施方式中,电池温度在约25至2000℃、100至1000℃、200至750℃、或250至500℃范围内。在一个实施方式中,为将材料氢化和去氢化,电池电压维持在某一范围内或在某一范围内循环。氢气压力可维持在约0.001毫托至1000atm、10托至100atm、或100托至5atm范围内。在一个实施方式中,用于形成结合能增加的氢物质和化合物(诸如分数氢)的反应混合物包含氢来源(诸如氢气)和氧来源(诸如包含氧或氧气的氧化剂)。氢可与氧反应形成可充当催化剂的nh、o、no、o2、oh和h2o(n=整数)中的至少一种。反应混合物也可包含氢解离体,诸如本发明的氢解离体,诸如r-ni或贵金属/载体(诸如ti或al2o3)。反应混合物可还包含至少一种其它元素或化合物(诸如碱金属或碱土金属卤化物)以形成包含氢化物的化合物,氢化物诸如mh或mhx(m=碱金属,x=卤离子)或mh2或mhx2(m=碱土金属,x=卤离子)。示例性反应混合物为h2气体、氧化剂khso4和licl,在诸如300至1000℃或约400至600℃的高温和在约0.1至100atmh2或约2至5atmh2下运转。在其它实施方式中,反应混合物包含本发明人在先申请案中揭示的反应混合物:hydrogencatalystreactor,pct/us08/61455,pct4/24/2008申请;heterogeneoushydrogencatalystreactor,pct/us09/052072,pct7/29/2009申请;heterogeneoushydrogencatalystpowersystem,pct/us10/27828,pct3/18/2010申请;和electrochemicalhydrogencatalystpowersystem,pct/us11/28889,pct3/17/2011申请(所述文献以全文引用的方式并入本文中)。适合的反应混合物为在反应物反应期间形成h2o和原子氢的反应混合物。在实施方式中,电池可包含本领域技术人员已知的一或多种类型,诸如包含以下的电池:(i)自由液体电解质、(ii)于孔隙系统中的液体电解质,(iii)电解质固定于电极基质中的基质电池,和(iv)降膜电池。在一个实施方式中,电解质可通过本领域技术人员已知的方式循环。系统可包含泵、槽和热交换器、co2洗涤器和过滤器和视情况选用的其它处理系统和向叠堆供给空气的鼓风机。此允许处理电解质以移除产物或杂质(诸如nio和碳酸盐),维持所需组成和所需温度。在一个实施方式中,水性碱性电池包含图2中所示的一膜双室电池,其中变化为阳极膜与隔室475可不存在。阳极可包含在与oh-反应成h2o中氧化的金属,如方程式(116)所给出。oh与h2o中的至少一种可充当催化剂。阳极金属可为v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w的组中的一种。作为选择,阳极可包含氢化物,诸如lani5h6和本发明的其它氢化物,其提供h且将oh-氧化成h2o,如方程式(92)所给出。阳极也可包含可在隔室475中的h2渗透性膜472与氢来源(诸如h2气体),氢来源提供h且将oh-氧化成h2o,如方程式(123)所给出。在阴极,h2o可还原成h2和oh-,如方程式(94)所给出。阴极473可包含对氢气具有高渗透性的金属。电极可包含提供较高表面积的几何结构,诸如管形电极,或其可包含多孔电极。为提高水还原的速率和产率中的至少一种,可使用水还原催化剂。在另一实施方式中,阴极半电池反应物包含与h形成化合物,释放能量以提高h2o还原速率和产率中的至少一种的h反应物。h反应物可含于阴极室474中。由水还原形成的h渗透性过氢渗透性膜473且与h反应物反应。h渗透性电极可包含v、nb、fe、fe-mo合金、w、mo、rh、ni、zr、be、ta、rh、ti、th、pd、pd涂布的ag、pd涂布的v、pd涂布的ti、稀土金属、其它耐火金属和本领域技术人员已知的其它所述金属。h反应物可为形成氢化物的元素或化合物,诸如碱金属、碱土金属、过渡金属、内过渡金属和稀土金属、合金或其混合物和氢储存材料,诸如本发明的氢储存材料。示例性反应为阴极外壁h2o+e-→1/2h2+oh-(216)阴极内壁1/2h2+m→mh(217)化学物质可通过加热在阴极室中形成的任何氢化物,使其热分解来热再生。氢气可流动或抽吸至阳极室以使初始阳极反应物再生。再生反应可发生在阴极室与阳极室中,或所述隔室中的一或两者中的化学物质可输送至一或多个反应容器进行再生。作为选择,初始阳极金属或氢化物和阴极反应物(诸如金属)可通过原位或远距离电解再生。示例性电池为[可氧化金属(诸如v、zr、ti、mn、zn、cr、sn、in、cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl和w的一)、金属氢化物(诸如lani5h6)或h2和氢渗透性膜(诸如v、nb、fe、fe-mo合金、w、mo、rh、ni、zr、be、ta、rh、ti、th、pd、pd涂布的ag、pd涂布的v和pd涂布的ti的一)/koh(饱和水溶液)/m(m')],其中m=氢渗透性膜,诸如v、nb、fe、fe-mo合金、w、mo、rh、ni、zr、be、ta、rh、ti、th、pd、pd涂布的ag、pd涂布的v和pd涂布的ti的一且m'为形成氢化物的金属,诸如碱金属、碱土金属、过渡金属、内过渡金属和稀土金属、合金或其混合物或氢气储存材料。电池可在高温和高压下运转。在一个实施方式中,nh、o、no、oh和h2o(n=整数)中的至少一种可充当催化剂。h可与氧来源反应形成oh和h2o中的至少一种。氧来源可为氧阴离子。电解质可包含含氧阴离子的化合物。示例性适合的氧阴离子为氢氧化物、碳酸盐、硝酸盐、硫酸盐、磷酸盐、铬酸盐、重铬酸盐、高氯酸盐和过碘酸盐中的至少一种。一般而言,单独或组合充当氧来源的示例性适合的化合物为mno3、mno、mno2、moh、m2co3、mhco3、m2so4、mhso4、m3po4、m2hpo4、mh2po4、m2moo4、mnbo3、m2b4o7(m的四硼酸盐)、mbo2、m2wo4、m2cro4、m2cr2o7、m2tio3、mzro3、malo2、mcoo2、mgao2、m2geo3、mmn2o4、m4sio4、m2sio3、mtao3、mvo3、mio3、mfeo2、mio4、mclo4、mscon、mtion、mvon、mcron、mcr2on、mmn2on、mfeon、mcoon、mnion、mni2on、mcuon、mznon(m为碱金属或铵且n=1、2、3或4;m也可为另一阳离子,诸如碱土金属、过渡金属、内过渡金属或稀土金属阳离子、或第13至16族金属阳离子)和有机碱性盐(诸如m的乙酸盐或m的羧酸盐)。形成作为催化剂的oh和h2o中的至少一种以形成分数氢的反应可以氧阴离子的氧化反应的形式发生。反应可还涉及与h的反应。反应可在阳极处发生。在h存在下催化剂oh和h2o中的至少一种的形成可通过催化剂催化h形成分数氢。示例性一般反应(其中e表示元素或化合物)为阳极oh-+h→h2o+e-(218)阴极o2+2h2o+4e-→4oh-(223)在一个特定实例中,形成催化剂h2o的适合的反应(其中充当氧来源)为阳极阴极作为选择,氢可与可包含金属m'(诸如ni或co)的阳极反应以形成相应氢化物,氢化物通过以下机制还反应,诸如阳极2m+h2→2mh(226)2mh+oh-→2m+h2o+e-+h(1/p)(228)mh+1/2h2+oh-→m+h2o+e-+h(1/p)(229)其它氧阴离子可发生类似反应。在其它实施方式中,另一氧阴离子和相应氧化物质(诸如气体)分别替代和co2。示例性阴离子和气体或化合物分别为和和so2、no2和p2o5。电池可用产物气体或化合物(诸如co2、so2或no2)供给。作为选择,气体或化合物(诸如co2、so2或no2)可在电池中再循环。电池可包含诸如半透膜的构件以保留气体或化合物同时维持开放电池,诸如对空气和视情况选用的添加的o2和h2o中的至少一种开放的电池。电池也可包含供给所述气体(诸如o2和h2o)的管线。管线可具有维持定向流以防止氧阴离子氧化产物逃逸的阀门。在一个实施方式中,氧化产物为元素或化合物,诸如s或p。产物可经受还原以形成相应化合物,诸如硫化物或磷化物。作为选择,产物与供应至电池的氧反应形成氧阴离子,诸如原始反应物氧阴离子(诸如或)。在间歇电解的情况下,电池可为封闭或半封闭的,其中氧和氢现场生成。随后,可周期性添加补充气体以维持电解质和氢来源形成分数氢。气体(诸如co2、so2或no2)可内部再循环。在形成分数氢以进行产生分数氢物质和化合物和产生能量中的至少一种的另一实施方式中,反应混合物包含原子氢来源和包含h和o中的至少一种的催化剂来源,诸如本发明催化剂来源,诸如h2o催化剂。原子氢可由h2气体通过解离形成。氢解离体可为一种本发明氢解离体,诸如r-ni或贵金属或过渡金属/载体(诸如ni或pt或pd/碳或al2o3)。作为选择,原子h可来自透过膜的h,诸如本发明的所述h。在一个实施方式中,电池包含膜(诸如陶瓷膜)以允许h2选择性扩散穿过,同时防止另一物质扩散,诸如h2o扩散。电解质可包含水溶液或熔融盐。诸如氢氧化物、碳酸盐、硝酸盐、硫酸盐、磷酸盐、铬酸盐、重铬酸盐、高氯酸盐和过碘酸盐中的至少一种和混合物的电解质可包含低共熔混合物,诸如表4低共熔盐混合物中的至少一种、本发明其它混合物中的至少一种、或此项技术中已知的混合物。电池可包含氢来源、水和氧气。水可包含氢、氘和氚中的至少一种,诸如h2o、hod、d2o、t2o、dot和hot中的至少一种。示例性低共熔盐混合物为碱金属卤化物、碳酸盐、硝酸盐、硫酸盐和氢氧化物中的至少两者。熔融电解质可还包含可自大气中吸收或以液态水或蒸汽形式供给至电池的h2o来源。电池可包含开放电池。氧气可来自大气或以气体形式供给。氢来源可以气体形式通过诸如透过、喷射或鼓泡的方式或通过间歇电解氢来源(诸如电解包含一些h2o的电解质)供给。在一个实施方式中,电池操作温度低于将引起腐蚀(诸如电极或容器腐蚀)的温度。示例性电池为[ni(h2)/mno3、mno、mno2、moh、m2co3、mhco3、m2so4、mhso4、m3po4、m2hpo4、mh2po4、m2moo4、mnbo3、m2b4o7(m的四硼酸盐)、mbo2、m2wo4、m2cro4、m2cr2o7、m2tio3、mzro3、malo2、mcoo2、mgao2、m2geo3、mmn2o4、m4sio4、m2sio3、mtao3、mvo3、mio3、mfeo2、mio4、mclo4、mscon、mtion、mvon、mcron、mcr2on、mmn2on、mfeon、mcoon、mnion、mni2on、mcuon、mznon(m为碱金属或铵,且n=1、2、3或4)中的一种或多种的水溶液或低共熔盐电解质/ni+空气]其中氢电极可为透过、喷射或间歇电解电极。其它实例为[ni/lioh-li2so4/ni+空气间歇充电-放电]、[ni/lioh-li2so4(水溶液)/ni+空气间歇充电-放电]、[ni或ptti/nh4oh(水溶液)/ni或ptti+空气间歇充电-放电]、[ni/sr(oh)2或ba(oh)2(水溶液)/ni+空气间歇充电-放电]、[ptti或ni/k2co3(水溶液)/ni或ptti+空气间歇充电-放电]和[ptti或pd/lioh(水溶液)/pd或ptti+空气间歇充电-放电]。在通过形成分数氢产生热能和电能中的至少一种的一个ciht电池实施方式中,h反应具再生性,其中例外为一部分h库存在重复反应的各循环后转化为分数氢。氢与来自可为水合熔融或水性电解质的电解质(诸如k2co3)的碳酸根的示例性反应为阳极oh-+1/2h2→h2o+e-(231)阴极阳极反应也可由涉及氧化形成充当催化剂的h2o的方程式(224)给出。净反应,一些h转化为h(1/p),其中nh、o、no、oh和h2o(n=整数)中的至少一种可充当催化剂。氢来源可为透过、喷射或鼓泡中的至少一种和间歇电解。反应在无电极存在下(诸如在产生热力的实施方式中)可以协同方式发生。一个特定热实施方式包含氢加压腔室和氢渗透性膜,该氢渗透性膜通过透过供给氢至含有碳酸盐(诸如碱性碳酸盐,诸如k2co3)的第二反应腔室。在一个实施方式中,迁移离子为氧化物离子,其与h来源反应以形成可与h来源一起充当催化剂的oh和h2o中的至少一种。阴极可包含氧化物离子来源,诸如氧气或包含o的化合物(诸如氧化物)。电池可包含电解质和盐桥中的至少一种。电解质可为氢氧化物,诸如碱金属氢氧化物(诸如koh),可具有高浓度,诸如在约12m至饱和范围内。盐桥可对氧化物离子具有选择性。。适合的盐桥可为氧化钇-稳定化氧化锆(ysz)、氧化钆掺杂的二氧化铈(cgo)、镓酸镧(lanthanumgallate)和铋铜钒氧化物,诸如bicuvox。一些钙钛矿材料,诸如la1-xsrxcoyo3-d也显示混合氧化物和电子传导性。h来源可为氢气和解离体、氢渗透性膜或氢化物。阴极和阳极反应可为阳极o2-+1.5h2→h2o+h(1/p)+2e-(233)阴极0.5o2+2e-→o2-(234)阴极和阳极可包含催化剂,诸如镍或贵金属(诸如pt或pd)。电极可还包含载体材料,诸如金属陶瓷。示例性电池为[ptc(h2)、ni(h2)、ceh2、lah2、zrh2或lih/ysz/ni或pt(o2或氧化物)]。在一个实施方式中,h-为迁移离子,且h-和oh-中的至少一种在阳极处氧化形成h、oh和h2o中的至少一种。h可在阴极处还原成h-。h来源可为氢化物或来自氢渗透性电极(诸如本发明氢渗透性电极的一)的h。阳极可为对腐蚀稳定的金属,诸如ni。阳极可还包含可含有与透过电极的h反应的元素或化合物的氢渗透性材料,诸如金属,诸如ni、v、ti、v、fe或nb。适合的h反应性元素或化合物为h储存材料,诸如li、mg、la、ce和li-n-h系统。电解质可包含氢氧化物,诸如碱金属、碱土金属、过渡金属、稀土金属和第iii、iv、v和vi族金属氢氧化物中的至少一种。电解质可还包含氢化物,诸如碱金属、碱土金属、过渡金属、内过渡金属和稀土金属氢化物和硼氢化物和氢化铝中的至少一种。示例性反应为阴极:h+e-→h-(235)阳极h-+oh-→h+e-,oh+e-或h2o+2e-(236)示例性电池为[ni(li)/lih-lioh/ni(h2)]、[ni/lih-lioh/ni(h2)]、[ni(li)/nah-naoh/ni(h2)]、[ni/nah-naoh/ni(h2)]、[ni(li)/kh-koh/ni(h2)]和[ni/kh-koh/ni(h2)]。构成熔融氢氧化物电解质混合物的适合示例性熔融氢化物为以下的低共熔混合物:熔融温度为约503℃的约43+57mol%的nah-kbh4、熔融温度为约390℃的约66+34mol%的kh-kbh4、熔融温度为约395℃的约21+79mol%的nah-nabh4、熔融温度为约103℃的约53+47mol%的kbh4-libh4、熔融温度为约213℃的约41.3+58.7mol%的nabh4-libh4、和熔融温度为约453℃的约31.8+68.2mol%的kbh4-nabh4,其中混合物可还包含碱金属或碱土金属氢化物,诸如lih、nah或kh。其它示例性氢化物为mg(bh4)2(mp260℃)和ca(bh4)2(367℃)。至少一种半电池的反应物可包含氢储存材料,诸如金属氢化物、m-n-h系统的物质(诸如linh2、li2nh或li3n),和还包含硼的碱金属氢化物,诸如硼氢化物或铝,诸如铝氢化物。其它适合的氢储存材料为金属氢化物,诸如碱土金属氢化物,诸如mgh2、金属合金氢化物,诸如bareh9、lani5h6、fetih1.7和mgnih4,金属硼氢化物,诸如be(bh4)2、mg(bh4)2、ca(bh4)2、zn(bh4)2、sc(bh4)3、ti(bh4)3、mn(bh4)2、zr(bh4)4、nabh4、libh4、kbh4和al(bh4)3、alh3、naalh4、na3alh6、lialh4、li3alh6、lih、lani5h6、la2co1ni9h6和tifeh2、nh3bh3、聚胺基硼烷、胺硼烷络合物,诸如胺硼烷、硼烷氨合物、肼-硼烷络合物、二硼烷二氨合物、硼氮炔,和八氢三硼酸铵或四氢硼酸铵、咪唑鎓离子液体,诸如烷基(芳基)-3-甲基咪唑鎓n-双(三氟甲烷磺酰基)酰亚胺盐、硼酸鏻和硝酸钾(carbonite)物质。其它示例性化合物为氨硼烷、碱金属氨硼烷,诸如锂氨硼烷,和硼烷烷基胺络合物,诸如硼烷二甲胺络合物、硼烷三甲胺络合物,和胺基硼烷和硼烷胺,诸如胺基二硼烷、n-二甲胺基二硼烷、参(二甲胺基)硼烷、二正丁基硼胺、二甲胺基硼烷、三甲胺基硼烷、氨-三甲基硼烷,和三乙胺基硼烷。其它适合氢储存材料为含吸收氢的有机液体,诸如咔唑和衍生物,诸如9-(2-乙基己基)咔唑、9-乙基咔唑、9-苯基咔唑、9-甲基咔唑和4,4'-双(n-咔唑基)-1,1'-联苯。示例性电池为[ni(li)/libh4-lioh/ni(h2)]、[ni/libh4-lioh/ni(h2)]、[ni(li)/nabh4-naoh/ni(h2)]、[ni/nabh4-naoh/ni(h2)]、[ni(li)/kbh4-koh/ni(h2)]、[ni/kbh4-koh/ni(h2)]、[ni(li)/lih-libh4-lioh/ni(h2)]、[ni/lih-libh4-lioh/ni(h2)]、[ni(li)/nah-nabh4-naoh/ni(h2)]、[ni/nah-nabh4-naoh/ni(h2)]、[ni(li)/kh-kbh4-koh/ni(h2)]和[ni/kh-kbh4-koh/ni(h2)]。在一个实施方式中,nh和mnh2(m=碱金属)中的至少一种可充当催化剂。氮来源(诸如n2)可在阴极处供给,且h来源(诸如由氢渗透性膜供给的h2气体)可包含阳极。电解质可包含熔融盐,诸如低共熔盐,诸如碱金属卤化物混合物。电解质还包含形成至少一种m-n-h系统化合物(诸如m3n、m2nh和mnh2)的金属。形成nh或mnh2作为中间物的示例性反应为阳极n3-+3h→nh3+3e-(237)阴极1/n2+3e-→n3-(238)示例性电池为[ni(h2)/licl-kclli/ni+n2],其中ni(h2)为氢渗透性电极,且nh3在一个实施方式中可选择性移除。nh3可通过浓缩、通过选择性膜、通过吸气剂(诸如碳或沸石)、通过诸如与酸的反应或收集于溶剂(诸如水)中来移除。在一个实施方式中,h-为迁移离子。电解质可为氢化物离子导体,诸如熔融低共熔盐,诸如低共熔混合物,诸如碱金属卤化物混合物,诸如licl-kcl。阴极可为氢渗透性膜,诸如ni(h2)。阳极可包含含有阳极反应混合物的隔室。阳极反应混合物可包含氢储存材料,诸如形成氢化物的金属,诸如碱金属、碱土金属、过渡金属、内过渡金属和稀土金属或金属合金中的至少一种。阳极反应物可包含m-n-h系统,诸如li3n或li2nh。阳极反应混合物可包含熔融氢氧化物,其可包含氢氧化物与至少一种其它化合物(诸如另一氢氧化物或盐,诸如碱金属卤化物)的混合物。阳极反应混合物可包含lioh-libr。示例性电池为[ni(li3n)/licl-kcl0.01mol%lih/ni(h2)]、[ni(lioh)/licl-kcl0.01mol%lih/ni(h2)][ni(lioh-libr)/licl-kcl0.01mol%lih/ni(h2)]。在一个实施方式中,溶剂可添加至阳极反应物中,诸如在电池操作温度下熔融的金属或低共熔盐。举例而言,li金属或低共熔盐(诸如licl-kcl)可添加于阳极管中以溶解li3n。在一个实施方式中,电池包含为h-导体的熔融氢氧化物-氢化物电解质、形成氢化物离子的h来源(诸如本发明的氢渗透性电极的一,诸如ni(h2))和选择性氧化至少一种阴离子以形成h和oh、h2o、nh、o2和no(n=整数)中的至少一种的阳极,其中oh、h2o、nh、o2和no(n=整数)中的至少一种可充当催化剂。氢氧化物可为碱金属氢氧化物,且氢化物可为碱金属氢化物。阳极可为贵金属或支撑的贵金属,本发明的两者诸如pt/c。反应可为阳极:2h-+oh-→h2o+3e-+h(1/p)(239)阴极:h2+2e-→2h-(240)示例性电池为[pt/c/熔融氢氧化物-氢化物/m'(h2)],其中m'可包含氢渗透性金属,诸如ni、ti、v、nb、pt和ptag,电解质包含氢氧化物与氢化物的混合物,诸如moh-m”h(m、m'=碱金属),且其它贵金属和载体可代替pt/c。电解质可还包含至少一种其它盐,诸如碱金属卤化物。在一个实施方式中,ciht电池包含热电共生系统(cogenerationsystem),其中为负载产生电能和热能。电负载和热负载中的至少一种可为内部和外部中的至少一种。举例而言,通过形成分数氢所产生的至少一部分热能或电能可维持电池温度,诸如包含熔融盐电解质或熔融反应物的ciht电池的熔融盐的温度。电能可至少部分供给电解动力以自产物再生原始电池反应物。在一个实施方式中,电解质(诸如水性或熔融盐电解质)可经由移除热并最终转移至负载的热交换器或在热交换器上泵送。在某些实施方式中,可使反应物再生且维持反应以形成较低能量的氢的本文所揭示的动力、化学物质、电池组和燃料电池系统可被关闭,例外为仅形成分数氢中消耗的氢需被替换,其中所消耗的氢燃料可自水的电解获得。燃料电池可用于广泛应用,诸如动力产生,诸如公用动力、热电共生、原动力、船舶动力和航空。