技术领域
本发明涉及能量存储和水脱盐。特别是,流体注入井中形成水力压裂。在压力下流体可能会被泵入裂缝中,随后在压力下从裂缝中采水用于发电或流入反渗透装置用于脱盐。
相关领域讨论
多种因素推动可再生能源的快速增长,包括能源安全、价格波动、碳排放条例、税收优惠和人为全球变暖的恐惧。因为液体矿物燃料杰出的能量密度(约45MJ/升),其主要消耗于交通运输行业,生物燃料仅提供有限的能量增益,可再生能源的重要作用是在电力产生中取代化石燃料。美国目前消耗近1TW(1012瓦)的电力,因此只有最终可以实现上百GW总量的可再生能源技术是有意义的电网规模选项。除了水电已经基本上满负荷操作了数十年,此时只有太阳能和风系统可以被考虑。当今如果没有大量的公共资金补贴,上述没有一种具有成本竞争力,尽管资本支出和操作成本有望随时间下降并最终实现与煤和天然气火力发电站同等的价格。其中,风力涡轮机更经济,资本支出(capex)为约1.75美元/瓦、且仅得克萨斯州具有安装基础,生产高峰容量约2.5GW。
这两种重要的可再生能源,风能和太阳能受日常和季节间歇性限制,如图1所示。也都不适合用于提供基本负载的电源。输出波动也会导致电网不稳定;没有动态负载平衡工具(例如智能网格技术),可再生电力资源现在必须限制在低于给定电网输出电力的大约10%。因此,电网水平的可再生电力不仅受限于来源经济学,也受限于电网稳定技术。
因此,需要大规模的电力能源存储技术以及可再生能源。表1列举了候选能源存储技术的特征。目前使用的最常见的电力存储系统是基于某种类型的电池技术;主要的候选者包括铅-酸、锂离子电池、钒流动电池。这些通常对调节可再生能源的来源、以及移峰和改善使用点的可靠性是有用的。截至2008,PG&E购买了装置用于住宅区,其具有1MW额定容量,供应5小时,价格为2百万美元。通过递延投资于增加传输容量(约2/3)和部分通过改进服务质量(约1/3),证明这些都是有道理的。这为考虑替代性存储技术提供了有用的规模和价格点:5000kw-h容量,400美元/kw-h价格。
表1
作为应用实例,具有3MW额定容量且典型利用系数为0.3的风力涡轮机将产生约22000kw-h/天。基于3MW风力涡旋装置为5.25百万美元,如果3个上述基于电池的存储单元用于每个风力涡轮机,资本输出将大于两倍。显然,目前的电池技术对于普通电网规模存储是非常昂贵的,即使具有合理的技术改进和规模经济。
电网规模电能存储的领先技术包括抽水储能和压缩空气能量储存(CAES)。抽水储能使用非峰值电力将水向上泵至水库。这就需要容易获得大量的水和位置优越的地势,这两者在风力密度合适的区域-美国中部大平原,都是短缺的。这些技术方法当然是经过考验的和可靠的,并具有约87%的出色的循环效率。压缩空气存储系统取决于废弃矿山的可用性或深次表洞穴的发展。这是一项成熟的技术,可以安放在约85%的美国大陆并提供合理的约80%的效率。因为压缩和膨胀空气会产生较大的温度变化,处理附加能量通道的CAES设备是相对复杂和昂贵的。图2中的图表探明了电力-能量空间的各种存储技术,并清楚显示抽水储能和CAES在结合高总能量和高电容量方面是独特的。
存储技术的另一项关键应用在于峰转移,或者在极端需求的短期内输送额外电量。这一区域在图2中被称之为“分布式资源”。夏日午后需求峰值(与空调有关)是最好的例子。不幸的是,这对于风力涡轮机同时是低生产率时间。图3中的图表显示了用于服务该应用的各种候选技术的评估资本成本。