在后者情况下,ciht电池可给作为电动车辆的动力储存的电池组充电。动力可通过控制阴极和阳极半电池反应物和反应条件来控制。适合的控制参数为氢气压力和操作温度。燃料电池可为构成叠堆的多个电池的成员。燃料电池成员可叠堆且可经互连件在各接合点串联式互连。互连件可为金属或陶瓷。适合的互连件为导电金属、陶瓷和金属陶瓷复合物。在一个实施方式中,电池的极性在可选外加电压下周期性反向以移除氧化还原反应产物和分数氢产物中的至少一种,从而消除产物抑制。产物也可由物理和热方法移除,所述方法分别诸如超音和加热。在一个实施方式中,电解质可被移除、通过诸如加热的方式处理以移除分数氢、和被替换。电解质(诸如熔融盐或电解质水溶液)可流动,且处理可在批量或流动条件下进行。在一个实施方式中,将磁场施加于电池。磁场可在任何所需定向上施加于至少一个电极。磁场线可与至少一个电极的电极表面垂直或可与至少一个电极的表面平行。场强度可在约1mt至10t、0.01至1t和0.1至0.3t范围内。在一个实施方式中,ciht电池包含等离子体电池,其中等离子体通过间歇施加外部输入动力间歇形成,且动力在外部输入动力关闭阶段期间汲取或输出。等离子体气体包含氢来源、氢、催化剂来源和催化剂中的至少两者,其通过h与催化剂的反应形成分数氢以向外部负载提供动力。输入等离子体动力产生至少在外部动力关闭阶段期间形成分数氢的反应物。等离子体电池可包含等离子体电解反应器、屏障电极反应器、rf等离子体反应器、rt-等离子体反应器、加压气体能量反应器、气体放电能量反应器、微波电池能量反应器和辉光放电电池与微波和/或rf等离子体反应器的组合。催化剂和系统可为本发明的催化剂和系统和本发明人在先申请案中揭示的催化剂和系统:hydrogencatalystreactor,pct/us08/61455,pct4/24/2008申请;heterogeneoushydrogencatalystreactor,pct/us09/052072,pct7/29/2009申请;heterogeneoushydrogencatalystpowersystem,pct/us10/27828,pct3/18/2010申请;和electrochemicalhydrogencatalystpowersystem,pct/us11/28889,pct3/17/2011申请,所述文献以全文引用的方式并入本文中。在一个实施方式中,包含oh、h2o、o2、no和nh(n为整数)中的至少一种的催化剂于水-电弧等离子体中产生。示例性等离子体系统包含连接在基板-杆电极与含有水的同心筒电极之间的能量储存电容器,其中基板-杆电极的杆在水柱以下。杆包埋于绝缘体中,绝缘体诸如筒部分中的尼龙套管(nylonsleeve)和基板与筒之间的尼龙块(nylonblock)。电路还包含电阻器和电感器以引起在杆与筒之间的水中振荡放电。电容器可由高压电源供应器充电且由可包含于大气中的火花隙的开关放电。电极可由铜制成。高电压可在约5至25kv范围内。放电电流可在5至100ka范围内。3.5mlh2o的示例性参数为:电容为约0.6μf,电感为约0.3μh,电阻为约173mω,筒电极宽度和深度为约1/2英寸和3英寸,杆宽度为约1/4英寸,充电电压为约12.0kv,且lrc时间常数为约3.5μs。雾爆炸由触发水电弧放电产生,其中弧引起形成原子氢和催化剂,两者反应形成分数氢且释放驱动雾爆炸的能量。来自分数氢形成的动力可呈热能形式,该热能可直接用于热应用中,诸如空间和制程加热或使用热机(诸如蒸汽轮机)转化为电。系统也可用于形成结合能增加的氢物质和化合物,诸如分子分数氢h2(1/p)。在一个实施方式中,分数氢电池包含压缩等离子体来源以形成分数氢连续谱发射。电池包含阴极、阳极、电源供应器和氢来源以形成压缩氢等离子体。等离子体系统可包含空心阳极系统,诸如稠密等离子体焦点来源,诸如此项技术中已知者。独特特征在于等离子体气体为氢气,且等离子体条件经优化以产生氢连续谱发射。发射可用作euv蚀刻的光源。在一个实施方式中,h2o可充当催化剂,其中催化剂在电池中由某一来源通过该来源与氢来源的氢的反应形成。在一个实施方式中,h2o催化反应和相应能量释放可形成氢原子反转群体。h2o来源可为硝酸盐,诸如碱金属硝酸盐,且氢来源可为h2气体。混合物反应可在真空密封容器中加热至高温,如本发明人以下论文中所述:r.l.mills,p.ray,b.dhandapani,w.good,p.jansson,m.nansteel,j.he,a.voigt,「spectroscopicandnmridentificationofnovelhydrideionsinfractionalquantumenergystatesformedbyanexothermicreactionofatomichydrogenwithcertaincatalysts,」europeanphysicaljournal:appliedphysics,28,(2004),83-104和r.l.mills,p.ray,r.m.mayo,「cwhilaserbasedonastationaryinvertedlymanpopulationformedfromincandescentlyheatedhydrogengaswithcertaingroupicatalysts,」ieeetransactionsonplasmascience,第31卷,第2期,(2003),第236-247页,其均以全文引用的方式并入本文中。h2o催化剂可由等离子体分解的来自水的氢与氧的反应形成。分数氢反应的能量可引起h谱线反转且产生快h,如本发明人以下论文中所述:r.l.mills,p.c.ray,r.m.mayo,m.nansteel,b.dhandapani,j.phillips,「spectroscopicstudyofuniquelinebroadeningandinversioninlowpressuremicrowavegeneratedwaterplasmas,」j.plasmaphysics,第71卷,第6期,(2005),877-888,其以全文引用的方式并入本文中。在一个实施方式中,h2o催化剂可由h2气体与碳酸盐(诸如碱金属碳酸盐,诸如k2co3)的反应形成。能量释放可通过热活化传播等离子体,且由反常余辉持续的迹象表明,可在无外加电场存在下继续存在。示例性反应描述于本发明人以下论文中:h.conrads,r.l.mills,th.wrubel,「emissioninthedeepvacuumultravioletfromaplasmaformedbyincandescentlyheatinghydrogengaswithtraceamountsofpotassiumcarbonate,」plasmasourcesscienceandtechnology,第12卷,(2003),第389-395页,其以全文引用的方式并入本文中。在一个实施方式中,h2o催化剂可由氧来源的反应形成,氧来源包含含氧化合物,诸如硝酸盐、碳酸盐、硫酸盐、磷酸盐或金属氧化物,诸如sm、fe、sr或pr的氧化物。催化剂反应可在氧来源与氢气一起加热时形成称为rt-等离子体的等离子体,如本发明人以下论文中所述:r.l.mills,j.dong,y.lu,「observationofextremeultraviolethydrogenemissionfromincandescentlyheatedhydrogengaswithcertaincatalysts,」int.j.hydrogenenergy,第25卷,(2000),第919-943页,其以全文引用的方式并入本文中。在一个实施方式中,nh(n=整数)可充当催化剂以形成分数氢,其中能量释放产生快h。如h巴耳末谱线(balmerline)的强度所指示,向h等离子体中添加氦且尤其氩可通过增加总h群体来增强快h群体,如本发明人以下论文中所述:k.akhtar,j.scharer,r.l.mills,「substantialdopplerbroadeningofatomichydrogenlinesindcandcapactivelycoupledrfplasmas,」j.phys.d:appl.phys.,第42卷,第13期(2009),135207(12pp),其以全文引用的方式并入本文中。x.分数氢氢化物电池组根据本发明的电池组显示于图1中,包含阴极隔室401和阴极405、阳极隔室402和阳极410、和盐桥440,其中阴极隔室401中的氧化剂包含含分数氢氢化物离子的化合物。在一个实施方式中,氧化剂化合物包含钠分数氢氢化物,其中钠可呈至少2+的氧化态。氧化剂可包含na(h(1/p)x,其中x为整数且h(1/p)为分数氢氢化物离子。在一个实施方式中,选择p以形成稳定na2+化合物。在一个实施方式中,p为10、11、12、13、14、15、16、17、18、19、20和21中的至少一种。在一个实施方式中,盐桥440为na离子导体。适合的钠离子导体为本发明钠离子导体,诸如β氧化铝固体电解质(base)、nasicon(na3zr2si2po12)和naxwo3。还原剂可为钠离子来源,诸如金属钠。电池可还包含加热器,且可包含绝热(诸如外绝热)以维持电池处于高操作温度下,诸如高于na金属的熔点。电池组反应可包含由金属钠还原剂还原氢化钠氧化剂,na+离子自阳极隔室402经由钠离子导体盐桥440迁移至阴极隔室401。示例性电池组反应为:阴极:nahx+e-→mhx-1+h-(241)阳极:na→na++e-(242)总反应:nahx+na→nahx-1+nah(243)在一个实施方式中,电池组通过使放电反应(诸如由方程式(241-243)所给出的反应)反向而可充电。在一个实施方式中,半电池隔室充当相应电极。电池组400可密封于电池组盒中。本发明的另一方面包含可由ciht电池产生的能量的储存。储存能量可在高于可经较长持续时间间歇给电池组充电的ciht电池的动力的动力下传递。电池组的较高动力可用于高动力短脉冲,诸如如航空应用起飞或动机应用加速所需。电池组可包含此项技术中已知的常规电池组,诸如锂离子电池组或金属氢化物电池组。在另一应用中,电池组可包含本领域技术人员已知的能够再生的燃料电池。本发明燃料电池包含li-空气电池组,诸如此项技术中已知的li-空气电池组。在另一实施方式中,li-空气电池组包含阳极半电池,其包含li阳极(诸如li金属)和熔融盐电解质(诸如包含至少一种li盐(诸如li卤化物、氢氧化物、碳酸盐或本发明的其它类似物)的熔融盐电解质)。电解质可包含混合物,诸如低共熔混合物,诸如碱金属卤化物盐混合物,诸如licl-kcl或本发明其它类似物。电池可包含分离器,诸如li离子导电性分离器,诸如li2o-al2o3-sio2-p2o5-tio2-geo2,诸如日本大原公司(ohara)的该类分离器。阴极可包含氧还原阴极,诸如nio和本发明其它类似物。阴极还原反应可为o2还原反应,且可还包含o2和h2o的还原。随后,产物可为oh-和其它氧和包含氧和氢中的至少一种的物质。阴极半电池可还包含电解质,诸如熔融盐。熔融盐可包含卤化物和氢氧化物中的至少一种,诸如碱金属的卤化物和氢氧化物,诸如lioh-mx(其中m为碱金属且x为卤离子),诸如本发明的lioh-mx。可逆放电反应可为阴极:2h2o+o2+4e-→4oh-(244)阳极:li→li++e-(245)总反应:4li+2h2o+o2→4lioh(246)在一个实施方式中,h和h2o催化剂在再充电期间在放电阴极处形成,且h由h2o催化形成分数氢以释放能量从而辅助再充电过程以使所需能量少于无分数氢能量贡献存在的情况。xi.化学反应器本发明也针对用于产生本发明的结合能增加的氢物质和化合物,诸如二分数氢分子和分数氢氢化物化合物的其它反应器。其它催化产物为动力和视情况存在的等离子体和光,视电池类型而定。此类反应器在下文中称为「氢反应器」或「氢电池」。氢反应器包含用于产生分数氢的电池。用于产生分数氢的电池可采取化学反应器或气体燃料电池(诸如气体放电电池、等离子体炬电池或微波动力电池)和电化学电池的形式。用于产生分数氢的电池的示例性实施方式可采取液体燃料电池、固体燃料电池、非均匀燃料电池和ciht电池的形式。此类电池各自包含:(i)原子氢来源;(ii)至少一种选自用于产生分数氢的固体催化剂、熔融催化剂、液体催化剂、气态催化剂或其混合物的催化剂;和(iii)使氢与催化剂反应以产生分数氢的容器。如本文所用和如本发明所涵盖,除非另外说明,否则术语「氢」不仅包括氕(1h),而且包括氘(2h)和氚(3h)。在使用氘作为分数氢反应的反应物的情况下,预期有相对痕量的非均匀燃料和固体燃料的氚或氦产物。示例性化学反应混合物和反应器可包含本发明的ciht电池或热电池实施方式。其它示例性实施方式在化学反应器章节中给出。具有混合物反应期间形成的作为催化剂的h2o的反应混合物的实例在本发明中给出。诸如表1和3中给出的其它催化剂可用于形成结合能增加的氢物质和化合物。表3a的示例性m-h型催化剂为nah。适合的反应混合物为氢化钠和诸如碱金属卤化物(诸如nacl)的化合物和视情况选用的解离体(诸如r-ni,诸如r-ni2800)。各反应物的重量%可任何所需值。在一个实施方式中,nacl的重量%若为nah的约10倍,则若使用r-ni解离体,则其重量%也可为10倍。电池温度可为高温,诸如在约300℃至550℃范围内。基于高磁场位移的观察的包含至少一种分数氢产物的基质的nmr结果的其它适合反应混合物和条件为(1)li、lif(分别为5wt%和95wt%)和ni筛网解离体,在600℃下,1hmasnmr峰在1.17和-0.273ppm处观察到,(2)li和libr(分别为5wt%和95wt%)和ni筛网解离体,在600℃下,1hmasnmr峰在1.13和-2.462ppm处观察到,(3)li3n、lih、libr(分别为5wt%、10wt%和85wt%)和r-ni解离体,在450℃下,1hmasnmr峰在-2.573ppm处观察到,(4)li2nh、li、libr(分别为5wt%、10wt%和85wt%)和r-ni解离体,在500℃下,1hmasnmr峰在-2.512ppm处观察到,(5)linh2、li、libr(分别为5wt%、10wt%和85wt%)和r-ni解离体,在500℃下,1hmasnmr峰在-2.479ppm处观察到,(6)linh2、libr(分别为5wt%和95wt%)和r-ni解离体,在450℃下,1hmasnmr峰在1.165和-2.625ppm处观察到,(7)li和lii(分别为5wt%和95wt%)和r-ni解离体,在550℃下,1hmasnmr峰在1.122和-2.038ppm处观察到,(8)linh2、li、lii(分别为5wt%、10wt%和85wt%)和r-ni解离体,在450℃下,1hmasnmr峰在-2.087ppm处观察到,(9)na、nacl(分别为25wt%和75wt%)和ni板和pt/ti解离体,在500℃下,1hmasnmr峰在1.174和-3.802ppm处观察到,(10)nah、nacl(分别为10wt%和90wt%)和r-ni解离体,在500℃下,1hmasnmr峰在1.057和-3.816ppm处观察到,(11)nah、nacl(分别为10wt%和90wt%),在500℃下,1hmasnmr峰在1.093和-3.672ppm处观察到,(12)na、nabr(分别为18wt%和82wt%)和pt/ti解离体,在500℃下,1hmasnmr峰在1.129和-3.583ppm处观察到,(13)nah、nai(分别为18wt%和82wt%),在500℃下,1hmasnmr峰在1.05和-2.454ppm处观察到,(14)k、kf(分别为10wt%和90wt%)和r-ni解离体,在500℃下,1hmasnmr峰在0.987和-5.143ppm处观察到,(15)k、kcl(分别为8wt%和92wt%)和ni筛网解离体,在600℃下,1hmasnmr峰在1.098、-4.074和-4.473ppm处观察到,(16)k、kbr(分别为10wt%和90wt%)和ni筛网解离体,在450℃下,1hmasnmr峰在1.415和-4.193ppm处观察到,(17)k、ki(分别为5wt%和95wt%)和r-ni解离体,在500℃下,1hmasnmr峰在1.113和-2.244ppm处观察到,(18)cs、csf(分别为45wt%和55wt%)和r-ni解离体,在500℃下,1hmasnmr峰在1.106和-3.965ppm处观察到,(19)cs、cscl(分别为45wt%和55wt%)和r-ni解离体,在550℃下,1hmasnmr峰在1.073和-3.478ppm处观察到,(20)cs、csi(分别为45wt%和55wt%)和r-ni解离体,在400℃下,1hmasnmr峰在1.147和-1.278ppm处观察到,(21)nacl、khso4(分别为85wt%和15wt%),在600℃下,1hmasnmr峰在1.094、-3.027和-3.894ppm处观察到,(22)nacl、nahso4(分别为85wt%和15wt%),在600℃下,1hmasnmr峰在1.085、-3.535和-4.077ppm处观察到,和(23)cscl、nahso4(分别为95wt%和5wt%),在550℃下,1hmasnmr峰在1.070和-2.386ppm处观察到,其中h2压力为5psig,且解离体重量为反应物重量的约50%至300%。可在诸如反应物、反应物wt%、h2压力和反应温度的参数方面调节所述示例性情况的反应和条件。适合的反应物、条件和参数范围为本发明的反应物、条件和参数范围。在一个实施方式中,所述反应混合物还包含氧来源(诸如不锈钢还原反应器的氧化产物),其与h2和存在的其它反应物反应形成h2o催化剂和分数氢,所述h2o催化剂和分数氢导致高磁场基质位移,诸如反应期间形成的任何氢氧化物的位移。在一个实施方式中,固体燃料反应形成h2o和h作为产物或中间反应产物。h2o可充当催化剂以形成分数氢。反应物包含至少一种氧化剂和一种还原剂,且反应包含至少一个氧化还原反应。还原剂可包含金属(诸如碱金属)。反应混合物可还包含氢来源和h2o来源,且可视情况包含载体,诸如碳、碳化物、硼化物、氮化物、甲腈(诸如ticn)或腈。h来源可选自碱金属、碱土金属、过渡金属、内过渡金属、稀土金属氢化物和本发明的氢化物的组。氢来源可为氢气,可还包含解离体,诸如本发明的解离体,诸如贵金属/载体(诸如碳或氧化铝和本发明的其它类似物)。水源可包含脱水的化合物,诸如氢氧化物或氢氧化物络合物,诸如al、zn、sn、cr、sb和pb的氢氧化物或氢氧化物络合物。水源可包含氢来源和氧来源。氧来源可包含含氧化合物。示例性化合物或分子为o2、碱金属或碱土金属氧化物、过氧化物或超氧化物、teo2、seo2、po2、p2o5、so2、so3、m2so4、mhso4、co2、m2s2o8、mmno4、m2mn2o4、mxhypo4(x、y=整数)、pobr2、mclo4、mno3、no、n2o、no2、n2o3、cl2o7和o2(m=碱金属和碱土金属或其它阳离子可替代m)。其它示例性反应物包含选自以下的组的试剂:li、lih、lino3、lino、lino2、li3n、li2nh、linh2、lix、nh3、libh4、lialh4、li3alh6、lioh、li2s、lihs、lifesi、li2co3、lihco3、li2so4、lihso4、li3po4、li2hpo4、lih2po4、li2moo4、linbo3、li2b4o7(四硼酸锂)、libo2、li2wo4、lialcl4、ligacl4、li2cro4、li2cr2o7、li2tio3、lizro3、lialo2、licoo2、ligao2、li2geo3、limn2o4、li4sio4、li2sio3、litao3、licucl4、lipdcl4、livo3、liio3、lifeo2、liio4、liclo4、liscon、lition、livon、licron、licr2on、limn2on、lifeon、licoon、linion、lini2on、licuon和liznon(其中n=1、2、3或4)、氧阴离子、强酸氧阴离子、氧化剂、分子氧化剂(诸如v2o3、i2o5、mno2、re2o7、cro3、ruo2、ago、pdo、pdo2、pto、pto2和nh4x,其中x为硝酸根或crc中所给出的其它适合的阴离子)和还原剂。另一碱金属或其它阳离子可替代li。其它氧来源可选自以下的组:mcoo2、mgao2、m2geo3、mmn2o4、m4sio4、m2sio3、mtao3、mvo3、mio3、mfeo2、mio4、mclo4、mscon、mtion、mvon、mcron、mcr2on、mmn2on、mfeon、mcoon、mnion、mni2on、mcuon和mznon(其中m为碱金属且n=1、2、3或4)、氧阴离子、强酸氧阴离子、氧化剂、分子氧化剂(诸如v2o3、i2o5、mno2、re2o7、cro3、ruo2、ago、pdo、pdo2、pto、pto2、i2o4、i2o5、i2o9、so2、so3、co2、n2o、no、no2、n2o3、n2o4、n2o5、cl2o、clo2、cl2o3、cl2o6、cl2o7、po2、p2o3和p2o5)。反应物可为能形成分数氢的任何所需比率。示例性反应混合物为0.33glih、1.7glino3、和1gmgh2与4g活性c粉末的混合物。另一示例性反应混合物为火药,诸如kno3(75wt%)、软木木炭(可包含大致组成c7h4o)(15wt%)和s(10wt%);kno3(70.5wt%)和软木木炭(29.5wt%),或所述比率在约±1-30wt%范围内。氢来源可为包含大致组成是c7h4o的木炭。在一个实施方式中,反应混合物包含能形成氮气、二氧化碳和h2o的反应物,其中后者充当分数氢催化剂,因为反应中也形成h。在一个实施方式中,反应混合物包含氢来源和h2o来源,h2o来源可包含硝酸盐、硫酸盐、高氯酸盐、过氧化物(诸如过氧化氢)、过氧化合物(诸如三丙酮-三过氧化物(tatp)或二丙酮-二过氧化物(dadp))过氧化合物也可充当h来源,尤其在添加o2或另一氧来源(诸如硝基化合物,诸如硝化纤维素(apnc)、氧气或其它含氧化合物或氧阴离子化合物)时。反应混合物可包含化合物来源或化合物或官能团来源或官能团,其包含结合氮的氢、碳、烃和氧中的至少两者。反应物可包含硝酸盐、亚硝酸盐、硝基和硝胺。硝酸盐可包含金属(诸如碱金属)硝酸盐,可包含硝酸铵或本领域技术人员已知的其它硝酸盐,诸如碱金属、碱土金属、过渡金属、内过渡金属或稀土金属或al、ga、in、sn或pb的硝酸盐。硝基可包含有机化合物的官能团,有机化合物诸如硝基甲烷、硝基甘油、三硝基甲苯或本领域技术人员已知的类似化合物。示例性反应混合物为nh4no3和碳源,诸如长链烃(cnh2n+2)(诸如加热油、柴油、煤油),该长链烃可包含氧(诸如糖蜜或糖)或硝基(诸如硝基甲烷);或碳源,诸如煤粉尘。h来源也可包含nh4、烃(诸如燃料油)或糖,其中结合碳的h提供h的控制释放。h释放可通过自由基反应实现。c可与o反应释放h并形成碳-氧化合物,诸如co、co2和甲酸盐。在一个实施方式中,单一化合物可包含形成氮气、二氧化碳和h2o的官能团。还包含烃官能团的硝胺为环三亚甲基三硝胺,通常称为旋风炸药(cyclonite)或代号为rdx。可充当h来源和h2o催化剂来源(诸如o来源和h来源中的至少一种的来源)中的至少一种的其它示例性化合物为选自以下的组中的至少一种:硝酸铵(an)、黑火药(75%kno3+15%木炭+10%s)、硝酸铵/燃料油(anfo)(94.3%an+5.7%燃料油)、赤藓醇四硝酸酯、三硝基甲苯(tnt)、阿马图炸药(amatol)(80%tnt+20%an)、特屈儿炸药(tetrytol)(70%特屈儿(tetryl)+30%tnt)、特屈儿(2,4,6-三硝基苯甲硝铵(c7h5n5o8))、c-4(91%rdx)、c-3(基于rdx)、组合物b(63%rdx+36%tnt)、硝酸甘油、rdx(环三亚甲基三硝胺)、塞姆泰克斯(semtex)(94.3%petn+5.7%rdx)、petn(季戊四醇四硝酸酯)、hmx或奥克托儿(octogen)(八氢-1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷)、hniw(cl-20)(2,4,6,8,10,12-六硝基-2,4,6,8,10,12-六氮杂异伍兹烷)、ddf(4,4'-二硝基-3,3'-氧化偶氮呋呫)、七硝基立方烷(heptanitrocubane)、八硝基立方烷(octanitrocubane)、2,4,6-参(三硝甲烷)-1,3,5-三嗪、tatnb(1,3,5-三硝基苯,3,5-三迭氮基-2,4,6-三硝基苯)、三硝基苯胺、tnp(2,4,6-三硝基苯酚或苦味酸)、邓氏炸药(dunnite)(苦味酸铵)、苦味酸甲酯、苦味酸乙酯、氯化苦味酸盐(2-氯-1,3,5-三硝基苯)、三硝基甲酚、收敛酸铅(2,4,6-三硝基间苯二酚铅,c6hn3o8pb)、tatb(三胺基三硝基苯)、硝酸甲酯、硝基甘醇、甘露醇六硝酸酯、乙二硝胺、硝基胍、四硝基甘脲、硝基纤维素、硝酸脲和六亚甲基三过氧化物二胺(hmtd)。氢、碳、氧和氮的比率可为任何所需比率。在硝酸铵(an)和燃料油(fo)的反应混合物(称为硝酸铵/燃料油(anfo))的一个实施方式中,产生平衡反应的适合化学计量为约94.3wt%an和5.7wt%fo,但fo可过量。an和硝基甲烷的示例性平衡反应为3nh4no3+2ch3no2→4n2+2co2+9h2o(247)其中部分h也转化为较分数氢物质,诸如h2(1/p)和h-(1/p),诸如p=4。在一个实施方式中,氢、氮和氧的摩尔比类似,诸如于具有式c3h6n6o6的rdx中。在一个实施方式中,能量通过使用原子氢的添加来源增加,添加来源诸如h2气体或氢化物(诸如碱金属、碱土金属、过渡金属、内过渡金属和稀土金属氢化物)和解离体(诸如ni、nb或贵金属/载体(诸如碳、碳化物、硼化物或氮化物或二氧化硅或氧化铝))。反应混合物可在形成h2o催化剂和原子h的反应期间产生压缩或冲击波以增加形成分数氢的动力学。反应混合物可包含至少一种反应物以在形成h和h2o催化剂的反应期间增加热。反应混合物可包含可在固体燃料的颗粒或小珠之间分散的氧来源(诸如空气)。举例而言,an小珠可包含约20%空气。在一个示例性实施方式中,添加金属粉末(诸如al)以增加反应的热和动力学。举例而言,al金属粉末可添加至anfo中。其它反应混合物包含也具有h来源和催化剂来源(h2o)的烟火材料。在一个实施方式中,分数氢的形成具有可由能量反应(诸如能量或烟火材料的能量反应)提供的高活化能,其中分数氢的形成有助于反应混合物的自加热。作为选择,活化能可通过电化学反应提供,诸如具有对应于11,600k/ev的高等同温度的ciht电池的电化学反应。另一示例性反应混合物为可在约0.01atm至100atm压力范围内的h2气体、硝酸盐(诸如碱金属硝酸盐,诸如kno3)和氢解离体(诸如pt/c、pd/c、pt/al2o3或pd/al2o3)。混合物可还包含碳,诸如石墨或gta级柔性石墨(gradegtagrafoil)(unioncarbide)。反应比率可为任何所需值,诸如混合物的约0.1wt%至10wt%的约1至10%pt或pd/碳与约50wt%的硝酸盐混合,且其余为碳;但在示例性实施方式中,比率可变化约5至10倍。在使用碳作为载体的情况下,温度系维持在低于产生形成诸如碳酸盐(诸如碱金属碳酸盐)的化合物的c反应的温度。在一个实施方式中,温度维持在诸如约50℃-300℃或约100℃-250℃范围内以便在n2上形成nh3。反应物与再生反应和系统可包含本发明和本人以下在先美国专利申请案中的反应物与再生反应和系统:诸如hydrogencatalystreactor,pct/us08/61455,pct4/24/2008申请;heterogeneoushydrogencatalystreactor,pct/us09/052072,pct7/29/2009申请;heterogeneoushydrogencatalystpowersystem,pct/us10/27828,pct3/18/2010申请;和electrochemicalhydrogencatalystpowersystem,pct/us11/28889,pct3/17/2011申请(「millspriorapplications」),所述文献以全文引用的方式并入本文中。在一个实施方式中,反应可包含氮氧化物(诸如n2o、no2或no)而不是硝酸盐。作为选择,也向反应混合物中添加气体。no、no2和n2o和碱金属硝酸盐可由已知工业方法(诸如依次通过哈柏法(haberprocess)和奥斯特瓦尔德法(ostwaldprocess))产生。在一个实施方式中,步骤的示例性顺序为:详言之,哈柏法可用于由n2和h2在高温和高压下使用催化剂(诸如含α-铁的某种氧化物)制备nh3。奥斯特瓦尔德法可用于在催化剂(诸如热铂或铂-铑催化剂)下氧化氨为no、no2和n2o。在一个实施方式中,产物为氨和碱金属化合物中的至少一种。no2可由nh3通过氧化形成。no2可溶解于水以形成硝酸,硝酸与碱金属化合物(诸如m2o、moh、m2co3或mhco3)反应形成m的硝酸盐,其中m为碱金属。在一个实施方式中,由氧来源形成h2o和催化剂(诸如mno3,m=碱金属)、(ii)由来源(诸如h2)形成原子h、和(iii)形成分数氢的反应中的至少一个反应通过可加热的常规催化剂(诸如贵金属,诸如pt)或在该常规催化剂上发生。热催化剂可包含热长丝。长丝可包含热pt长丝。氧来源(诸如mno3)可至少部分为气态的。气态和其蒸汽压力可通过加热mno3(诸如kno3)来控制。氧来源(诸如mno3)可于开放舟皿中,可加热该开放舟皿以释放气态mno3。加热可用加热器(诸如热长丝)进行。在一个示例性实施方式中,mno3置放于石英舟中,且pt长丝卷绕在舟周围以充当加热器。mno3的蒸汽压力可维持在约0.1托至1000托或约1托至100托的压力范围内。氢来源可为气态氢,维持在约1托至100atm、约10托至10atm、或约100托至1atm压力范围内。长丝也用于解离可经由气体管线供应至电池的氢气。电池也可包含真空管线。电池反应产生h2o催化剂和原子h,反应形成分数氢。反应可维持于能够维持在真空、环境压力或大于大气压的压力中的至少一种下的容器中。产物(诸如nh3和moh)可自电池中移出并再生。在一个示例性实施方式中,mno3与氢来源反应形成h2o催化剂和nh3,nh3可在另一反应容器中再生或以另一步骤通过氧化再生。在一个实施方式中,氢来源(诸如h2气体)由水通过电解或热中的至少一种产生。示例性热法为氧化铁循环、氧化铈(iv)-氧化铈(iii)循环、锌-氧化锌循环、硫-碘循环、铜-氯循环和混合硫循环和本领域技术人员已知的其它循环。形成还与h反应形成分数氢的h2o催化剂的示例性电池反应为kno3+92h2→k+nh3+3h2o。(249)kno3+5h2→kh+nh3+3h2o。(250)kno3+4h2→koh+nh3+2h2o。(251)kno3+c+2h2→koh+nh3+co2。(252)2kno3+c+3h2→k2co3+12n2+3h2o。(253)形成氮氧化物的示例性再生反应由方程式(248)给出。产物(诸如k、kh、koh和k2co3)可与通过向水中添加氮氧化物形成kno2或kno3所形成的硝酸反应。形成反应物h2o催化剂和h2中的至少一种的其它适合的示例性反应在表6、表7和表8中给出。表6.关于h2o催化剂和h2的热可逆反应循环。[l.c.brown,g.e.besenbruch,k.r.schultz,a.c.marshall,s.k.showalter,p.s.pickard和j.f.funk,nuclearproductionofhydrogenusingthermochemicalwater-splittingcycles,于2002年6月19-13日佛罗里达州好莱坞(hollywood,florida)在关于先进核电站的国际会议(internationalcongressonadvancednuclearpowerplants,icapp)上提呈的论文的预印版,且出版在会议记录(proceedings)中。]*t=热化学,e=电化学。表7.关于h2o催化剂和h2的热可逆反应循环。[c.perkins和a.w.weimer,solar-thermalproductionofrenewablehydrogen,aiche杂志,55(2),(2009),第286-293页。]用于形成h2o催化剂的反应物可包含o来源(诸如o物质)和h来源。o物质来源可包含o2、空气和含o化合物或含o化合物的混合物中的至少一种。含氧化合物可包含氧化剂。含氧化合物可包含氧化物、氢氧化合物、氢氧化物、过氧化物和超氧化物中的至少一种。适合的示例性金属氧化物为碱金属氧化物(诸如li2o、na2o和k2o)、碱土金属氧化物(诸如mgo、cao、sro和bao)、过渡金属氧化物(诸如nio、ni2o3、feo、fe2o3和coo)、和内过渡金属和稀土金属氧化物、和其它金属和类金属的氧化物(诸如al、ga、in、si、ge、sn、pb、as、sb、bi、se和te的氧化物)、和所述和其它元素的含氧混合物。氧化物可包含氧化物阴离子(诸如本发明的氧化物阴离子,诸如金属氧化物阴离子)和阳离子,诸如碱金属、碱土金属、过渡金属、内过渡金属和稀土金属阳离子和其它金属和类金属的阳离子(诸如al、ga、in、si、ge、sn、pb、as、sb、bi、se和te的阳离子),诸如mm'2xo3x+1或mm'2xo4(m=碱土金属,m'=过渡金属,诸如fe或ni或mn,x=整数)和m2m'2xo3x+1或m2m'2xo4(m=碱金属,m'=过渡金属,诸如fe或ni或mn,x=整数)。适合的示例性金属氢氧化合物为alo(oh)、sco(oh)、yo(oh)、vo(oh)、cro(oh)、mno(oh)(α-mno(oh)锰榍石和γ-mno(oh)水锰矿)、feo(oh)、coo(oh)、nio(oh)、rho(oh)、gao(oh)、ino(oh)、ni1/2co1/2o(oh)和ni1/3co1/3mn1/3o(oh)。适合的示例性氢氧化物为诸如碱金属、碱土金属、过渡金属、内过渡金属和稀土金属的金属的氢氧化物和诸如al、ga、in、si、ge、sn、pb、as、sb、bi、se和te的其它金属和类金属的氢氧化物和混合物。适合的错离子氢氧化物为li2zn(oh)4、na2zn(oh)4、li2sn(oh)4、na2sn(oh)4、li2pb(oh)4、na2pb(oh)4、lisb(oh)4、nasb(oh)4、lial(oh)4、naal(oh)4、licr(oh)4、nacr(oh)4、li2sn(oh)6和na2sn(oh)6。其它示例性适合的氢氧化物为来自以下中的至少一种:co(oh)2、zn(oh)2、ni(oh)2、其它过渡金属氢氧化物、cd(oh)2、sn(oh)2和pb(oh)。适合的示例性过氧化物为h2o2、有机化合物过氧化物和金属过氧化物,诸如m2o2(其中m为碱金属,诸如li2o2、na2o2、k2o2)、其它离子过氧化物(诸如碱土金属过氧化物,诸如ca、sr或ba过氧化物)、其它正电性金属过氧化物(诸如镧系金属过氧化物)和共价金属过氧化物(诸如zn、cd和hg的过氧化物)。适合的示例性超氧化物为金属超氧化物mo2(其中m为碱金属,诸如nao2、ko2、rbo2和cso2)和碱土金属超氧化物。在其它实施方式中,氧来源为气态或容易形成气体,诸如no2、no、n2o、co2、p2o3、p2o5和so2。来自h2o催化剂形成的还原氧化物产物(诸如c、n、nh3、p或s)可通过与氧或其来源燃烧再次转化回氧化物,如millspriorapplications中所给出。电池可产生可用于加热应用的过量热,或热可通过诸如rankine或brayton系统的方式转化成电。作为选择,电池可用于合成分数氢物质,诸如分子分数氢和分数氢氢化物离子和相应化合物。在一个实施方式中,用于形成分数氢以进行产生分数氢物质和化合物和产生能量中的至少一种的反应混合物包含原子氢来源和包含h和o中的至少一种的催化剂来源,诸如本发明的催化剂来源,诸如h2o催化剂。反应混合物可还包含酸,诸如h2so3、h2so4、h2co3、hno2、hno3、hclo4、h3po3和h3po4;或酸来源,诸如酸酐或无水酸。后者可包含以下的组中的至少一种:so2、so3、co2、no2、n2o3、n2o5、cl2o7、po2、p2o3和p2o5。反应混合物可包含碱和碱酐(诸如m2o(m=碱金属)、m'o(m'=碱土金属)、zno或其它过渡金属氧化物、cdo、coo、sno、ago、hgo或al2o3)中的至少一种。其它示例性酸酐包含对h2o稳定的金属,诸如cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn、w、al、v、zr、ti、mn、zn、cr、in和pb。酸酐可为碱金属或碱土金属氧化物,且水合化合物可包含氢氧化物。反应混合物可包含氢氧化合物,诸如feooh、niooh或coooh。反应混合物可包含h2o来源和h2o中的至少一种。h2o可通过水合和脱水反应在原子氢存在下可逆地形成。形成h2o催化剂的示例性反应为mg(oh)2→mgo+h2o(254)2lioh→li2o+h2o(255)h2co3→co2+h2o(256)2feooh→fe2o3+h2o(257)在一个实施方式中,h2o催化剂由至少一种构成磷酸盐的化合物脱水而形成,该化合物诸如磷酸盐、磷酸氢盐和磷酸二氢盐的盐,诸如阳离子(诸如包含以下金属的阳离子,诸如碱金属、碱土金属、过渡金属、内过渡金属、和稀土金属)的所述盐和其它金属和类金属的所述盐(诸如al、ga、in、si、ge、sn、pb、as、sb、bi、se和te的所述盐),和形成缩合磷酸盐的混合物,缩合磷酸盐诸如以下中的至少一种:聚磷酸盐(诸如)、长链偏磷酸盐(诸如)、环状偏磷酸盐(诸如其中n≥3)和超磷酸盐(诸如p4o10)。示例性反应为脱水反应的反应物可包含可包含al(oh)3和al2o3中的至少一种的r-ni。反应物可还包含金属m(诸如本发明的金属,诸如碱金属)、金属氢化物mh、金属氢氧化物(诸如本发明的金属氢氧化物,诸如碱金属氢氧化物)和氢来源(诸如h2以和本质氢)。示例性反应为2al(oh)3+→al2o3+3h2o(260)al2o3+2naoh→2naalo2+h2o(261)3mh+al(oh)3+→m3al+3h2o(262)反应产物可包含合金。r-ni可通过再水合再生。形成h2o催化剂的反应混合物和脱水反应可包含和涉及氢氧化合物,诸如本发明的氢氧化合物,如以下示例性反应中所给出:3co(oh)2→2coooh+co+2h2o(263)原子氢可由h2气体通过解离而形成。氢解离体可为一种本发明氢解离体,诸如r-ni或贵金属或过渡金属/载体(诸如ni或pt或pd/碳或al2o3)。作为选择,原子h可来自透过膜的h,诸如本发明的所述h。在一个实施方式中,电池包含膜(诸如陶瓷膜)以允许h2选择性扩散穿过,同时h2o扩散。在一个实施方式中,h2和原子h中的至少一种通过包含氢来源的电解质(诸如包含h2o的水性或熔融电解质)电解供应至电池。在一个实施方式中,h2o催化剂通过酸或碱脱水形成酸酐可逆地形成。在一个实施方式中,形成催化剂h2o和分数氢的反应通过改变电池ph值或活性、温度和压力中的至少一种传播,其中压力可通过改变温度来改变。物质(诸如酸、碱或酸酐)的活性可通过添加本领域技术人员已知的盐来改变。在一个实施方式中,反应混合物可包含可吸收或为形成分数氢的反应的气体来源(诸如h2或酸酐气体)的材料(诸如碳)。反应物可为任何所需浓度和比率。反应混合物可为熔融的或包含水性浆料。在另一实施方式中,h2o催化剂来源为酸与碱之间的反应,诸如氢卤酸、硫酸、硝酸和亚硝酸中的至少一种与碱之间的反应。其它适合的酸反应物为以下的水溶液:h2so4、hcl、hx(x-卤离子)、h3po4、hclo4、hno3、hno、hno2、h2s、h2co3、h2moo4、hnbo3、h2b4o7(m的四硼酸盐)、hbo2、h2wo4、h2cro4、h2cr2o7、h2tio3、hzro3、malo2、hmn2o4、hio3、hio4、hclo4或有机酸(诸如甲酸或乙酸)。适合的示例性碱为包含碱金属、碱土金属、过渡金属、内过渡金属或稀土金属或al、ga、in、sn或pb的氢氧化物、氢氧化合物或氧化物。在一个实施方式中,反应物可包含酸或碱,其分别与碱或酸酐反应以形成h2o催化剂和分别与碱阳离子与酸酐阴离子的化合物或碱酐阳离子与酸阴离子的化合物反应。酸性酸酐sio2与碱naoh的示例性反应为4naoh+sio2→na4sio4+2h2o(264)其中相应酸的脱水反应为h4sio4→2h2o+sio2(265)其它适合的示例性酸酐可包含元素、金属、合金或混合物,诸如来自以下的组中的一种:mo、ti、zr、si、al、ni、fe、ta、v、b、nb、se、te、w、cr、mn、hf、co和mg。相应氧化物可包含以下至少一种:moo2、tio2、zro2、sio2、al2o3、nio、ni2o3、feo、fe2o3、tao2、ta2o5、vo、vo2、v2o3、v2o5、b2o3、nbo、nbo2、nb2o5、seo2、seo3、teo2、teo3、wo2、wo3、cr3o4、cr2o3、cro2、cro3、mno、mn3o4、mn2o3、mno2、mn2o7、hfo2、co2o3、coo、co3o4、co2o3和mgo。在一个示例性实施方式中,碱包含氢氧化物,诸如碱金属氢氧化物,诸如moh(m=碱金属),诸如lioh,该氢氧化物可形成相应碱性氧化物(诸如m2o,诸如li2o)和h2o。碱性氧化物可与酸酐氧化物反应形成产物氧化物。在lioh与酸酐氧化物释放h2o的一个示例性反应中,产物氧化物可包含li2moo3或li2moo4、li2tio3、li2zro3、li2sio3、lialo2、linio2、lifeo2、litao3、livo3、li2b4o7、li2nbo3、li2seo3、li2seo4、li2teo3、li2teo4、li2wo4、li2cro4、li2cr2o7、li2mno4、li2hfo3、licoo2和mgo。其它适合的示例性氧化物为以下的组中的至少一种:as2o3、as2o5、sb2o3、sb2o4、sb2o5、bi2o3、so2、so3、co2、no2、n2o3、n2o5、cl2o7、po2、p2o3和p2o5,和本领域技术人员已知的其它类似氧化物。另一实例由方程式(257)给出。