正如上文所指出的,这种应用目前正被几个早期采用者如PG&E处理,主要是根据递延投资传输线路和改善服务素质。当然,基于“绿色标志”分布式能源,也有营销的优势。
直至抽水蓄能和/或CAES大规模部署的时候,我们注意到从风力涡轮机储存多余的夜间电力并在夏季午后需求高峰重新出售的有趣的套利机会。据传闻,风力发电场据说实际上付款给电网运营商以接收夜间电力。风电专家,像绿山能源(Green Mountain Energy),白天风能零售价为0.19美元/kw-h。因此,运用12小时储存系统,有机会获得毛收入大约0.20美元/kw-h。如果储存技术足够便宜,这可能是利润非常可观的企业。现有技术的经济学在紧缩资本市场和需求较高的内部回报率的环境中使其至多是边际主张。
在很多领域,还缺乏新鲜的或可饮用的水。水脱盐的一项主要的方法是反渗透。这一过程需要压力来克服盐水的渗透压力使水透过半透膜。因此,存在更多的机会结合存储技术和脱盐技术。
技术实现要素:
本发明使用井在地下高压水力压裂裂缝中存储流体。该流体从井中采回,用于传统设备发电。通过注入树脂,例如环氧树脂至裂缝中,裂缝壁可制成较不透气的,传播压力可能会增加。存储能力、资本需求和预期的回报率,使分布式资源和负载管理以及过夜风力套利运作有利可图,这些都会有相关的说明。如果储存的流体是盐水,例如产自地下层的水,且有淡水需求,从储存容量采回的一部分盐水可直接置于反渗透装置脱盐。
附图说明
图1显示了德克萨斯州Wildorado的每日风型。
图2显示了能量存储技术成本和效率。
图3显示了分布式应用程序和可再生资源匹配。
图4说明了地下水力压裂裂缝及其形成设备。
图5A是裂缝的横截面图,显示了树脂泄漏至裂缝周围岩石。
图5B显示了裂缝终端的树脂。
图5C显示了裂缝中的压裂支撑剂。
图6说明了地表井和设备周围的地下水力压裂,用于控制从裂缝回流并产生电力或脱盐水。
具体实施方式
水力压裂惯常用于提高钻入低渗透油藏储集层的油气井的生产率。这类裂缝增加了储集层岩石中的井的有效生产表面区域。确实,非传统储集层如巴奈特页岩(Barnett Shale)和巴肯组泥页岩(Bakken formation)的有利可图的勘探,只能通过大量的水力压裂实现。简单地说,在井管固定位置后,在目标底层形成穿孔,然后在高压下将流体泵入井中,诱导岩石中裂缝形成于井周围,如图4所示。井41已钻入地下地层。运砂车42可将压裂支撑剂运至井点。压裂流体可在罐45中混合和储存,并从该处送至混砂车43与沙子或其他压裂支撑剂混合。高压力泵44是用于在足以在井周围形成裂缝46的压力下,迫使流体进入井41。压裂支撑剂颗粒47可能会在裂缝形成后被泵入裂缝中。形成裂缝46的必要压力线性取决于深度;典型的“裂缝梯度”是每英尺深度约0.8PSI。因此,3000英尺的井在岩壁需要约2400psi的压力以产生水力压裂。在浅井(最多到1,000-2,000英尺深),水力压裂裂缝通常水平传播。在更大的深度,岩石中的自然应力往往导致垂直导向的裂缝。对于我们的储存能量的目的,裂缝方向是不重要的。在任何情况下,能量储存是通过裂缝周围岩石的变形,主要是弹性变形。裂缝可主要位于一个平面内,通过围岩层从井延伸,如图4所示,或者主要位于自然裂隙岩石内,如巴奈特或巴肯组泥页岩层,裂缝具有许多不同流体路径可大量延伸。