适合的金属氧化物反应为2lioh+nio→li2nio2+h2o(266)3lioh+nio→linio2+h2o+li2o+1/2h2(267)4lioh+ni2o3→2li2nio2+2h2o+1/2o2(268)2lioh+ni2o3→2linio2+h2o(269)其它过渡金属(诸如fe、cr和ti)、内过渡金属和稀土金属和其它金属或类金属(诸如al、ga、in、si、ge、sn、pb、as、sb、bi、se和te)可替代ni,且其它碱金属(诸如li、na、rb和cs)可替代k。反应还包含氢来源(诸如氢气)和解离体(诸如pd/al2o3)。氢可为质子氕、氘或氚或其组合中的任一种。形成h2o催化剂的反应可包含两种氢氧化物形成水的反应。氢氧化物的阳离子可具有不同氧化态,诸如碱金属氢氧化物与过渡金属或碱土金属氢氧化物的反应的阳离子氧化态。反应混合物和反应可还包含和涉及来自来源的h2,如示例性反应中所给出:lioh+2co(oh)2+1/2h2→licoo2+3h2o+co(270)反应混合物和反应可还包含和涉及金属m(诸如碱金属或碱土金属),如示例性反应中所给出:m+lioh+co(oh)2→licoo2+h2o+mh(271)在一个实施方式中,反应混合物包含金属氧化物和可充当h来源的氢氧化物和视情况选用的另一h来源,其中金属氧化物的金属(诸如fe)可具有多个氧化态以便其在形成h2o以充当催化剂与h反应形成分数氢的反应期间经受氧化还原反应。实例为feo,其中fe2+可在形成催化剂的反应期间经受氧化形成fe3+。示例性反应为feo+3lioh→h2o+lifeo2+h(1/p)+li2o(272)在一个实施方式中,至少一种反应物(诸如金属氧化物、氢氧化物或氢氧化合物)充当氧化剂,其中金属原子(诸如fe、ni、mo或mn)的氧化态可高于另一可能的氧化态。形成催化剂和分数氢的反应可使原子经受还原形成至少一个低氧化态。使金属氧化物、氢氧化物和氢氧化合物形成h2o催化剂的示例性反应为2koh+nio→k2nio2+h2o(273)3koh+nio→knio2+h2o+k2o+1/2h2(274)2koh+ni2o3→2knio2+h2o(275)4koh+ni2o3→2k2nio2+2h2o+1/2o2(276)2koh+ni(oh)2→k2nio2+2h2o(277)3koh+ni(oh)2→knio2+2h2o+k2o+1/2h2(278)2koh+2niooh→k2nio2+2h2o+nio+1/2o2(279)koh+niooh→knio2+h2o(280)2naoh+fe2o3→2nafeo2+h2o(281)其它过渡金属(诸如ni、fe、cr和ti)、内过渡金属和稀土金属和其它金属或类金属(诸如al、ga、in、si、ge、sn、pb、as、sb、bi、se和te)可替代ni或fe,且其它碱金属(诸如li、na、k、rb和cs)可替代k或na。在一个实施方式中,反应混合物包含对h2o稳定的金属的氧化物和氢氧化物中的至少一种,所述金属诸如cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn、w、al、v、zr、ti、mn、zn、cr和in。另外,反应混合物包含氢来源(诸如h2气体)和视情况选用的解离体(诸如贵金属/载体)。碱酐nio与酸hcl的示例性反应为2hcl+nio→h2o+nicl2(282)其中相应碱的脱水反应为ni(oh)2→h2o+nio(283)反应物可包含路易斯酸或碱和布朗斯特德-洛瑞酸或碱中的至少一种。反应混合物和反应可还包含和涉及含氧化合物,其中酸与该含氧化合物反应形成水,如示例性反应中所给出:2hx+pox3→h2o+px5(284)(x=卤离子)。与pox3类似的化合物为适合的,诸如p由s置换的化合物。其它适合的示例性酸酐可包含可溶于酸的元素、金属、合金或混合物的氧化物,诸如包含以下的氢氧化物、氢氧化合物或氧化物:碱金属、碱土金属、过渡金属、内过渡金属或稀土金属或al、ga、in、sn或pb,诸如来自以下的组中的一种:mo、ti、zr、si、al、ni、fe、ta、v、b、nb、se、te、w、cr、mn、hf、co和mg。相应氧化物可包含moo2、tio2、zro2、sio2、al2o3、nio、feo或fe2o3、tao2、ta2o5、vo、vo2、v2o3、v2o5、b2o3、nbo、nbo2、nb2o5、seo2、seo3、teo2、teo3、wo2、wo3、cr3o4、cr2o3、cro2、cro3、mno、mn3o4、mn2o3、mno2、mn2o7、hfo2、co2o3、coo、co3o4、co2o3和mgo。其它适合的示例性氧化物为以下的组的氧化物:cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn、w、al、v、zr、ti、mn、zn、cr、in和pb。在一个示例性实施方式中,酸包含氢卤酸,且产物为h2o和氧化物的金属卤化物。反应混合物还包含氢来源(诸如h2气体)和解离体(诸如pt/c),其中h与h2o催化剂反应形成分数氢。在一个实施方式中,固体燃料包含h2来源(诸如渗透膜或h2气体)和解离体(诸如pt/c)和包含还原成h2o的氧化物或氢氧化物的h2o催化剂来源。氧化物或氢氧化物的金属可形成充当h来源的金属氢化物。碱金属氢氧化物和氧化物(诸如lioh和li2o)的示例性反应为lioh+h2→h2o+lih(285)li2o+h2→lioh+lih(286)反应混合物可包含经历氢还原成h2o的金属氧化物或氢氧化物,诸如以下的氧化物或氢氧化物:cu、ni、pb、sb、bi、co、cd、ge、au、ir、fe、hg、mo、os、pd、re、rh、ru、se、ag、tc、te、tl、sn、w、al、v、zr、ti、mn、zn、cr、in和pb;和氢来源(诸如h2气体)和解离体(诸如pt/c)。在另一实施方式中,反应混合物包含h2来源(诸如h2气体)和解离体(诸如pt/c)和分解成h2o催化剂和其它含氧产物(诸如o2)的过氧化物化合物(诸如h2o2)。一些h2与分解产物(诸如o2)可反应,也形成h2o催化剂。在一个实施方式中,形成作为催化剂的h2o的反应包含有机脱水反应,诸如醇(诸如多元醇,诸如糖)脱水形成醛和h2o。在一个实施方式中,脱水反应涉及自末端醇释放h2o形成醛。末端醇可包含糖或其衍生物,释放可充当催化剂的h2o。适合的示例性醇为内赤藓醇、半乳糖醇(galactitol/dulcitol)和聚乙烯醇(pva)。示例性反应混合物包含糖+氢解离体,诸如pd/al2o3+h2。作为选择,反应包含金属盐(诸如具有至少一个水合水的金属盐)的脱水。在一个实施方式中,脱水包含自水合物(诸如水合离子和盐水合物,诸如bai22h2o和eubr2nh2o)失去h2o以作为催化剂。在一个实施方式中,形成h2o催化剂的反应包含以下物质的氢还原:含氧化合物(诸如co)、氧阴离子(诸如mno3,m=碱金属)、金属氧化物(诸如nio、ni2o3、fe2o3或sno)、氢氧化物(诸如co(oh)2)、氢氧化合物(诸如feooh、coooh和niooh)、和可用氢还原成h2o的化合物、氧阴离子、氧化物、氢氧化物、氢氧化合物、过氧化物、超氧化物和其它含氧的物质组合物,诸如本发明的所述物质。示例性含氧化合物或氧阴离子为socl2、na2s2o3、namno4、pobr3、k2s2o8、co、co2、no、no2、p2o5、n2o5、n2o、so2、i2o5、naclo2、naclo、k2so4和khso4。用于氢还原的氢来源可为h2气体和氢化物(诸如金属氢化物,诸如本发明的金属氢化物)中的至少一种。反应混合物可还包含可形成含氧化合物或离子的还原剂。氧阴离子的阳离子可形成含另一阴离子的产物化合物,该阴离子诸如卤离子、其它硫族离子、磷离子、其它氧阴离子、氮离子、硅离子、砷离子或本发明的其它阴离子。示例性反应为4nano3(c)+5mgh2(c)→5mgo(c)+4naoh(c)+3h2o(l)+2n2(g)(287)p2o5(c)+6nah(c)→2na3po4(c)+3h2o(g)(288)naclo4(c)+2mgh2(c)→2mgo(c)+nacl(c)+2h2o(l)(289)khso4+4h2→khs+4h2o(290)k2so4+4h2→2koh+2h2o+h2s(291)lino3+4h2→linh2+3h2o(292)geo2+2h2→ge+2h2o(293)co2+h2→c+2h2o(294)pbo2+2h2→2h2o+pb(295)v2o5+5h2→2v+5h2o(296)co(oh)2+h2→co+2h2o(297)fe2o3+3h2→2fe+3h2o(298)3fe2o3+h2→2fe3o4+h2o(299)fe2o3+h2→2feo+h2o(300)ni2o3+3h2→2ni+3h2o(301)3ni2o3+h2→2ni3o4+h2o(302)ni2o3+h2→2nio+h2o(303)3feooh+1/2h2→fe3o4+2h2o(304)3niooh+1/2h2→ni3o4+2h2o(305)3coooh+1/2h2→co3o4+2h2o(306)feooh+1/2h2→feo+h2o(307)niooh+1/2h2→nio+h2o(308)coooh+1/2h2→coo+h2o(309)sno+h2→sn+h2o(310)反应混合物可包含阴离子来源或阴离子和氧来源或氧(诸如含氧化合物),其中形成h2o催化剂的反应包含视情况选用的来自来源的h2与氧反应形成h2o的阴离子-氧交换反应。示例性反应为2naoh+h2+s→na2s+2h2o(311)2naoh+h2+te→na2te+2h2o(312)2naoh+h2+se→na2se+2h2o(313)lioh+nh3→linh2+h2o(314)在一个实施方式中,反应混合物包含氢来源、含氧化合物和能够与反应混合物的至少一个其它元素形成合金的至少一个元素。形成h2o催化剂的反应可包含含氧化合物的氧与能够与氧化合物的阳离子形成合金的元素的交换反应,其中氧与来自来源的氢反应形成h2o。示例性反应为naoh+1/2h2+pd→napb+h2o(315)naoh+1/2h2+bi→nabi+h2o(316)naoh+1/2h2+2cd→cd2na+h2o(317)naoh+1/2h2+4ga→ga4na+h2o(318)naoh+1/2h2+sn→nasn+h2o(319)naalh4+al(oh)3+5ni→naalo2+ni5al+h2o+5/2h2(320)在一个实施方式中,反应混合物包含含氧化合物(诸如氢氧化合物)和还原剂(诸如形成氧化物的金属)。形成h2o催化剂的反应可包含氢氧化合物与金属形成金属氧化物和h2o的反应。示例性反应为2mnooh+sn→2mno+sno+h2o(321)4mnooh+sn→4mno+sno2+2h2o(322)2mnooh+zn→2mno+zno+h2o(323)在一个实施方式中,反应混合物包含含氧化合物(诸如氢氧化物)、氢来源和至少一种其它包含不同阴离子(诸如卤离子)或另一元素的化合物。形成h2o催化剂的反应可包含氢氧化物与其它化合物或元素的反应,其中阴离子或元素与氢氧化物交换形成该阴离子或元素的另一化合物,且氢氧化物与h2反应形成h2o。阴离子可包含卤离子。示例性反应为2naoh+nicl2+h2→2nacl+2h2o+ni(324)2naoh+i2+h2→2nai+2h2o(325)2naoh+xef2+h2→2naf+2h2o+xe(326)可选择氢氧化物和卤化物以使形成h2o和另一卤离子的反应为热可逆的。在一个实施方式中,一般交换反应为naoh+1/2h2+1/ymxcly=nacl+6h2o+x/ym(327)其中示例性化合物mxcly为alcl3、becl2、hfcl4、kagcl2、mncl2、naalcl4、sccl3、ticl2、ticl3、ucl3、ucl4、zrcl4、eucl3、gdcl3、mgcl2、ndcl3和ycl3。在高温下,方程式(327)的反应(诸如在约100℃至2000℃范围内)具有约0kj的焓和自由能中的至少一种,且为可逆的。可逆的温度由各反应的相应热力学参数计算。代表性温度范围为nacl-sccl3(约800-900k)、nacl-ticl2(约300-400k)、nacl-ucl3(约600-800k)、nacl-ucl4(约250-300k)、nacl-zrcl4(约250-300k)、nacl-mgcl2(约900-1300k)、nacl-eucl3(约900-1000k)、nacl-ndcl3(约>1000k)和nacl-ycl3(约>1000k)。在一个实施方式中,反应混合物包含氧化物,诸如金属氧化物,诸如碱金属、碱土金属、过渡金属、内过渡金属和稀土金属氧化物和其它金属和类金属的氧化物,诸如al、ga、in、si、ge、sn、pb、as、sb、bi、se和te的氧化物;过氧化物,诸如m2o2(其中m为碱金属),诸如li2o2、na2o2和k2o2;和超氧化物,诸如mo2(其中m为碱金属,诸如nao2、ko2、rbo2和cso2)和碱土金属超氧化物;和氢来源。离子过氧化物可还包含ca、sr或ba的过氧化物。形成h2o催化剂的反应可包含形成h2o的氧化物、过氧化物或超氧化物的氢还原。示例性反应为na2o+2h2→2nah+h2o(328)li2o2+h2→li2o+h2o(329)ko2+3/2h2→koh+h2o(330)在一个实施方式中,反应混合物包含氢来源,诸如h2、氢化物(诸如碱金属、碱土金属、过渡金属、内过渡金属和稀土金属氢化物和本发明氢化物中的至少一种)中的至少一种和氢来源或其它含易燃氢化合物(诸如金属胺化物)和氧来源(诸如o2)。形成h2o催化剂的反应可包含h2、氢化物或氢化合物(诸如金属胺化物)的氧化形成h2o。示例性反应为2nah+o2→na2o+h2o(331)h2+1/2o2→h2o(332)linh2+2o2→lino3+h2o(333)2linh2+3/2o2→2lioh+h2o+n2(334)在一个实施方式中,反应混合物包含氢来源和氧来源。形成h2o催化剂的反应可包含氢来源和氧来源中的至少一种分解形成h2o。示例性反应为nh4no3→n2o+2h2o(335)nh4no3→n2+1/2o2+2h2o(336)h2o2→1/2o2+h2o(337)h2o2+h2→2h2o(338)本文在此化学反应器章节中所揭示的反应混合物还包含氢来源以形成分数氢。来源可为原子氢来源,诸如氢解离体和h2气体或金属氢化物,诸如本发明的解离体和金属氢化物。提供原子氢的氢来源可为包含氢的化合物,诸如氢氧化物或氢氧化合物。反应形成分数氢的h可为由一或多种反应物的反应(诸如氢氧化物与氧化物的反应)形成的新生h,其中至少一种反应物包含氢来源。反应也可形成h2o催化剂。举例而言,氢氧化合物(诸如feooh)可脱水提供h2o催化剂,而且在脱水期间提供新生h以用于分数氢反应:4feooh→h2o+fe2o3+2feo+o2+2h(1/4)(339)其中该反应期间形成的新生h反应形成分数氢。其它示例性反应为氢氧化物与氢氧化合物或氧化物(诸如naoh+feooh或fe2o3)形成碱金属氧化物(诸如nafeo2+h2o)的反应,其中该反应期间形成的新生h可形成分数氢,其中h2o充当催化剂。在一个实施方式中,h2o充当催化剂,其维持在低浓度下以提供新生h2o。在一个实施方式中,低浓度系通过将h2o分子分散于另一材料(诸如固体、液体或气体)中来达成。h2o分子可稀释至分离的新生分子的极限。该材料也包含h来源。材料可包含离子化合物,诸如碱金属卤化物,诸如钾卤化物,诸如kcl。新生h的低浓度也可动态达成,其中h2o由反应形成。产物h2o可以相对于产生稳态低浓度的形成速率的速率移除以提供新生h。形成h2o的反应可包含脱水、燃烧、酸碱反应和其它反应,诸如本发明的反应。h2o可通过诸如蒸发和浓缩的方法移除。示例性反应物为形成氧化铁和h2o的feooh,其中新生h也由还反应形成以形成分数氢。其它示例性反应混合物为fe2o3+naoh和h2中的至少一种、和feooh+naoh和h2中的至少一种。反应混合物可维持在高温下,诸如在约100℃至600℃范围内。h2o产物可通过在反应器的冷区(诸如维持低于100℃的气体管线)中冷凝蒸汽来移除。在另一实施方式中,分散或吸收于晶格(诸如离子化合物(诸如碱金属卤化物,诸如钾卤化物,诸如kcl)的晶格)中的包含h2o作为混合物或化合物的内含物或一部分的材料(诸如h2o)可受高能粒子轰击。粒子可包含光子、离子和电子中的至少一种。粒子可包含诸如电子束的射束。轰击可提供h2o催化剂、h和形成分数氢的反应的活化中的至少一种。反应混合物可还包含载体(诸如导电高表面积载体)。适合的示例性载体为本发明载体,诸如金属粉末(诸如ni或r-ni)、金属筛网(诸如ni)、碳、碳化物(诸如tic和wc)和硼化物。载体可包含解离体,诸如pd/c或pd/c。反应物可为任何所需摩尔比。在一个实施方式中,化学计量有利于反应完成以形成h2o催化剂和提供h以形成分数氢。反应温度可在任何所需范围内,诸如在约环境温度至1500℃范围内。压力范围可为任何所需值,诸如在约0.01托至500atm范围内。反应为再生或可逆反应中的至少一种:通过本文和本发明人以下在先美国专利申请案中所揭示的方法进行:诸如hydrogencatalystreactor,pct/us08/61455,pct4/24/2008申请;heterogeneoushydrogencatalystreactor,pct/us09/052072,pct7/29/2009申请;heterogeneoushydrogencatalystpowersystem,pct/us10/27828,pct3/18/2010申请;和electrochemicalhydrogencatalystpowersystem,pct/us11/28889,pct3/17/2011申请,所述文献以全文引用的方式并入本文中。如本领域技术人员所知,形成h2o的反应可通过改变反应条件(诸如温度和压力)以发生消耗h2o的逆反应而为可逆的。举例而言,可在逆向反应中增加h2o压力以通过再水合自产物重组反应物。在其它情况下,氢还原的产物可通过诸如由与氧和h2o中的至少一种反应氧化来再生。在一个实施方式中,可自反应中移除逆反应产物以使逆反应或再生反应继续进行。即使在基于平衡热力学不利的情况下,通过移除至少一个逆反应产物,逆反应也可变成有利的。在一个示例性实施方式中,再生的反应物(逆反应或再生反应产物)包含氢氧化物,诸如碱金属氢氧化物。氢氧化物可为通过诸如溶剂化或升华的方法移除。在后者的情况下,碱金属氢氧化物在约350-400℃范围内的温度下无变化地升华。反应可维持在本发明人在先美国专利申请案的电厂系统中。产生动力的电池的热能可向如在先所揭示的至少一个经受再生的其它电池提供热。作为选择,形成h2o催化剂的反应与逆再生反应的平衡可如在先所揭示通过改变在电池的所选区处因冷却剂而具温度梯度的系统设计的水墙的温度来移动。在一个实施方式中,使用包含h和o中的至少一种的催化剂(诸如h2o)合成分数氢物质和化合物。合成示例性分数氢化合物mhx的反应混合物,其中m为碱金属且可为另一金属(诸如碱土金属),其中化合物具有相应化学计量,h为分数氢(诸如分数氢氢化物),且x为阴离子(诸如卤离子),包含m和x来源(诸如碱金属卤化物,诸如kcl)和金属还原剂(诸如碱金属)、氢解离体(诸如ni,诸如ni筛网或r-ni)和视情况选用的载体(诸如碳)、氢来源(诸如金属氢化物(诸如mh,可替换m)和h2气体中的至少一种)和氧来源(诸如金属氧化物或含氧化合物)。适合的示例性金属氧化物为fe2o3、cr2o3和nio。反应温度可维持在约200℃至1500℃或约400℃至800℃范围内。反应物可为任何所需比率。形成khcl的反应混合物可包含k、ni筛网、kcl、氢气、和fe2o3、cr2o3和nio中的至少一种。示例性重量和条件为1.6gk,20gkcl,40gni筛网,来自金属氧化物的与k等摩尔数的氧(诸如1.5gfe2o3和1.5gnio),1atmh2,和约550-600℃的反应温度。反应通过h与来自金属氧化物的o的反应形成h2o催化剂,且h与催化剂反应形成分数氢和分数氢氢化物离子(形成产物khcl)。形成khi的反应混合物可包含k、r-ni、ki、氢气、和fe2o3、cr2o3和nio中的至少一种。示例性重量和条件为1gk,20gki,15gr-ni2800,来自金属氧化物(诸如1gfe2o3和1gnio)的与k等摩尔数的氧,1atmh2,和约450-500℃的反应温度。反应通过h与来自金属氧化物的o的反应形成h2o催化剂,且h与催化剂反应形成分数氢和分数氢氢化物离子(形成产物khi)。在一个实施方式中,ciht电池、固体燃料或化学电池中的至少一种的产物为包含分数氢物质和阳离子的化合物,其中后者引起分数氢物质nmr向分离的分数氢物质的低磁场位移。阳离子的低磁场位移可为实质性的,诸如大于+10ppm。阳离子可呈异常氧化态,诸如2+碱金属阳离子。化合物可包含通常高带电的阳离子,诸如m2+(m=碱金属)和至少一个h-(1/p),且可还包含另一阴离子(诸如卤离子)。示例性化合物为mhx,其中m为碱金属,h为分数氢氢化物离子,且x为卤离子,诸如nahcl、khcl或khi。在一个实施方式中,化合物中分数氢氢化物离子相对于tms的nmr位移可在约-4ppm+/-2ppm范围内,其中分数氢氢化物离子可包含h-(1/4)。在另一实施方式中,固体基质(诸如氢氧化物(诸如naoh或koh)的基质)中分数氢物质(诸如分数氢原子、氢化物离子或分子)的存在引起基质质子向高磁场位移。基质质子(诸如naoh或koh的质子)可交换。在一个实施方式中,位移可使得基质峰相对于tms在约-0.1至-5ppm范围内。在一个实施方式中,其中碱金属m(诸如k或li)和nh(n=整数)、oh、o、2o、o2和h2o中的至少一种充当催化剂,h来源为以下中的至少一种:金属氢化物(诸如mh)、和金属m和金属氢化物mh中的至少一种与h来源形成h的反应。一个产物可为氧化的m,诸如氧化物或氢氧化物。产生原子氢和催化剂中的至少一种的反应可为电子转移反应或氧化还原反应。反应混合物可还包含h2、h2解离体(诸如本发明的h2解离体,诸如ni筛网或r-ni)和导电载体中的至少一种,导电载体诸如所述解离体和其它类似物以和本发明载体(诸如碳和碳化物、硼化物和碳氮化物)。m或mh的示例性氧化反应为4mh+fe2o3→+h2o+h(1/p)+m2o+moh+2fe+m(340)其中h2o和m中的至少一种可充当催化剂以形成h(1/p)。反应混合物可还包含分数氢吸收剂,诸如化合物,诸如盐,诸如卤化物盐,诸如碱金属卤化物盐,诸如kcl或ki。产物可为mhx(m=金属,所述碱金属;x为相对离子,诸如卤离子;h为分数氢物质)。其它分数氢催化剂可替代m,诸如本发明的催化剂,诸如表1的催化剂。在一个实施方式中,氧来源为具类似于水的形成热的化合物以便氧来源化合物的还原产物与氢之间的氧交换在最低能量释放下发生。适合的示例性氧来源化合物为cdo、cuo、zno、so2、seo2和teo2。其它类似物(诸如金属氧化物)也可为可经受脱水反应的酸或碱的酐,因为h2o催化剂的来源为mnox、alox和siox。在一个实施方式中,氧化物层氧来源可覆盖氢来源,诸如金属氢化物,诸如氢化钯。形成还反应以形成分数氢的h2o催化剂和原子h的反应可通过加热氧化物涂布的氢来源(诸如金属氧化物涂布的氢化钯)引发。氢化钯可通过氢不渗透性层(诸如金膜层)涂布于氧来源的相对侧以引起释放的氢选择性地迁移至氧来源,该氧化物层诸如金属氧化物。在一个实施方式中,形成分数氢催化剂的反应和再生反应分别包含氧来源化合物与氢之间和水与还原的氧来源化合物之间的的氧交换。适合的还原的氧来源为cd、cu、zn、s、se和te。在一个实施方式中,氧交换反应可包含用于热形成氢气的反应。示例性热法为氧化铁循环、氧化铈(iv)-氧化铈(iii)循环、锌-氧化锌循环、硫-碘循环、铜-氯循环和混合硫循环和本领域技术人员已知的其它循环。在一个实施方式中,形成分数氢催化剂的反应和再生反应(诸如氧交换反应)在同一反应容器中相同发生。可控制条件(诸如温度和压力)以达成反应同时发生。作为选择,产物可被移出和在至少一个其它单独容器中再生,该再生可在不同于如本发明和millspriorpatents中所给出的动力形成反应的条件下发生。在一个实施方式中,胺化物(诸如linh2)的nh2基团充当催化剂,其中方程式(5)中对应于m=3的势能为约81.6ev。类似于酸或碱形成酐和酐形成酸或碱的可逆的h2o消除或添加反应,胺化物与亚胺化物或氮化物之间的可逆反应形成nh2催化剂,nh2催化剂还与原子h反应形成分数氢。胺化物与亚胺化物和氮化物中的至少一种之间的可逆反应也可充当氢来源,诸如原子h。分数氢气体可经由膜扩散且当溶解于溶剂中时反应形成分数氢氢化物。产物h2(1/p)可通过加热释放该气体的产物来分离。当分数氢气体来源包含结晶来源时,其可溶解于适合的溶剂(诸如h2o)中。释放的气体可捕捉于低温冷阱(诸如液氦冷阱)中,其中溶剂(诸如h2o)可在气体收集管线中的预冷阱中移除。因为阳极吸收分数氢气体,所以其可通过气体排出而充当分数氢气体来源,气体排出可通过化学消化或通过加热来加速。消化可包含阳极与酸的反应。一些材料可在产生期间因并入或通过捕捉天然丰富的气体而包含捕捉的分数氢气体。实例为koh和k2co3。在一个实施方式中,分数氢气体h2(1/p)可通过捕捉于对分数氢气体具高溶解度的溶剂中来分离并纯化。适合的溶剂可对h2具高溶解度,诸如文献中熟知的己烷或全氟己烷,诸如c.l.young编,solubilitydataserieshydrogenanddeuterium,第5/6卷,iupac,pergamonpress,oxford,1981(该文献以全文引用的方式并入本文中)中所给出。在一个实施方式中,物质(诸如结晶化合物,诸如kcl)的组合物含有捕捉的分数氢(诸如h2(1/p))。在一个实施方式中,分数氢(诸如h2(1/p))自物质组合物中纯化而来。分数氢(诸如h2(1/p))可通过将物质(诸如kcl)的组合物溶解于适合的溶剂(诸如h2o)中来形成可与来自物质组合物的物质缔合的溶剂化分数氢(诸如h2(1/p))而纯化。举例而言,h2(1/p)可与kcl错合。包含分数氢的溶剂化混合物的组分可有选择性地加以分离。分离可通过添加另一溶剂或通过改变条件(诸如温度)来引起含分数氢的部分有选择性地沈淀,由此通过诸如过滤的方法来收集而达成。作为选择,含分数氢的部分可留在溶液中,且其余物质可沈淀析出。移除该缺失分数氢的组合物,留下富含分数氢的溶液。可移除溶剂且收集含分数氢的部分。分离该部分中的分数氢的另一方法为添加溶剂或改变条件以使含分数氢物质沈淀接着通过诸如过滤的方法收集。在一个实施方式中,分数氢气体可通过氢或稀有气体-氢混合物(诸如氦-氢混合物)的等离子体放电(诸如微波、rf或辉光放电)形成。等离子体可包含氢来源,诸如水蒸汽等离子体。分数氢产物可收集于适合的溶剂(诸如d2o或有机溶剂)中。可首先收集于低温冷阱中,诸如液氮或液氦低温冷阱。冷凝或吸收的气体可被加热并转移至nmr溶剂中。在一个实施方式中,可纯化分数氢氢化物化合物。纯化方法可包含使用适合的溶剂萃取和再结晶中的至少一种。方法可还包含层析和本领域技术人员已知的分离无机化合物的其它技术。在一个实施方式中,分数氢氢化物化合物由ciht电池或阴极和阳极半电池反应物的反应混合物形成。形成分数氢和分数氢氢化物化合物的示例性ciht电池或阴极和阳极半电池反应物的反应混合物为[ni(h2)/lioh-libr/ni+空气,间歇电解]、[ptti(h2)/k2co3/ni+空气,间歇电解]、[ptti(h2)/koh/ni+空气,间歇电解]、[ni(h2)/lioh-libr/ni+空气]、[m/koh(饱和水溶液)+cg3401/蒸气碳+空气或o2](m=r-ni、zn、sn、co、sb、pb、in、ge)、[naohni(h2)/base/naclmgcl2]、[na/base/naoh]、[lani5h6/koh(饱和水溶液)+cg3401/蒸气碳+空气或o2]、[li/celgardlp30/coo(oh)]、[li3mg/licl-kcl/tih2或zrh2]、[li3ntic/licl-kcl/ceh2cb]和[li/licl-kcl/lah2]。具有优选1/4状态的产物分子分数氢和分数氢氢化物离子可在用nmr溶剂(优选为氘化dmf或dmso)萃取产物混合物后使用液体nmr观察。在一个实施方式中,通过h与oh和h2o催化剂中的至少一种的反应合成分数氢物质(诸如分子分数氢或分数氢氢化物离子)。分数氢物质可由以下的组中的至少两者产生:金属(诸如碱金属、碱土金属、过渡金属、内过渡金属和稀土金属、al、ga、in、ge、sn、pb、as、sb和te)、金属氢化物(诸如lani5h6和本发明的其它类似物)、水性氢氧化物(诸如碱性氢氧化物,诸如0.1m至饱和浓度的koh)、载体(诸如碳、pt/c、蒸气碳、碳黑、碳化物、硼化物或腈)和氧。形成分数氢物质(诸如分子分数氢)的适合的示例性反应混合物为(1)coptckoh(饱和),有和无o2;(2)zn或sn+lani5h6+koh(饱和);(3)co、sn、sb或zn+o2+cb+koh(饱和);(4)alcbkoh(饱和);(5)snni涂布的石墨koh(饱和),有或无o2;(6)sn+sc或cb+koh(饱和)+o2;(7)znpt/ckoh(饱和)o2;(8)znr-nikoh(饱和)o2;(9)snlani5h6koh(饱和)o2;(10)sblani5h6koh(饱和)o2;(11)co、sn、zn、pb或sb+koh(饱和水溶液)+k2co3+cb-sa和(12)linh2libr和lih或li和h2或其来源和视情况选用的氢解离体(诸如ni或r-ni)。其它反应混合物包含熔融氢氧化物、氢来源、氧来源和氢解离体。形成分数氢物质(诸如分子分数氢)的适合的示例性反应混合物为(1)ni(h2)lioh-libr空气或o2;(2)ni(h2)naoh-nabr空气或o2和(3)ni(h2)koh-nabr空气或o2。在一个实施方式中,可在发生任何h2和h2o析出后进行气体收集,其中h2(1/p)气体仍自反应物析出。析出可归因于h-(1/p)与水形成h2(/p)的慢反应,诸如反应h-(1/4)+h2o→h2(1/4)。在一个实施方式中,分数氢气体因加热而自含分数氢的固体或液体(分数氢反应产物)释放。可使用例如冷凝器使除分子分数氢以外的任何气体(诸如溶剂,诸如h2o)冷凝。冷凝物可回流。可通过分馏收集不含其它气体的分子分数氢气体。又,可用再结合器(recombiner)或通过燃烧和通过蒸馏移除h2o来移除普通氢。分数氢物质(诸如分子分数氢)可在溶剂(诸如有机溶剂,诸如dmf或dmso)中萃取并通过诸如加热和视情况自溶剂蒸馏分子分数氢气体的方法自溶剂中纯化。在一个实施方式中,用溶剂(诸如有机溶剂,诸如dmf)萃取含分数氢物质的产物,且加热溶剂并视情况回流以释放分数氢气体,收集该分数氢气体。分数氢气体也可通过使用包含载体或不广泛吸收气体添加剂(诸如碳化物(诸如tic或tac)或lan)的反应混合物获得。分数氢气体h2(1/p)可通过在溶剂(气体在其中可溶)中萃取、使物质组合物发生相变(诸如熔融)或通过将物质组合物溶解于溶剂(h2(1/p)在其中具有低溶解度或不可溶)中的至少一种自物质组合物(诸如含该气体的化合物或材料)分离而得。在一个实施方式中,l量子数不为0的分子分数氢具有净磁矩,且因此预测具有显著高于h2的液化温度。含h2(1/4)的ar和kcl的masnmr中的顺磁基质位移和入射电子束激发的转-振动光谱中δj=-1选择法则证实所述状态。通过低温过滤来源(诸如空气)获得的氩、氖和氦中h2(1/4)的存在也支持h2(1/p)的液化温度高于h2。因此,可通过使用温度高于液氦低温冷阱的温度的低温冷阱(诸如液氮、液氩或液氖低温冷阱)来分离h2(1/p)。也可在低温下在磁场中收集h2(1/p),诸如在氧气的情况下,可在低温下,在磁极片之间形成固体。在包含熔融盐电解质的ciht电池实施方式(诸如[ni(h2)/moh或m(oh)2-m'x或m'x2/ni空气],m和m'为li、na、k、rb、cs、mg、ca、sr和ba中的一种;x为氢氧根、卤离子、硫酸根和碳酸根中的一种)中,氢气在放电阳极处通过间歇电解而产生。随后,用经由扩散穿过电极壁(诸如h渗透性膜)接收分数氢的抽真空电极或腔室置换氢渗透性电极。示例性电池为[ni(h2(1/p))/lioh-libr/ni空气]间歇充电-放电。收集分数氢气体h2(1/p)用于适用的应用,诸如激光介质、用于形成结合能增加的氢物质和化合物的化学试剂和热转移介质。在一个实施方式中,形成分数氢的化学和ciht电池反应中的至少一种的产物为与无机化合物错合的含分数氢或分数氢物质的化合物(诸如h2(1/p))。化合物可包含氧阴离子化合物,诸如碱金属或碱土金属碳酸盐或氢氧化物或本发明的其它所述化合物。在一个实施方式中,产物包含m2co3·h2(1/4)和moh·h2(1/4)(m=碱金属或本发明的其它阳离子)络合物中的至少一:。产物可由tof-sims鉴别为分别包含和的正光谱的一系列离子,其中n为整数,且p>1的整数可替代4。用本发明方法合成的低能量氢化合物可具有式mh、mh2或m2h2,其中m为碱金属阳离子且h为结合能增加的氢化物离子或结合能增加的氢原子。化合物可具有式mhn,其中n为1或2,m为碱土金属阳离子且h为结合能增加的氢化物离子或结合能增加的氢原子。化合物可具有式mhx,其中m为碱金属阳离子,x为中性原子(诸如卤素原子)、分子或带单一负电阴离子(诸如卤素阴离子)中的一种,且h为结合能增加的氢化物离子或结合能增加的氢原子。化合物可具有式mhx,其中m为碱土金属阳离子,x为带单一负电的阴离子,且h为结合能增加的氢化物离子或结合能增加的氢原子。化合物可具有式mhx,其中m为碱土金属阳离子,x为带双负电的阴离子,且h为结合能增加的氢原子。化合物可具有式m2hx,其中m为碱金属阳离子,x为带单一负电的阴离子,且h为结合能增加的氢化物离子或结合能增加的氢原子。化合物可具有式mhn,其中n为整数,m为碱性阳离子,且化合物的氢内含物hn包含至少一种结合能增加的氢物质。化合物可具有式m2hn,其中n为整数,m为碱土金属阳离子,且化合物的氢内含物hn包含至少一种结合能增加的氢物质。化合物可具有式m2xhn,其中n为整数,m为碱土金属阳离子,x为带单一负电的阴离子,且化合物的氢内含物hn包含至少一种结合能增加的氢物质。化合物可具有式m2x2hn,其中n为1或2,m为碱土金属阳离子,x为带单一负电的阴离子,且化合物的氢内含物hn包含至少一种结合能增加的氢物质。化合物可具有式m2x3h,其中m为碱土金属阳离子,x为带单一负电的阴离子,且h为结合能增加的氢化物离子或结合能增加的氢原子。化合物可具有式m2xhn,其中n为1或2,m为碱土金属阳离子,x为带双负电的阴离子,且化合物的氢内含物hn包含至少一种结合能增加的氢物质。化合物可具有式m2xx'h,其中m为碱土金属阳离子,x为带单一负电的阴离子,x为带双负电的阴离子,且h为结合能增加的氢化物离子或结合能增加的氢原子。化合物可具有式mm'hn,其中n为1至3的整数,m为碱土金属阳离子,m'为碱金属阳离子,且化合物的氢内含物hn包含至少一种结合能增加的氢物质。化合物可具有式mm'xhn,其中n为1或2,m为碱土金属阳离子,m'为碱金属阳离子,x为带单一负电的阴离子,且化合物的氢内含物hn包含至少一种结合能增加的氢物质。化合物可具有式mm'xh,其中m为碱土金属阳离子,m'为碱金属阳离子,x为带双负电的阴离子,且h为结合能增加的氢化物离子或结合能增加的氢原子。化合物可具有式mm'xx'h,其中m为碱土金属阳离子,m'为碱金属阳离子,x和x'为带单一的负电的阴离子,且h为结合能增加的氢化物离子或结合能增加的氢原子。化合物可具有式mxx'hn,其中n为1以5的整数,m为碱金属或碱土金属阳离子,x为带单一或双负电的阴离子,x'为金属或类金属、过渡元素、内过渡元素或稀土元素,且化合物的氢内含物hn包含至少一种结合能增加的氢物质。化合物可具有式mhn,其中n为整数,m为阳离子,诸如过渡元素、内过渡元素或稀土元素,且化合物的氢内含物hn包含至少一种结合能增加的氢物质。化合物可具有式mxhn,其中n为整数,m为阳离子,诸如碱金属阳离子、碱土金属阳离子,x为另一阳离子,诸如过渡元素、内过渡元素或稀土元素阳离子,且化合物的氢内含物hn包含至少一种结合能增加的氢物质。化合物可具有式[khmkco3]n,其中m和n各为整数,且化合物的氢内含物hm包含至少一种结合能增加的氢物质。化合物可具有式其中m和n各为整数,x为带单一负电的阴离子,且化合物的氢内含物hm包含至少一种结合能增加的氢物质。化合物可具有式[khkno3]n,其中n为整数,且化合物的氢内含物h包含至少一种结合能增加的氢物质。化合物可具有式[khkon]n,其中n为整数,且化合物的氢内含物h包含至少一种结合能增加的氢物质。包括阴离子或阳离子的化合物可具有式[mhmm′x]n,其中m和n各为整数,m和m'各为碱金属或碱土金属阳离子,x为带单一或双负电的阴离子,且化合物的氢内含物hm包含至少一种结合能增加的氢物质。包括阴离子或阳离子的化合物可具有式其中m和n各为整数,m和m'各为碱金属或碱土金属阳离子,x和x'为带单一或双负电的阴离子,且化合物的氢内含物hm包含至少一种结合能增加的氢物质。阴离子可包含本发明的阴离子的一。适合的示例性带单一负电的阴离子为卤离子、氢氧根离子、碳酸氢根离子或硝酸根离子。适合的示例性带双负电的阴离子为碳酸根离子、氧离子或硫酸根离子。在一个实施方式中,结合能增加的氢化合物或混合物包含包埋于晶格(诸如结晶晶格)中,诸如包埋于金属或离子晶格中的至少一种低能量氢物质,诸如分数氢原子、分数氢氢化物离子和二分数氢分子。在一个实施方式中,晶格不能与低能量氢物质反应。基质可为非质子性的,诸如在包埋的分数氢氢化物离子的情况下。化合物或混合物可包含包埋于盐晶格(诸如碱金属或碱土金属盐,诸如卤化物)中的h(1/p)、h2(1/p)和h-(1/p)中的至少一种。示例性碱金属卤化物为kcl和ki。其它适合的盐晶格包含本发明的盐晶格。低能量氢物质可通过用非质子性催化剂(诸如表1中的催化剂)催化氢来形成。本发明化合物纯度优选为大于0.1原子%。化合物纯度更佳为大于1原子%。化合物纯度甚至更佳为大于10原子%。化合物最佳为大于50原子%纯。在另一实施方式中,化合物纯度大于90原子%。在另一实施方式中,化合物纯度大于95原子%。化合物的应用包括用于电池组、燃料电池、切割材料、轻质量高强度结构材料和合成纤维、热离子发电机阴极、光致发光化合物、抗磨蚀涂层、耐热涂层、发光磷光体、光学涂层、光学过滤器、极远紫外激光器媒体、光纤电缆、磁体和磁性计算机储存媒体和浸蚀剂、掩蔽剂、半导体制造掺杂剂、燃料、炸药和推进剂中。结合能增加的氢化合物适用于化学合成处理方法和精炼方法中。结合能增加的氢离子具有作为高电压电解电池的电解质的负离子的应用。由诸如本发明方法的方法形成的分数氢氢化物化合物的一个应用为作为炸药或推进剂。在一个实施方式中,化合物的分数氢氢化物离子与质子反应形成二分数氢。作为选择,分数氢氢化物化合物分解形成二分数氢。所述反应释放炸药或推进剂动力。在质子炸药或推进剂反应中,使用质子来源,诸如酸,诸如hf、hcl、h2so4或hno3,或超酸(super-acid),诸如hf+sbf5、hcl+al2cl6、h2so3f+sbf5或h2so4+so2(g)。在另一实施方式中,炸药或推进剂包含分数氢氢化物离子来源和氢来源,诸如h2气体、氢化物化合物和包含氢的化合物(诸如h2o或烃(诸如燃料油))中的至少一种。氢化物化合物可为本发明的氢化物,诸如碱金属或碱土金属氢化物,诸如lih。使分数氢氢化物化合物(诸如mh(1/p)(m=碱金属;h(/1p)为分数氢氢化物离子h-(1/p)))与氢来源形成二分数氢且炸药或推进剂释放动力的示例性反应为:mh(1/p)+h2→mh+h2(1/p)(341)mh(1/p)+mh→2m+h2(1/p)(342)mh(1/p)+h2o→moh+h2(1/p)(343)爆炸或推进剂反应通过快速混合含分数氢氢化物离子化合物与h+来源(诸如酸或超酸)或氢来源来引发。快速混合可通过引爆邻近分数氢氢化物化合物或反应混合物的普通炸药或推进剂达成。在分数氢氢化物化合物或反应混合物产生炸药或推进剂反应的快速热分解或反应中,分解或反应可由通过撞击加热分数氢氢化物化合物或混合物引爆邻近分数氢氢化物化合物或反应混合物的普通炸药或推进剂来引起。举例而言,可用能经由撞击加热而一触即引爆的分数氢氢化物化合物或包含分数氢氢化物化合物和可能的其它反应物(诸如质子或氢来源)的反应混合物给子弹镶尖(tipped)。在包含含氢来源和氧来源的反应物的形成分数氢的化学反应器的另一实施方式中,原子氢来源为炸药,其经引爆以提供原子氢和形成催化剂以形成分数氢的氢和氧中的至少一种。在实施方式中,催化剂包含nh、no(n=整数)、o2、oh和h2o催化剂中的至少一种。除包含炸药和视情况选用的其它反应物的固体反应物以外,该视情况选用的其它反应物诸如含氧化合物,诸如氧化物、氢氧化物、氢氧化合物、过氧化物和超氧化物,诸如本发明的所述化合物,氧来源可为空气。催化剂与原子氢反应以释放除爆炸反应的能量以外的能量。在一个实施方式中,电池因能量的爆炸释放而破裂,其中原子氢的催化对该能量的爆炸释放有贡献。该类电池的一个实例为含有用于形成催化剂的原子氢来源和氧来源的炸弹。在形成分数氢的化学反应器的另一实施方式中,形成分数氢和释放动力(诸如热力)的电池包含内燃机、火箭发动机或气涡轮机的燃烧腔室。反应混合物包含氢来源和氧来源以产生催化剂和分数氢。催化剂来源可为含氢物质和含氧物质中的至少一种。物种或其它反应产物可为包含o和h中的至少一种的物质中的至少一种:诸如h2、h、h+、o2、o3、o、o+、h2o、h3o+、oh、oh+、oh-、hooh、ooh-、o-、o2-、和催化剂可包含氧或氢物质,诸如h2o。在另一实施方式中,催化剂包含nh、no(n=整数)、o2、oh和h2o催化剂中的至少一种。氢来源(诸如氢原子来源)可包含含氢燃料,诸如h2气体或烃。氢原子可在烃燃烧期间通过烃热解来产生。反应混合物可还包含氢解离体,诸如本发明的氢解离体。h原子也可由氢解离形成。o来源可还包含来自空气的o2。反应物可还包含可充当h和o中的至少一种的来源的h2o。在一个实施方式中,水充当氢和氧中的至少一种的其它来源,氢和氧在电池中可通过h2o的热解来供应。水可在表面(诸如圆筒或活塞头)上热或催化解离成氢原子。表面可包含将水解离成氢和氧的材料。