裂缝在井中可从井眼径向延伸,例如,大约100米至1000米。如果裂缝主要是在同一平面,井眼裂缝厚度可在约0.5-2厘米。裂纹扩散在断裂操作中使用威震方法可实时监控,而地表面形变度和类型使用倾斜仪可同时测量。断裂的岩层的流体透过性和弹性有效决定了可能用给定泵系统的断裂程度。随着断裂长度增加,岩石表面面积随着进入岩石而非完全填充裂缝的流体比例增加。因此,高渗透性的岩石很难断裂,而低渗透性的岩石能破裂至更远的距离。流体损失添加剂(颗粒)可添加到压裂流体以降低流体从裂缝进入岩石的比例。流体损失可通过在压裂液中泵入聚合物树脂进一步降低。优选的,可使用脂肪族环氧树脂,如“Water-Dispersible Resin System for Wellbore Stabilization,”L.Eoff et al,SPE64980,2001中所述。呋喃树脂、酚醛树脂和其他环氧树脂也可以使用。树脂系统可以作为净树脂、树脂/沙子混合物,或分散于水基或油基压裂液中被泵入。该树脂可与稀释剂或溶剂混合,可能具有反应性。可首先在断裂树脂之初使用一块净树脂,然后使用树脂在压裂液中的分散体,再然后使用压裂液。压裂支撑剂和/或流体损失剂可被添加到其中一种流体。优选选择不同流体的量以允许环氧树脂或其他树脂填充裂缝至端部并渗入裂缝端部的岩石。树脂或含树脂流体的注入可重复操作以获得裂缝的较低的流体损失。
图5A、5B和5C通过显示裂缝横截面说明了置入树脂至裂缝以制备用于储存能量的裂缝的方法,如此处所教导的。在图5A中,树脂、树脂分散体或具有树脂50的液体混合物存在于井眼和已在岩石中形成的裂缝51中。树脂50可包含流体损失添加剂。在裂缝周围,树脂泄漏进入岩石52。在图5B中,显示顶替液54将树脂移动至裂缝端部,其可以为含增粘剂的水,油性或含溶剂,用于树脂。顶替液54优选粘性高于树脂50。泄漏进岩石52的树脂量增加了。在图5C中,仅仅有限量的树脂50留在裂缝中,且存在于裂缝尖端或末端。裂缝51可含有压裂支撑剂55。
固化后,裂缝尖端里面或周围的树脂将增加裂缝的传播压力并允许在流体存储过程中形成更宽的裂缝。在压力下存储于裂缝中的流体的泄漏率可降低至较小的或最小值。随着实现裂缝的低流体损失,也可单独使用气体或与流体一起作为工作液用于存储过程。
为能量存储目的,我们对大裂缝小流体损失有兴趣。理想的流体损失为零,因此合适的岩层可能完全不透气的。我们注意到,在压裂过程中用于减少或消除流体损失的添加剂在本申请中也可用于减少或消除轻微渗透岩层中的流体损失。可用于减少流体入侵的材料包括聚合物、精细硅砂、粘土、可能是新的纳米结构材料如石墨烯悬浮物,以及选定材料的混合物。注入到裂缝中的任何流体可包含或不包含压裂支撑剂。
在这些情况下,我们注意到,用于产生裂缝的能量可分为三大类:流体摩擦(损失,取决于泵入率和井中管道的大小)、岩石破裂(小;损失)、和裂缝周围岩石的弹性挠曲。重要的是,我们注意到,用于使岩石弹性形变的能量实际上存储为势能。随着岩石松弛至原始位置,这种能量可以从裂缝或钻孔排出的流体流回收。因此,在大裂缝形成后,充满空间的流体可用于水压抬升表土(并使其弯曲)并储存机械能。通过允许受压流体从涡轮机中离开,可有效回收能量。在高于压裂梯度的压力下注入流体的过程可重复既定次数,与采回流体生成电力的过程交替进行。因此,裂缝作为灵活的存储容器。总的来说,这一计划在概念上类似于抽水储能系统。与单独向上抽水不同,我们向下泵入水,并用其水压抬升大密度地表块使其弯曲或使地表弹性变形。关键组件(泵、涡轮机)和损失渠道(流体摩擦)是相似或共同的,因此,我们希望这种新的办法将会具有与抽水储能相同的总体效率,以往返为基础计算约87%。