水解离材料可包含以下的元素、化合物、合金或混合物:过渡元素或内过渡元素、铁、铂、钯、锆、钒、镍、钛、sc、cr、mn、co、cu、zn、y、nb、mo、tc、ru、rh、ag、cd、la、hf、ta、w、re、os、ir、au、hg、ce、pr、nd、pm、sm、eu、gd、tb、dy、ho、er、tm、vb、lu、th、pa、u、活性木炭(碳)或cs插碳(石墨)。h和o可反应形成催化剂和h以形成分数氢。氢和氧来源可经由相应接口或进口(诸如进口阀或歧管)引入。产物可经由排出口或出口排出。流量可通过经由各自接口控制入口和出口速率来控制。xii.实验a.示例性ciht电池测试结果各包含阳极、低共熔熔融盐电解质和含于惰性氧化铝坩锅中的阴极的熔融盐ciht电池在具有无氧的氩氛围的手套箱中组装并于手套箱中在氩氛围下加热。阳极包含于base管中的naoh和h来源(诸如ni(h2)),且阴极在电极(诸如ni)处包含低共熔混合物(诸如mgcl2-nacl)。第二型包含氢渗透性阳极(诸如ni(h2))、熔融氢氧化物电解质(诸如lioh-libr)和对空气开放的ni阴极。第三型包含通过经由h2o储集器鼓泡氩气载气或通过使用维持在30℃至50℃(31托至93托h2o)示例性温度范围内的水发生器供给h2o的封闭电池。电解质包含熔融盐(诸如lioh-libr)和视情况选用的基质(诸如mgo)。电池在间歇电解下操作,其中由h2o在放电阳极处形成氢气且在放电阴极处形成氧气。放电期间,反应和电流逆转形成新生h2o催化剂和分数氢以产生过量电流和能量以便达成净过量电能平衡。在另一变体中,此电池类型在对空气开放下操作。第四型包含水性电解质(诸如饱和koh)和在间歇电解条件下在对空气开放下操作的不同阴极和阳极。称为[阳极/电解质/阴极]的示例性电池(诸如[ni(h2)/moh或m(oh)2-m'x或m'x2/ni空气](m和m'为li、na、k、rb、cs、mg、ca、sr和ba中的一种;x为氢氧化物、卤化物、硫酸盐和碳酸盐中的一种,m为r-ni、zn、sn、co、cd、sb和pb中的一种)、[naohni(h2)base/naclmgcl2/ni]、[ni/lioh-libr-mgo/nio(封闭或空气)]和[sn5v5/koh(饱和水溶液)/ni(空气)])的结果如下所列。高t熔融电解质-具经由水鼓泡器的ar流的封闭ss电池-10w扩大规模-032012gzc1-1023:mo/210glioh+1.05kglibr+420gmgo(1层)/nio(10层);阳极:mo箔;阴极:过氧化cni6c;t设置=420℃,t真实=420℃;充电至8v,若v>6v,则放电4s。高t熔融电解质-具经由水鼓泡器的ar流的封闭ss电池-030112gzc3-1005:mo/0.5"lioh+libr球粒-lioh+libr+mgo球粒-lioh+libr球粒(2件)/nio;阳极:1.5"直径mo,阴极:1.5"×1.5"压制过氧化cni6(1层),由熔融电解质预润湿;t设置=500℃,t真实=440℃;充电至0.8v,若v>6v,则放电4s高t熔融电解质-具经由水鼓泡器的ar流的封闭ss电池-031312gzc2-1012:ni-mo-ni/lioh:libr:mgo=1:5:10/nio;阳极:cni8+mo+cni8,压缩,由熔融电解质预润湿;阴极:cni8-压制cni6c-cni8,由熔融电解质预润湿;隔板:使用4个0.5"直径球粒;t设置=440℃,t真实=440℃;充电至0.8v,若v>6v,则放电4s031212gc1(间歇电解封闭电池,具mo纳米粉末的层压阳极),ni-mo-ni网格方形物/lioh-libr-mgo/nio网格方形物(湿ar)t=450℃,充电20ma直至v=0.8v;放电20ma直至v>=0.6v,否则放电4s;阳极:ni-mo-ni方形物(14.04g,14cm2);阳极:nio方形物(3×1.5'×1.5');电解质:10glioh+50glibr+18gmgos=秒,d=天,h=小时(下同)阳极:将2.0gmo纳米粉末置放于4件ni网格(cn6c)方形物(1.5'×1.5')内部并压缩。030812gc1(间歇电解封闭电池,层压阳极,高功率密度),重复030712gc1ni-mo-ni方形物/lioh-libr-mgo/nio网格方形物(湿ar)t=450℃,充电50ma直至v=0.8v;放电50ma直至v>=0.6v,否则放电4s;阳极:ni-mo-ni方形物(11.37g,14cm2);阳极:nio方形物(3×1.5'×1.5');电解质:15glioh+75glibr+28gmgos=秒,d=天,h=小时(下同)022812gc1(间歇放电封闭电池,水蒸汽流)压缩ni-mo-ni方形物/lioh-libr-mgo/nio网格方形物(湿ar)t=450℃,充电10ma直至v=0.8v;放电10ma直至v>=0.6v,否则放电4s;阳极:ni-mo-ni方形物(11.6g,包括导线,14cm2);阳极:nio方形物(3×1.5'×1.5');电解质:15glioh+75glibr+28gmgos=秒,d=天,h=小时(下同)高t熔融电解质-具经由水鼓泡器的ar流的封闭ss电池-031212gzc1-1008:ni-c-ni/10glioh+50glibr+20gmgo/nio;阳极:1.5"×1.5"cni6+1"×1"石墨+1.5"×1.5"cni6,压缩;阴极:1.5"×1.5"过氧化cni6(2层);t设置=515℃,t真实=440℃;充电至0.8v,若v>6v,则放电4s高t熔融电解质-具经由水鼓泡器的ar流的封闭ss电池-031212gzc2-1009:ni-ni粉末-ni/10glioh+50glibr+20gmgo/nio;阳极:1.5"×1.5"cni6+0.67gni纳米粉末+1.5"×1.5"cni6,压缩;阴极:1.5"×1.5"过氧化cni6(2层);t设置=500℃,t真实=440℃;充电至0.8v,若v>6v,则放电4s10w扩大规模:高t熔融电解质-具经由水鼓泡器的ar流的封闭ss电池-10电池叠堆。-021012gzc2-974:mo箔/10glioh+50glibr+20gmgo/nio;阳极:9"直径mo箔,阴极:9"直径过氧化cni6c(2件);t设置=410℃,t真实=440℃;充电至8v,若v>6v,则放电4s010411xy3-1345凸缘封闭糊状电解质ni/lioh-libr-mgo/nio;阳极:多孔nic6nc(od1.5",11cm2,5.3457g,包括导线),浸没于电解质中;阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:15.0glioh+75.0glibr+30.0gmgo;温度450℃;流经ar(预加湿)s=秒,d=天,h=小时(下同)高t熔融电解质-具经由水鼓泡器的ar流的封闭ss电池-030112gzc2-1004:c/10glioh+50glibr/nio;阳极:1.5"×1.5"石墨,阴极:1.5"×1.5"压制过氧化cni6(2层);t设置=460℃,t真实=440℃;充电至0.6v,若v>0.4v,则放电4s高t熔融电解质-具经由水鼓泡器的ar流的封闭ss电池-021712gzc2-983:cni6-mo-cni6/10glioh+50glibr+30gmgo/nio;阳极:1.5"×1.5"cni6-mo-cni6压缩,阴极:1.5"×1.5"过氧化nifecral,孔径尺寸:1.2mm;t设置=460℃,t真实=440℃;充电至0.8v,若v>6v,则放电4s高t熔融电解质-具经由水鼓泡器的ar流的封闭ss电池-010912gzc1-934:mo+ni/8glioh+40glibr+15gmgo/nio;2.75"氧化铝坩埚;阳极:1.5"×1.5"3.831gmo+0.623gcni8,阴极:1.5"×1.5"过氧化cni6c(2件);t设置=460℃,t真实=440℃;充电至0.8v,若v>6v,则放电4s011812xy1-1369凸缘封闭糊状电解质ni/lioh-libr-mgo/nio。(高电流,湿度由水蒸汽发生器供应);阳极:压制多孔nic6nc(1.5"od”,11cm2,9.3632g,包括导线);阴极:预氧化多孔nic6nc(1.5”od),位于电解质上;电解质:15.0glioh+75.0glibr+35.0gmgo;温度450℃;湿度由水蒸汽发生器供应给电池s=秒,d=天,h=小时(下同)012512xy2-1384凸缘封闭糊状电解质nifiber/lioh-libr-mgo/nio;阳极:ni纤维(1.5"od",11cm2,8.5880g,包括导线);阴极:预氧化多孔nic6nc(1.5"od),位于电解质上;电解质:15.0glioh+75.0glibr+35.0gmgo;温度450℃;湿度由水蒸汽发生器供应给电池s=秒,d=天,h=小时(下同)011812cg7-485:hx塔盘+mo阳极4×叠堆;2层nio底部3×叠堆,1层nio顶部叠堆;封闭电池,90℃h2o热,封闭电池;阳极:1.5"直径mo箔×4,在hx塔盘上使用;阴极:nio×4;电解质:lioh-libr-mgo;ocv约4.0v;在20ma下充电直至v>3.2v,在-20ma下放电5秒或2.4v010912xy1-1352凸缘封闭糊状电解质mo/lioh-libr-mgo/nio。(不同波形,高电流);阳极:mo板(1×1",6.25cm2,31.7776g,包括导线),浸没于电解质中;阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:15.0glioh+75.0glibr+35.0gmgo;温度450℃;流经ar(预加湿)s=秒,d=天,h=小时(下同)011012xy1-13555层叠堆c276(mo)/lioh-libr-mgo/nio。(凸缘封闭糊状电解质);各层中的阳极:c276箔(4.875"od",116cm2)盘,盘中具1块mo箔(4.25"od);各层中的阴极:预氧化多孔nic6nc(4.25"od),位于电解质上;各层中的电解质:40.0glioh+200.0glibr+60.0gmgo。温度450℃s=秒,d=天,h=小时(下同)010512xy3-1348凸缘封闭糊状电解质ni/lioh-libr-mgo/nio。(湿度由水蒸汽发生器供应);阳极:多孔nic6nc(1.5"od",11cm2,5.2816g);阴极:预氧化多孔nic6nc(1.5"od),位于电解质上;电解质:15.0glioh+75.0glibr+35.0gmgo;温度450℃;湿度由水蒸汽发生器供应给电池s=秒,d=天,h=小时(下同)010612xy3-1351凸缘封闭糊状电解质ni/lioh-libr-mgo/nio。(高电流,湿度由水蒸汽发生器供应);阳极:多孔nic6nc(1.5"od",11cm2,6.7012g);阴极:预氧化多孔nic6nc(1.5"od),位于电解质上;电解质:15.0glioh+75.0glibr+35.0gmgo;温度450℃;湿度由水蒸汽发生器供应给电池s=秒,d=天,h=小时(下同)121311xy1-1291凸缘封闭糊状电解质ni/lioh-libr-mgo/nio;阳极:多孔nic6nc(od1.5",11cm2,2.2204g),浸没于电解质中.阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:15.0glioh+75.0glibr+35.0gmgo。温度450℃;流经ar(预加湿)s=秒,d=天,h=小时(下同)121311xy2-1292凸缘封闭糊状电解质ni/lioh-libr-mgo/nio;阳极:多孔nic6nc(od1.5",11cm2,2.1179g),浸没于电解质中;阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:15.0glioh+75.0glibr+35.0gmgo。温度450℃;流经ar(预加湿)s=秒,d=天,h=小时(下同)121311xy3-1293凸缘封闭糊状电解质mo/lioh-libr-mgo/nio;阳极:mo板(1×1",6.25cm2,33.8252g,包括导线),浸没于电解质中;阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:15.0glioh+75.0glibr+35.0gmgo;温度450℃;流经ar(预加湿)s=秒,d=天,h=小时(下同)121311xy4-1294凸缘封闭糊状电解质海恩斯(haynes)242合金/lioh-libr-mgo/nio.(验证电池);阳极:海恩斯242合金箔(1×1",6.25cm2,4.5830g,包括导线),浸没于电解质中;阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:15.0glioh+75.0glibr+35.0gmgo;温度450℃;流经ar(预加湿)s=秒,d=天,h=小时(下同)122211cg20-447ni塔盘+mo阳极3×叠堆;顶部直径2.00",底部直径2.00"所制备糊状物;封闭电池,经由h2o的ar流;使用一侧为nio而另一侧为mo箔的双极板且以塔盘作为隔板的3层叠堆电池;阳极:mo箔×3;阴极:nio×3;电解质:lioh-libr-mgo;t设置=450℃;在10ma下充电直至v>2.8v,在-10ma下放电5秒或1.5v120911xy3-1284水性mo6si4/koh/ni;阳极:mo6si4合金球粒(od1.4cm,1.5cm2);阴极:多孔nic8nc;电解质:饱和koh;室温s=秒,d=天,h=小时(下同)122811xy1-1331凸缘封闭糊状电解质tzm/lioh-libr-mgo/nio。(ar+h2o);阳极:tzm箔(0.75×1.5",7.0cm2,2.8004g,包括导线),浸没于电解质中;阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:15.0glioh+75.0glibr+35.0gmgo;温度450℃;流经ar(预加湿)s=秒,d=天,h=小时(下同)121511xy1-1301凸缘封闭糊状电解质mo/lioh-libr-mgo/nio。(湿度由水蒸汽发生器供应);阳极:mo板(1×1",6.25cm2,32.0286g);阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:15.0glioh+75.0glibr+35.0gmgo;温度450℃;湿度由水蒸汽发生器供应给电池s=秒,d=天,h=小时(下同)121611xy1-13053层叠堆mo(ni)/lioh-libr-mgo/nio。(凸缘封闭,糊状电解质,部分浸没阳极)。(水由蒸汽发生器供应);各层中的阳极:内部具一层celmetnic6nc(1.5"od,11cm2)的mo箔盘(2.0"od",19.6cm2);各层中的阴极:预氧化多孔nic6nc(1.75"od),位于电解质上;各层中的电解质:8.0glioh+40.0glibr+20.0gmgo;温度450℃;(湿度由水蒸汽发生器供应)s=秒,d=天,h=小时(下同)121211xy2-1288凸缘封闭糊状电解质mo/lioh-libr-mgo/nio;阳极:mo板(1×1",6.25cm2),浸没于电解质中;阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:10.0glioh+50.0glibr+25.0gmgo;温度450℃;流经ar(预加湿,低速率)s=秒,d=天,h=小时(下同)120911xy5-1286凸缘封闭糊状电解质ni/lioh-libr-mgo/nio。(湿度由水蒸汽发生器供应);阳极:多孔nic6nc(1.5"od",11cm2,2.0286g);阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:15.0glioh+75.0glibr+35.0gmgo;温度450℃;湿度由水蒸汽发生器供应给电池s=秒,d=天,h=小时(下同)113011xy1-1254凸缘封闭糊状电解质ni/lioh-libr-mgo/nio;阳极:多孔nic6nc(od1.5",11cm2,3.1816g,包括导线),浸没于电解质中;阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:15.0glioh+75.0glibr+30.0gmgo;温度450℃;流经ar(预加湿)s=秒,d=天,h=小时(下同)高t熔融电解质-具ar流但隔开蒸汽发生器的封闭ss电池-121311gzc1-904:ni/10glioh+50glibr+20gmgo/nio;2.75"氧化铝坩埚;阳极:1.5"×1.5"2.975gcni6c,阴极:2件1.5"×1.5"过氧化cni6c;t设置=440℃,t真实=440℃;结果:(1)在无运转进程下,使用30sccmar流冲洗电池(不穿过水鼓泡器)。14:40,ocv=0.920v;16:57,ocv=0.737v;(2)12月14日终止气体流。封闭ar入口与出口,运转进程:充电至0.8v,若v>0.6v,则放电4s。将水储集器置放于温度为60℃的加热器中。高t熔融电解质-具ar流的封闭ss电池:2电池的叠堆-121511gzc1-908:于ni塔盘中的mo/lioh+libr(1:5wt)+mgo/nio;2.75"氧化铝坩埚;阳极:1.75"直径0.01"厚mo箔,阴极:2件1.75"直径过氧化cni6c。双极板&阳极固持器:0.010"厚ni塔盘。将mo箔点焊于ni塔盘上;t设置=500℃,t真实=440℃;流程:充电至1.6v,若v>1.2v,则放电4s。有3根导线伸出以检查各叠堆的状态。水性rt电池-120111gzc3-887:cr6mo4/饱和koh/ni;2.75"氧化铝坩埚;阳极:0.5"odcr6mo4,阴极:cni8;rt,充电至1.2v,若v>0.8v,放电4s。120911xy2-1283水性ta5v5/koh/ni;阳极:ta5v5合金球粒(od1.4cm,1.5cm2);阴极:多孔nic8nc;电解质:饱和koh;室温s=秒,d=天,h=小时(下同)120111gc3(间歇充电-放电封闭电池,ni粉末阳极);ni粉末板/lioh-libr/nio网格方形物(湿ar);t=450℃,充电5ma直至v=0.8v;放电5ma直至v>=0.6v,否则放电4s;阳极:ni粉末板(4.78g,d:1',5.06cm2);阳极:nio方形物:3×1.5'×1.5';电解质:8glioh+40glibr+24gmgos=秒,d=天,h=小时(下同)在无水蒸汽下控制:高t熔融电解质-具ar流但入口处无鼓泡器的封闭ss电池-112811gzc1-877:ni/10glioh+50glibr+20gmgo/nio;2.75"氧化铝坩埚;阳极:1.5"×1.5"3.201gcni6c,阴极:2件1.5"×1.5"过氧化cni6c;t设置=500℃,t真实=440℃;连续放电高t熔融电解质-具ar流和独立的水蒸汽发生器的封闭ss电池-112211gzc2-872:ni/10glioh+50glibr+20gmgo/nio;2.75"氧化铝坩埚;阳极:1.5"×1.5"2.926gcni6c,阴极:1.5"×1.5"过氧化cni6c;t设置=500℃,t真实=440℃;充电至0.8v,若v>0.6,则放电4s高t熔融电解质-具经由h2o鼓泡器的ar流的封闭ss电池-111411gzc1-858:ni/12glioh+60glibr+20gmgo/nio;2.75"氧化铝坩埚;阳极:1.5"×1.5"3.028gnicni6c,阴极:2件1.5"×1.5"过氧化cni6c;t设置=460℃,t真实=440℃;充电至0.8v,若v>0.6,则放电4s;结果:(1)ocv=0.943v,抽空电池ocv=0.860。随后经由水鼓泡器向封闭电池中填充ar;(2)ocv=0.920v,抽空电池ocv=0.872。随后经由水鼓泡器向封闭电池中填充ar;(3)ocv=0.902v,抽空电池ocv=0.858。随后经由水鼓泡器向封闭电池中填充ar;(4)ocv=0.842v,抽空电池ocv=0.793。随后经由水鼓泡器向封闭电池中填充ar;(5)ocv=0.823v,抽空电池ocv=0.790。随后经由水鼓泡器向封闭电池中填充ar;(6)ocv=0.809v,抽空电池ocv=0.777。随后经由水鼓泡器向封闭电池中填充ar;(7)ocv=0.796v,抽空电池ocv=0.768。随后经由水鼓泡器向封闭电池中填充ar;(8)ocv=0.790v。随后为运转进程:充电至0.8v,若v>0.6,则放电4s。测试如下。高t熔融电解质-具ar流的封闭ss电池-110811gzc5-845:ni/20glioh+100glibr/nio;2.75"氧化铝坩埚;阳极:1.5"×1.5"nicni6c,阴极:4件1.5"×1.5"过氧化cni6c;t设置=500℃,t真实=440℃;充电至0.8v,若v>0.6,则放电4s111711xy3-1225凸缘封闭糊状电解质海恩斯242合金/lioh-libr-mgo/nio。20ma-10ma;阳极:海恩斯242合金箔(1×1",6.25cm2,3.8287g,包括导线),浸没于电解质中;阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:15.0glioh+75.0glibr+35.0gmgo;温度450℃;流经ar(预加湿,低速率)s=秒,d=天,h=小时(下同)110211gc5(用lioh+libr制备基质,固体糊状物)ni网格方形物/lioh-libr-mgo+lialo2/预氧化物ni网格方形物(ar,较大流动速率)t=450℃,充电5ma直至v=0.8v,保持1s;放电5ma直至v>=0.6v,否则放电4s;阳极:ni网格方形物(2.94g,约14cm2);阳极:nio,cn6c,1.5×1.5',2.71g;电解质:8glioh+40glibr+11gmgo+11glialo2。s=秒,d=天,h=小时(下同)102611xy5-1127糊状电解质ni/lioh-libr-tio2/nio;阳极:多孔nic6nc(od1.5",11cm2,2.6865g),浸没于电解质中;阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:6.0glioh+30.0glibr+12.0gtio2;温度450℃s=秒,d=天,h=小时(下同)阳极基本上无nio形成。110411gc3(用lioh+libr制备基质,固体糊状物)nio网格方形物/lioh-libr-mgoli2zro3/nio网格方形物(空气)t=450℃,充电5ma持续0.5s;放电5ma持续1.5s;阳极:nio网格方形物(2.73g,约14cm2);阳极:nio方形物,2.78g;电解质:10glioh+50glibr+10gmgo+50gli2zro3。s=秒,d=天,h=小时(下同)101311xy1-1086空气阴极哈斯特洛依合金(hastelloy)c22/lioh-libr/ni;阳极:哈斯特洛依合金c22箔(1×1",2.8949g,包括导线),浸没于电解质中;阴极:卷起的多孔nic6nc(od1.75,2"高),伸出电解质;电解质:20.0glioh+100.0glibr;温度450℃。s=秒,d=天,h=小时(下同)101411cg1-280空气阴极;阳极:mo1"×1"1.753g;阴极:nio卷筒,2"高,用moo2包埋;电解质:lioh-libr;在10ma下充电直至v=1.0v;在-10ma下放电4s或直至v=0.6v,以先出现者为准。102411xy3-1113糊状电解质ni/lioh-libr-lialo2/nio。ar气层;阳极:多孔nic6nc(od1.5",11cm2,2.2244g),浸没于电解质中;阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:6.0glioh+30.0glibr+8.0glialo2;温度450℃,具ar流s=秒,d=天,h=小时(下同)101711cg9-282空气阴极;阳极:mo1"x1"1.658g;阴极:nio卷筒,2"高,用li2zro3包埋;电解质:lioh-libr;在10ma下充电直至v=1.0v;在-10ma下放电2s或直至v=0.6v,以先出现者为准;7天内增益为9至11倍。101711xy1-1096糊状电解质ni/lioh-libr-li2tio3/nio;阳极:多孔nic6nc(1.5×1.5",14cm2,3.4618g),浸没于电解质中;阴极:预氧化多孔nic6nc(1.5×1.5"),位于电解质上;电解质:6.0glioh+30.0glibr+20.0gli2tio3;温度450℃s=秒,d=天,h=小时(下同)101111xy1-1074浸没的mo9s1/lioh-libr/nio;阳极:mo9s1球粒(14mmod,1.5cm2,3.4921g,包括导线),浸没于电解质中;阴极:预氧化多孔nic6nc(1.5×1.5"),浸没于电解质中;电解质:20.0glioh+100.0glibr;温度450℃s=秒,d=天,h=小时(下同)083011xy2-959mhfc的间歇放电.(moni/lioh-libr/ni,高电流,高温);阳极:moni合金板(od14mm,约2.5mm厚,5.424g,包括焊接的ni导线)。浸没于电解质中;阴极:卷起的多孔nic6nc(od1.0",2"高),伸出电解质;电解质:20.0glioh+100.0glibr;温度450℃。s=秒,min=分钟80ma下的长期效能测试s=秒,min=分钟080211gzc4-564:ni振动膜/20glioh+100glibr/cni4(空气);2.75"氧化铝坩埚;电极:0.010"厚,1.875"直径,17.8cm2ni振动膜(阳极),2.5"高,17"长卷起的cni4celmet,横截面积:21.9cm2(阴极);t设置=340℃,熔融物的真实t:300℃;ph2=910托,测量h2透过速率=2.02e-2umol/s,计算最大h2透过速率:1.60e-2umol/s;测量电压=0.802v,测量功率:6.44mw,基于测量h2流动速率的功率输出:4.53mw;能效:142%072111gzc1-531:ni膜/20glioh+100glibr/cni4(空气);2.75"氧化铝坩埚;电极:0.010"厚,1.875"直径,17.8cm2ni振动膜(阳极),2.5"高,17"长卷起的cni4celmet,横截面积:21.9cm2(阴极);t设置=380℃,熔融物的真实t:342℃;51.1ω负载;ph2=978托,测量h2透过速率=4.06e-2umol/s,计算最大h2透过速率:3.63e-2umol/s;测量电压=0.821v,测量功率:13.2mw,基于测量h2流动速率的功率输出:9.1mw;能效:145%062211xy1-776mhfc的间歇充电/放电(ni圆盘阳极,celmet卷筒阴极,高电流),具氢气流;阳极:ni圆盘(od1.875",厚0.010"),浸没于电解质中;阴极:多孔nic6n牢固卷在氧化铝管周围,卷筒的od为1.875",高4",伸出电解质。阳极和阴极的浸没面积相同;电解质:20.0glioh+100.0glibr;温度450℃s=秒,d=天,h=小时(下同)100ma下的长期效能测试s=秒,d=天,h=小时(下同)062811gc1ss管(1/4')-ni圆盘(f1.75')h2渗透/lioh(41g)+licl(39g)/ni网格圆筒(空气)t=470℃(420℃,mp277℃),100ω,30ω,15ω;阳极:ss管(1/4')-ni圆盘(f1.75');阴极:ni网格包覆圆筒(cni8:4.5'×2',2.81g)和(cni6:4.5'×1.9',17.70g);温度:470℃,设置点:420℃);ocv:vmax=1.14v,缓慢升高;负载100ω:v=1.07v;升高;负载30ω:v=0.92v(稳定);负载15ω:v=0.73v;(极度稳定);eout=36790.0j(迄今为止)062811gc2ss管(1/4')-ni圆盘(f1.75')h2渗透/lioh(51.2g)+li2co3(29.8g)/ni网格圆筒(空气)t=530℃(488℃,mp434℃),100ω,30ω,15ω;阳极:ss管(1/4')-ni圆盘(f1.75');阴极:ni网格包覆圆筒(cni8:4.5'×1.9',2.35g)和(cni6:4.5'×2',19.50g);温度:530℃,设置点:488℃);ocv:vmax=1.05v,缓慢升高;负载100ω:v=0.96v;升高;负载30ω:v=0.84v(稳定);负载15ω:v=0.81v;(最大值);eout=35614.4j(迄今为止)063011gc1(重复062711gc2)ss管(1/4')-ni圆盘(f1.75')h2渗透/lioh(34.1g)+li2so4(45.9g)/ni网格圆筒(空气)t=(444℃)520℃,设置点:30ω、15ω;阳极:ss管(1/4')-ni圆盘(f1.75');阴极:ni网格包覆圆筒(cni8:5'×1.8',2.63g)和(cni6:4.5'×1.8',18.80g);温度:444℃,520℃,设置点(mp:407℃);ocv:vmax=0.91v(耗时2h),缓慢升高;负载30ω:v=0.80v,升高;负载15ω:vmax=0.74v,现在v=0.70v,稳定;eout=30971.8j(迄今为止)62811xy1-790mhfc的间歇充电/放电。(ni圆盘阳极,celmet卷筒阴极,高电流),具氢气流;阳极:ni圆盘(od1.875",厚0.010"),浸没于电解质中;阴极:多孔nic6n牢固卷在氧化铝管周围,卷筒的od为1.875",高4",伸出电解质;电解质:30.0glioh+150.0glibr温度450℃。200ma下该配置电池的长期效能测试s=秒,d=天,h=小时(下同)目标能量增益:2倍。062011xy1-769mhfc的间歇充电/放电。(celmet阳极,celmet卷筒阴极,高电流),电池767的继续,自200ma起始;阳极:多孔nic6n,(od1.5",2.6g),浸没于电解质中;阴极:多孔nic8n和c6n牢固卷在氧化铝管周围(内层c8n,外层c6n),卷筒的od为1.5",高4",伸出电解质。阳极和阴极的浸没面积相同;电解质:15.0glioh+75.0glibr;温度450℃。s=秒,d=天,h=小时(下同)目标能量增益:2倍。061011xy1-737mhfc的间歇充电/放电.(圆盘阳极,celmet阴极,高电流);阳极:ni圆盘(od2.0",0.010"厚),浸没于电解质中;阴极:多孔nic6n,伸出电解质;电解质:10.3glioh+49.7glibr;温度450℃。s=秒,d=天,h=小时(下同)目标能量增益:5倍。061011xy2-738mhfc的间歇充电/放电。(圆盘阳极,celmet阴极,高电流);阳极:ni圆盘(od2.0",0.010"厚),浸没于电解质中;阴极:多孔nic6n,伸出电解质;电解质:10.3glioh+49.7glibr。温度450℃。s=秒,d=天,h=小时(下同)目标能量增益:5倍。运转9天。061011gc1ni管(1/4')-ni网格(ni粉末)h2喷射/lioh(10g)+libr(50g)/ni网格方形物t=360℃,100ω;主要目的:测试ni粉末-h2喷射系统中的h2流动速率;阳极:ni管(1/4')-ni网格(cni8,1.5'×1.8',0.7g),装有2gni粉末(-400网格,99.8%);阴极:ni网格方形物(2.5'×0.9');温度:360℃;ocv:vmax=1.01v;负载100ω,h2流动速率由质量流量控制器与计量阀控制。vmax=0.78v,下降并稳定在0.64v;h2流动速率测试4天;eout=2.34kj(终止以进行另一测试)。批注:(1)放电电压恒定;流动速率常数由计量阀控制;(2)平均值显示效率极度接近约150%。053111xy1-696mhfc的间歇充电/放电.(流经预加湿的无co2空气,85%n2,15%o2);阳极:多孔nic6n,圆盘完全浸没于电解质中;阴极:多孔nic6n,伸出电解质;电解质:10.3glioh+49.7glibr;预加湿的无co2空气(85%n2,15%o2)连续流经电池。s=秒,d=天,h=小时(下同)目标能量增益:8倍。052711xy4-694mhfc的间歇充电/放电。阳极与阴极用多孔nic6n制备;阳极:多孔nic6n,圆盘全部浸没于电解质中。阴极:多孔nic6n,伸出电解质;电解质:10.3glioh+49.7glibr;电池为开放的。s=秒,d=天,h=小时(下同)目标能量增益:32倍。051311xy1-621(ni(h2)/lioh-libr-li2tio3/nic6n-nic4n):原型配置(阳极与阴极平行。两者之间有电解质糊状物的薄层)。此电池准备使用具小多孔的ni泡沫固持电解质,并防止顶部具大多孔的ni泡沫因毛细管作用而变湿。此电池与电池602相同制备,在ni导线破坏的前持续8天。此电池的功率密度在不同放电负载下测量。阳极:h2经由ni腔室流动(表面积:25cm2,0.01"厚);阴极:空气,具小多孔的多孔ni.c6n与电解质接触且c4n顶部具较大多孔的双层(表面积:20cm2);电解质:4.0glioh+20.0glibr+10.0gli2tio3;温度:熔融盐的真实t为450℃;放电负载:50ω;在50ω放电下测试长期效能。s=秒,d=天,h=小时(下同)18天时终止052411gc1(封闭电池)(naoh,h2)ni管(1/8')/base/nacl+mgcl2ni管(1/4')-附着的包覆网格(cni8),t=500℃(设置点),100ω;主要目的:将[ni(h2)naoh/base/nacl-mgcl2位于抽真空封闭电池中以除去h2o和h2,自阳极获取黑色样品以进行xrd。阳极:(naoh4.0g,h2,约840托)ni管(1/8',新);阴极:nacl49.9g+61.4gmgcl2(两者均经干燥),电流收集器:具附着的包覆网格(3'×2.5')的ni管(1/4');t:500℃;ocv:vmax=1.47v;负载100ω:vmax=约0.97v;eout=260.8j;批注:在较高温度下获得较高能量。ht电池:原型#25测试-051611gzc1-497:ni(h2)/0.5glioh+2.5glibr+1.5gmgo/ni(空气)(mp.264c);2.75"氧化铝坩埚;电极:6.4cm2ni0.005"厚(阳极),6.4cm2横截面双层cni8+cni4垫(阴极,由熔融电解质预处理),阴极由陶瓷保护,阴极镍导线无陶瓷管覆盖;t=460℃(熔融物的真实t:420℃),ph2约800托;结果:(1)ocv=0.94v;(2)50ω负载,t=479c,ph2=798托,ccv=0.812v,功率=13.2mwb.水流分批量热使用约43cm3体积的圆筒形不锈钢反应器(1"内径(id)、5"长和0.060"壁厚,具有内热电偶套管)和包含含各电池和外部水冷却剂线圈的真空腔室的水流热量计(收集99+%电池释放的能量以达成<±1%误差)获得表9中各条目的右手侧所列的催化剂反应混合物的能量与功率平衡。通过积分随时间变化的总输出功率pt确定能量回收。功率如下给出其中为质量流动速率,cp为水的比热,且δt为入口与出口之间的温度的绝对变化。反应系通过向外加热器施加精确功率来引发。特定而言,向加热器供应200w功率。在此加热时段期间,试剂达到分数氢反应阈值温度,其中反应的起始通常由电池温度的急剧升高证实。一旦电池温度达到约400-500℃,即将输入功率设置为0。18分钟后,程序将功率引导为0。为增加转移至冷却剂的热转移速率,用1000托氦给腔室再次加压,且水温的最大变化(出口减去入口)为约1.2℃。如由观察到流式热敏电阻中的完全平衡所证实,使组装经24小时时间完全达到平衡。在各测试中,通过积分相应功率计算能量输入和能量输出。使用方程式(344)通过将水容积流率乘以19℃的水密度(0.998kg/l)、水的比热(4.181kj/kg℃)、校正温差和时间间隔来计算每次增量中冷却剂流中的热能。求整个实验的各值之和,获得总能量输出。电池的总能量et必须等于能量输入ein和任何净能量enet。因此,净能量如下给出enet=et-ein(345)根据能量平衡,由下式相对于最大理论emt确定任何过量热eexeex=enet-emt(346)校准测试结果显示,超过98%的电阻输入热偶合至输出冷却剂,且零过量热控制显示在应用校准校正下,热量计精确至小于1%误差以内。结果如下给出,其中tmax为最大电池温度,ein为输入能,且de为超过输入能量的测量输出能量。当放热时,所有理论能量皆为负值。正输出值表示输出能量大于输入能量。表9.示例性量热测试结果c.分子分数氢的光谱鉴别在blacklightpower,inc.(blp)首次观察到仅来自脉冲式压缩氢放电的h至较低能量分数氢状态的理论预测跃迁的10.1和22.8nm下且延伸至较长波长的连续辐射带且在天体物理学哈佛中心(harvardcenterforastrophysics,cfa)再现[r.l.mills,y.lu,「time-resolvedhydrinocontinuumtransitionswithcutoffsat22.8nmand10.1nm,」eur.phys.j.d,64,(2011),第63页,doi:10.1140/epjd/e2011-20246-5]。也证实由涉及充当分数氢催化剂的快离子化h重组和中间物能量衰减步骤期间共振动能转移的机制形成的极快h[k.akhtar,j.scharer,r.l.mills,「substantialdopplerbroadeningofatomic-hydrogenlinesindcandcapacitivelycoupledrfplasmas,」j.phys.d,appliedphysics,第42卷,(2009),42135207(2009)doi:10.1088/0022-3727/42/13/135207]。关于氢形成更稳定形式时的高能连续辐射的发现具有天体物理学蕴涵,诸如分数氢为黑暗物质的性质的候选者且相应发射为高能天空和恒星连续辐射的来源[r.l.mills,y.lu,「hydrinocontinuumtransitionswithcutoffsat22.8nmand10.1nm,」int.j.hydrogenenergy,35(2010),第8446-8456页,doi:10.1016/j.ijhydene.2010.05.098]。由最近天体物理学测量和定位,黑暗物质占宇宙质量的98%且无所不在。此外,由自星系碰撞残骸重建巨大重力天体显示黑暗物质为星系内的,其中所述天体的力学需要大量非可见重力物质[f.bournaud,p.a.duc,e.brinks,m.boquien,p.amram,u.lisenfeld,b.koribalski,f.walter,v.charmandaris,「missingmassincollisionaldebrisfromgalaxies,」science,第316卷,(2007),第1166-1169页;b.g.elmegreen,「darkmatteringalacticcollisionaldebris,」science,第316卷,(2007),第32-33页],且已显示为碰撞的[m.j.jee,a.mahdavi,h.hoekstra,a.babul,j.j.dalcanton,p.carroll,p.capak,「astudyofthedarkcoreina520withthehubblespacetelescope:themysterydeepens,」astrophysicalj.,第747卷,第96期,(2012),第96-103页]。因此,将预期黑暗物质在地球上无所不在,如由对经发现可充当用于收集和分析鉴别本文呈现的分数氢的吸气剂的化合物的分析所证实。证实分数氢反应的能量学的其它观察结果为因加热形成氢等离子体,其余辉持续时间异常[h.conrads,r.l.mills,th.wrubel,「emissioninthedeepvacuumultravioletfromaplasmaformedbyincandescentlyheatinghydrogengaswithtraceamountsofpotassiumcarbonate,」plasmasourcesscienceandtechnology,第12卷,(2003),第389-395页]和h谱线反转[r.l.mills,p.c.ray,r.m.mayo,m.nansteel,b.dhandapani,j.phillips,「spectroscopicstudyofuniquelinebroadeningandinversioninlowpressuremicrowavegeneratedwaterplasmas,」j.plasmaphysics,第71卷,第6部分,(2005),877-888;r.l.mills,p.ray,r.m.mayo,「cwhilaserbasedonastationaryinvertedlymanpopulationformedfromincandescentlyheatedhydrogengaswithcertaingroupicatalysts,」ieeetransactionsonplasmascience,第31卷,第2期,(2003),第236-247页]。本发明系统涉及一种分数氢燃料电池,称为ciht(催化剂诱导的分数氢跃迁)电池,其由氢催化反应形成低能量(分数氢)状态产生电动势(emf),从而将分数氢反应释放的能量直接转化成电。各ciht电池包含包含阴极的阴极隔室、包含阳极的阳极隔室和也充当形成分数氢的反应物来源的电解质。归因于氧化还原半电池反应,产生分数氢的反应混合物由经由外部电路的电子迁移和经由经电解质的单独的内部路径以完成电路的离子质量输送构成。在一类电解再生ciht电池中,原子氢和氧气通过在电池中电解h2o间歇形成,且氢催化剂和后续分数氢在电池放电期间通过反应混合物的反应形成,伴随净电输出增益。一个示例性ciht包含镍垫或mo阳极、氧化镍阴极和以mgo为基质的熔融低共熔盐电解质lioh-libr。电池让以蒸汽形式供应至电池或自空气中提取的水流出。电池在间歇电解和放电下操作。氢气和氧气在电解阶段期间分别在负电极与正电极处产生,且充当h和h2o催化剂来源。ciht电池由6个独立的专业科学家或团队验证,所产生的电输出高达电解作为氢来源的h2o以形成分数氢所需的电输出的1000倍。所述电池和其它扩大规模电池充当电极和电解质样品以解析分析理论预测的分子分数氢产物h2(1/4)的产生。具有熔融lioh-libr-mgo电解质和单一电极组的ciht电池或具有双极板电极的ciht电池叠堆充当用于分析测试的分子分数氢的来源,分析测试诸如魔角旋转1h核磁共振光谱(mas1hnmr)、电子束激发发射光谱、拉曼光谱、傅里叶变换红外(ftir)光谱和x射线光电子光谱(xps)。单一电池阴极和阳极分别包含nio和nicelmet或mo。双极电极各包含nio阴极连接至不同于阳极的金属的隔板。示例性隔板-阳极金属对为214合金-ni、ni-mo、哈斯特合金-mo和mo-nicelmet。电池在真空腔室中密封且除夹带于氩气中或来自h2o蒸汽发生器的h2o蒸汽流以外为封闭的。包含n个电池的叠堆的电池的电效能类似于相应的单一电池的电效能,其中例外为电池电压为单一电池的电池电压的n倍。分子分数氢样品包含置放于封闭ciht电池的密封容器中的电解质、化学品和无机化合物吸收剂(诸如kcl、koh和kcl-koh混合物),其中操作期间产生的分数氢捕捉于化合物的基质中,该基质由此充当分子分数氢吸收剂。未曝露于分数氢来源的起始物质充当对照。分子分数氢的特征匹配黑暗物质的特征,且预期黑暗物质(h2(1/p))存在于某些能够捕捉其的材料中。与预期一致,kcl吸收剂含有天然丰富的h2(1/4),其随着曝露于h2(1/4)来源而大幅增加。捕捉于质子基质中的分子分数氢的masnmr表示一种利用分子分数氢的独特特征经由其与基质的相互作用对其进行鉴别的方法。关于nmr光谱的独特考虑为可能的分子分数氢量子态。类似于h2激发状态,分子分数氢h2(1/p)具有l=0,1,2,...,p-1的状态。即使l=0量子态也具有相对较大的四极矩,且另外l≠0状态的相应轨道角动量产生可引起高磁场基质位移的磁矩[millsgutcp]。当基质包含可交换h时,诸如具有水合水的基质或碱性氢氧化物固体基质,此效应尤其有利,其中与h2(1/p)的局部相互作用因快速交换而影响较大群体。ciht电池吸收剂,诸如包含koh-kcl和kcl+k的ciht电池吸收剂(其中在分数氢反应期间k与h2o反应形成koh)在曝露于密封ciht电池内部的氛围后显示+4.4ppm至约-4至-5ppm的基质(koh)的masnmr活性组分位移。h2透过和β-氧化铝-固体电解质ciht电池以和固体燃料反应器中的koh-kcl和其它吸收剂也显示高磁场位移nmr效应。详言的,ciht电池的电解质(诸如[ni(h2)+naoh/na-base/nacl+mgcl2]和[ni(h2)/lioh-libr+结束时添加的koh/nic6]的电解质)和固体燃料反应的kcl+k和ki+k吸收剂(诸如naoh+feooh+2atmh2、naoh+fe2o3+2atmh2、k+kcl吸收剂+单独的fe2o3+nio+ni筛网+2atmh2、k+kcl吸收剂+单独的cr2o3+nio+ni筛网+2atmh2、k+ki吸收剂+单独的fe2o3+nio+r-ni+2atmh2、和k+ki吸收剂+单独的cr2o3+nio+r-ni+2atmh2)的masnmr光谱显示-1ppm至-5ppm范围内的高磁场位移峰。关于p=4状态可能的不同量子数可产生与-4至-5ppm范围内的多个该类峰观察结果一致的不同高磁场基质位移。与观察结果一致,通过与分子分数氢形成络合物而向高磁场位移的koh基质的masnmr峰与充当自由转子的高磁场移动氢氧离子(oh-)相比可为尖锐的。其它证据支持该基于分数氢的位移机制。由具有高磁场位移masnmr光谱峰的样品的电子束激发发射光谱观察到h2(1/4)的h2(1/4)转-振动光谱。此外,阳离子tof-sim光谱显示以二氢作为结构的一部分的基质化合物m:h2(m=koh或k2co3)的多聚团簇。详言的,包含koh和k2co3或具有所述化合物作为吸收剂的分数氢反应产物的阳离子光谱显示k+(h2:koh)n和k+(h2:k2co3)n,与h2(1/p)在结构中呈络合物形式一致[r.l.mills,e.dayalan,p.ray,b.dhandapani,j.he,「highlystablenovelinorganichydridesfromaqueouselectrolysisandplasmaelectrolysis,」electrochimicaacta,第47卷,第24期,(2002),第3909-3926页;r.l.mills,b.dhandapani,m.nansteel,j.he,t.shannon,a.echezuria,「synthesisandcharacterizationofnovelhydridecompounds,」int.j.ofhydrogenenergy,第26卷,第4期,(2001),第339-367页]。在室温下h2(1/p)与基质化合物的相互作用的能量必须大于约0.025ev的热能,因为tof-sims团簇为稳定的,且整个基质在一些情况下在masnmr中位移。由与基质的此强相互作用预期,对旋转有高活化屏障。具有高磁场masnmr位移的样品的一系列斯托克斯峰(stokespeak)也显示约0.05-0.075ev(400-600cm-1)的拉曼基质位移,其中峰之间的斜率与0.249ev能量差的h2(1/4)旋转跃迁匹配,达约0.999或更高的高相关性。使用电子束激发发射光谱和拉曼光谱探索由特征性异常高的转-振动能量直接鉴别分子分数氢。另一明显特征在于分子分数氢的选择法则不同于普通分子氢的选择法则。h2激发状态寿命极短,且h2中具有δj=±1的转-振动跃迁在快速电子跃迁期间发生。但h2不可能经受具有选择法则δj=±1的纯转-振动跃迁,因为需要l=0和δl=±1以在跃迁期间使角动量守恒。相比的下,所述跃迁产生分子分数氢。原子中的电子的量子数为p、、ml和ms[millsgutcp]。在分数氢状态的情况下,激发状态的主量子数由置换。类似于h2激发状态,分子分数氢具有l=0,1,2,...,p-1的状态。如关于h2激发状态所观察,所述长球形调和状态之间的跃迁在无电子跃迁的纯振动跃迁期间容许δj=±1的旋转跃迁。角状态的寿命足够长以使h2(1/p)可独特地经受具有选择法则δj=±1的纯转-振动跃迁。发射分子分数氢状态可由高能电子碰撞激发,其中归因于p2(j+1)0.01509ev激发的旋转状态的旋转能在周围温度下不能增加,对应于<0.02ev。因此,预期去激发振动跃迁(诸如υ=1→υ=0)有仅对应于j′-j″=-1的p分枝,且较高旋转能级统计热力学的群体涉及对应于相较于自由振子所观察到的振动能移动的基质影响。捕捉于吸收剂的结晶晶格中的h2(1/4)转-振动发射由5×10-6托的压力范围内的射束电流为10-20μa的入射6kev电子枪激发。使用配备有具铂涂层1200线/毫米全息光栅和光电倍增管(pmt)检测器的mcpherson0.2米单色器(model302,seya-namioka型)记录来自电子束激发的发射的无窗紫外光谱。波长分辨率为约4nm(fwhm),入口和出口隙缝宽度为500μm。增量为2nm且停留时间为3s。于在5wciht电池叠堆中充当吸收剂的uv透明基质kcl(120811jl-2m3)中的h2(1/4)的解析转-振动光谱的实例显示峰最大值在260nm处,峰代表性位置在222.7、233.9、245.4、258.0、272.2和287.6nm处,具0.2491ev的相等间距。二原子分子(诸如h2(1/p))的振动能由给出,其中k为力常数,且μ为折合质量,对h2(1/p)而言为在分子处于相对于h为无限质量的结晶晶格中的情况下,既定h和视作无限质量的另一种的振动的折合质量对应于振动能的位移乘以因子所得的折合质量。预期旋转能基本上为自由转子的旋转能,在于结晶硅或锗中的h2的情况下,具有微小的旋转屏障[e.v.lavrov,j.weber,「orthoandparainterstitialh2insilicon,」phys.rev.letts.,89(21),(2002),第215501至1-215501-4页]。假定h2(1/p)的振动和旋转能量为h2的p2能量,分别为p20.515ev和p20.01509ev,则预测于结晶晶格中的h2(1/4)的振动和旋转能量分别为5.8ev和0.24ev。当使用jobinyvonhoriba1250m光谱仪观察时在±0.006nm分辨率下260nm电子束带无除宽峰以外的结构,且一般而言,能量对峰数曲线得到由y=-0.249ev+5.8ev(r2=0.999)给出的线,在r2=0.999或更高下与h2(1/4)的跃迁υ=1→υ=0和p(1)、p(2)、p(3)、p(4)、p(5)和p(6)的预测值极度一致。另一实例为由火药反应kno3与木炭的密封反应器的kcl吸收剂观察到的包含峰p(1)-p(6)的强260nm带。详言的,斜率匹配间隔0.249ev的预测旋转能(方程式(45);p=4),其中j′-j″=-1;j″=1,2,3,4,5,6,其中j"为最终状态的旋转量子数。分数氢反应的高能量学可为能量材料(诸如火药)的基础;此外由h跃迁形成分数氢期间形成的能量或快h轰击碳可为使碳的石墨形式转化成金刚石形式的机制的基础[r.l.mills,j.sankar,a.voigt,j.he,b.dhandapani,「synthesisofhdlcfilmsfromsolidcarbon,」j.materialsscience,j.mater.sci.39(2004)3309-3318;r.l.mills,j.sankar,a.voigt,j.he,b.dhandapani,「spectroscopiccharacterizationoftheatomichydrogenenergiesanddensitiesandcarbonspeciesduringhelium-hydrogen-methaneplasmacvdsynthesisofdiamondfilms,」chemistryofmaterials,第15卷,(2003),第1313-1321页]。同一机制适用于金刚石样碳、纳米管和富勒烯的形成。分数氢形成也可产生分数氢原子、氢化物离子或分子包埋于作为稳定性来源的材料中的高度稳定的si表面[r.l.mills,b.dhandapani,j.he,「highlystableamorphoussiliconhydride,」solarenergymaterials&solarcells,第80卷,第1页,(2003),第1-20页]。密封于含有65mw八层ciht叠堆(各电池包含[mo/libr-lioh-mgo/nio])的真空腔室中的koh吸收剂的电子束激发发射光谱显示匹配归属于h2(1/4)转-振动的260nm带分布的轮廓的宽连续谱发射特征,6000计数的最大强度在约260nm处。吸收剂起始物质中未观察到的带的强度为通常观察到的强度的约10倍。对应于包含p(1)-p(6)的260nm电子束带的强峰由拉曼光谱解析。此外,相应纯旋转系列的能量和微小旋转屏障也由拉曼光谱证实。也使用拉曼光谱探索h2(1/4),其中归因于正与仲之间存在大能量差,故预期后者在该群体中占优势。假定仲为偶数,则对于偶整数,纯旋转跃迁的典型选择法则为δj=±2。然而,轨道旋转角动量偶合引起量子数发生变化而激发旋转能级的光子的角动量守恒,其中共振光子能量频率相对于无量子数变化存在时的跃迁变动轨道核超精细能量。旋转选择法则定义为初始状态减去最终状态,即δj=j′-j″=-1,轨道角动量选择法则为δl=±1,且跃迁在旋转和轨道角动量激发偶合期间由角动量守恒产生。使用具微距模式的442nm激光器的horibajobinyvonlabramaramis拉曼光谱仪,koh吸收剂样品在4233、4334、6288、8226和8256cm-1处观察到拉曼峰。其它尖锐谱线为来自激光器的原子或原子中的离子谱线。考虑紧密间隔的峰包含质心分裂峰,能量对峰数的斜率为直线,r2为0.9999,斜率为0.245ev,与h2(1/4)的旋转能极度匹配。观察到正-仲分裂以偶合于h2中的转-振动,h2(1/4)的此能量具有分裂量值[millsgutcp],但h2(1/4)应基本上仅为正,且核自旋在转-振动激发期间因时标错配而不变化。更确切而言,旋转峰的能量分裂和选择法则使旋转跃迁δj=-1的能量分裂和选择法则与视能级而定具有非简并轨道核超粗细能级由4至60cm-1分裂的轨道角跃迁δl=±1极度匹配[millsgutcp]。该系列对应于电子束系列的峰p(2)-p(5),其中基质位移或旋转屏障为约450cm-1或约0.055ev。虽然用325nm激光器在预期含有h2(1/4)的不同样品中也观察到峰间间隔为0.249ev的峰组,但自对照(诸如si晶片或玻璃)中未观察到。举例而言,虽然该系列在于密封feooh+h2+ni筛网解离体固体燃料反应器中的kcl+k吸收剂中观察到,但基质位移视吸收剂而变化。使用785、663、442、325(jobinyvonhoribalabramaramis)以及780和532(thermoscientificdxr)nm激光器在此吸收剂基质的光谱中也观察到该系列的对应于p(1)的位于2594cm-1处的峰。虽然该系列的最低能量成员在一些情况下用高能激光器更难观察到,但用低能激光激发(诸如用低能532nm激光照射)可轻易地辨别,该低能激光激发也激发匹配h2(1/4)的自由空间旋转能(0.2414)达四位有效数字的位于1950cm-1处的极锐峰。此系统也容许使用包含自饱和水溶液中再结晶的kcl吸收剂的样品解析位于4368和4398cm-1处的对应于p(2)的二重峰的分裂。此外,入射于分别产生2.2wh(400%增益)、0.95wh(500%增益)、3.3wh(180,000%增益)和2.7wh(260%增益)的验证电池[ni、ni、mo和h242合金/lioh-libr-mgo/nio]的电解质基质上的最低能量780nm激光在此基质中激发对应于p(1)的位于2639cm-1处的强峰。由荧光所致的位于2957cm-1处的hg谱线和位于2326cm-1处的n2峰充当内部校准标准。向系列p(1)-p(5)的曲线添加(1)得到0.2414ev的斜率,该斜率精确匹配h2(1/4)的旋转能42(0.01509ev)=0.2414ev。此外,使用具dtgs检测器的nicolet730ftir光谱仪在4cm-1分辨率下对来自分别产生0.94wh(4000%增益)、1.25wh(200%增益)、1.22wh(250%增益)和5.35wh(1900%增益)的验证电池[(ni、h242合金和mo/lioh+libr+mgo/nio)]和[ni/lioh-libr-mgo/nio]的起始物质和电解质样品进行ftir。起始物质中无对应于p(1)的峰,但在ftir光谱中在2633cm-1处观察到强锐锋,尤其在具高能量和增益的ciht电池的电解质样品以和固体燃料吸收剂样品(诸如对于feooh反应使用koh作为吸收剂)中。包含lioh-libr-mgo的电解质中位于3618和3571cm-1处的lioh峰值o-h拉伸峰可在lioh以与h2(1/p)的络合物形式存在时变尖锐。lioh:h2(1/p)络合物中的相互作用替代并破坏h键结,h键结否则会加宽o-h拉伸峰。自feooh反应收集的气体的ftir还显示对应于0.247ev旋转能的位于1995cm-1处的峰,可能涉及不同于用拉曼激发的量子态之间的跃迁。另一重要结果在于由包含在1900%增益下产生5.35wh的验证电池[ni/lioh-libr-mgo/nio]的ciht电池的ni阳极观察到该系列拉曼峰。对应于p(4)的位于8358cm-1的峰尤其强且实际上显示xps光谱中可见的可能由ni、lioh和mg基质所致的约0、450和550cm-1的三个基质位移。电解质样品也显示所述强p(4)峰。此外,不能归属于任何已知元素的fwhm为1ev的ni阳极的522ev的小xps峰匹配522ev的h2(1/4)的总能量。基于无所述元素的任何其它相应峰存在,容易地排除作为仅有可能性的pt和v。预期碰撞式康普顿二阶电离(comptondoubleionization),一个电子保存入射的alx射线能量为动能,因为h2(1/4)不吸收或发射辐射,且形成的电离状态为无限激发状态。该结果还证实在ciht电池操作期间在阳极上形成h2(1/4)。另外,由与基于常规反应的最大理论值相比显示能量过剩多倍的固体燃料反应产物(诸如含有约0.5wt%硫酸盐作为h2o催化剂来源的含pd/c的kh的反应产物)观察到522evh2(1/4)峰。xps的分辨率不能解析由与不同量子数相关的轨道核能级所致的分裂,但可使用同步加速辐射源。使用水流分批量热(water-flow,batchcalorimetry)部分中所给出的水流量热法测量的固体燃料反应的过量热已独立地由在测试实验室操作的差示扫描热测量定(dsc)证实。举例而言,建在法国的setaraminstrumentation对充当固体燃料以提供h和h2o催化剂的feooh使用其商业dsc131evo仪器测量形成h2o和铁氧化物的最大理论热三次。所述产品由xrd使用brukerd4衍射计证实。有关鉴别分数氢相互关联的证实性观察结果为显示为纯旋转拉曼跃迁的分裂的h2(1/4)的分子轨道-核偶合能量与关于相应原子分数氢h(1/4)所预测和观察到的旋转核偶合能量一致。类似于21cm(1.42ghz)普通氢谱线的情况,分数氢原子由利用低于35k的低温冷却的h2的terahz吸收光谱术观察到的预测的642ghz旋转核超精细跃迁来鉴别。使用耦接于傅里叶变换干涉仪的长路径长度(60m)多反射吸收池,wishnow[e.h.wishnow,thefar-infraredabsorptionspectrumoflowtemperaturehydrogengas,ph.d.thesis,universityofbritishcolumbia,canada,(1993)]分别在20-320cm-1波数、21-38k温度和1-3个大气压的压力范围下在0.24cm-1光谱分辨率下记录h2光谱。在25.5k下观察到21.4cm-1处的尖锐谱线,但该尖锐谱线在36k下不存在。谱线的波数与预测的21.4cm-1h(1/4)超精细谱线相匹配,且不能归属于已知种类。在由拉曼光谱术搜寻分数氢信号时,另一候选者为以二阶荧光形式观察到的匹配260nm电子束带的h2(1/4)的转-振动。使用具有hecd325nm激光器的horibajobinyvonlabramaramis拉曼光谱仪以显微镜模式在40×放大倍率下,在8340、9438、10,467、11,478、12,457、13,433和14,402cm-1处观察到一系列1000cm-1等能间距的强拉曼峰,最大峰强度在12,457cm-1处。根据所述峰位置计算的二阶荧光光谱包含位于446、469、493、518、546、577和611nm处的峰。间距1000cm-1或0.1234ev能很好地匹配h2(1/4)的二阶旋转光谱。实际上,考虑由基质位移所致的波长范围极限的轻微缩小,将计算的荧光光谱的波长减半且针对基质之间的跃迁进行修正,此使得电子束与拉曼光谱迭加,包括峰强度。认为激发由激光器的高能uv和euvhe和cd发射所致,其中光栅(具1024×26μm2像素ccd的labramaramis2400g/mm460mm焦距系统)为色散的且其最高效率在光谱范围较短波长侧,与260nm谱带范围相同。ccd也在500nm处最具回应性,260nm谱带的二阶区的中心在520nm处。在重复扫描达较高波数时,观察到转-振动系列的额外成员。此外,当使用k2co3-kcl(1:1)作为电池[层压的cni61.5"x1.5"+cni81.5"x1.5"+mo1"x1"cni8+1.5"x1.5"+ag1"x1"+cni81.5"x1.5"+cni61.5"x1.5")/lioh-libr-mgo/nio](50ma充电和放电电流;2.65wh放电能量,200%增益)的吸收剂时,观察到强260nm电子束带,且也观察到因不同基质而具有微小位移的激光激发的二阶荧光带延伸至17,000cm-1,且更高阶超出最大扫描范围直至22,000cm-1。当照射激光时,由样品可观察到发绿光。拉曼光谱中的可能的信号为强连续谱,其最大值在归属于系列p(1)-p(7)的二阶发射的峰下方的12,500cm-1处。使该拉曼连续谱转化为相应荧光发射可发绿光,550nm处的最大值匹配绿光照射的样品发射。绿色连续荧光还使h2(1/4)的自由振动与结晶基质固定的h2(1/4)振动之间的能量差与结晶基质的热子进行的能量交换相匹配,且归属于此来源。由固体燃料反应器中的吸收剂(诸如具有固体燃料feooh+h2+ni筛网氢气解离体的反应器中的kcl+k(原位形成koh)吸收剂)也观察到包含系列p(1)-p(7)的h2(1/4)的二阶荧光光谱和产生位于该系列下面的拉曼连续谱的绿色荧光。在无已知一阶峰的区中观察到与理论预测达四位有效数字的一致的拉曼带强可有力地证实有核间距为h2的1/4的分子分数氢。当前第1页12当前第1页12