这种新的办法的关键优势在于可使用平坦的地形,而且消除了大规模的土方工程和环境影响。
下面我们显示了裂缝装置的一对实例,以阐明假设通过这种方法在水力压裂裂缝周围发生岩石变形或抬升时可用的能量存储规模,可表示如下:
实例1 1千米的深井,100m半径范围平均抬升1厘米(典型的油田断裂)。
实例2 1千米的深井,500m半径范围平均抬升10厘米。
虽然解释了水力压裂属性,申请人不想受关于水力压裂性质的某一特定的科学理论限制。
用于比较,3兆瓦的风力涡轮机以典型的30%利用率操作,每天产生2.16E4kw-h。在实例2中描述的装置因此可以存储风力发电场167台涡轮机的名义日输出全部电量。如果以目前价格(400美元/kw-h)购买基于电池的存储系统用于存储该数量的能量,需要约2亿3900万美元的资本投资。我们预期,投资水力压裂能量存储的资本约为上述投资的1/3-1/10。能量存储规模明显地在负载管理框架中(图2),目前仅通过抽水储能和CAES技术可实现。如果在该实例中的系统,以每天30%容量循环,以0.10美元/kw-h计算,套利值将达到约18000美元每天。
注入至裂缝中的流体可以是液体或气体。合适的流体是产自饮用水地层以下的地层的盐水。该盐水可与烃类生产同时进行。如果盐水或含有溶解盐的水注入图4或5的裂缝中,采回的流体组分与注入流体大致相同。采出流体的压力在高压水平直至裂缝关闭。过量的压力将用于产生电力,如上所述,或者过量压力用于使部分或全部采出水脱盐,如图6所示。
参考图6,井60已经钻孔,并且水力压裂或裂缝62已经在井中形成。已经限制从裂缝泄漏,如上文所讨论的。管件已经置于井中,且阀63已经安装以控制进出井的流体。然后在回流阶段,将井连接至阀64用于控制流体至发电设施,如上面所讨论的。通过阀65可将井连接至脱盐或其他水处理设施。优选的水处理设施是反渗透装置,如装置66。使用从井60回流的流体的高压,半渗透膜67可以去除水中的溶解盐并生产淡水,如图所示。阀64和65均可在存储水高压回流阶段打开,从而既产生电力又生产淡化水。或者,可关闭阀64和65之一,所有采出流体用于一种目的,例如脱盐。或者,在回流阶段任何一个阀也可能在打开或关闭状态变化。更改阀门打开状态以响应采出流体在回流阶段的压力变化可改善发电和脱盐的综合过程的结果。
反渗透通常需要半透膜两侧200-1200psi的压力差,这取决于处理中的水的盐度。这是需要克服渗透压并使水流过半渗透膜的通常的驱动力范围。典型的海水流率是15-35加仑/英尺2/天(GFD),这取决于工艺条件。
可用各种水含量---从极低盐度(在正常操作中少量TDS从地层中出来),至中等盐度(使用含盐地下水或伴随烃产生的作为注射液的水)、高盐度(高盐度工艺水)。反渗透可用于同时控制正常操作过程中的存储设施的水质量,即去除可能影响储存器性能的溶解固体,例如造成井中和/或裂缝内部结垢,以及控制将非饮用水源水转换成饮用质量的方法(例如“抽水脱盐”)。可使用在反渗透过程中已知的设备,例如压力交换器能量回收设备(可从Energy Recovery,Inc.获得)。这为整合能量存储和水处理/脱盐提供了方法。如果在回流过程中没有电力产生,该过程通过使水脱盐可视为基本将储存能量直接转化为有效功。
注入到裂缝中的水已被描述,且具有溶解盐,但是淡水(不具有溶解盐)也可用作工作流体。从裂缝回流的淡水压力可转化成待脱盐的水使得盐水可使用反渗透压脱盐。压力交换器如上文所述可用于这一目的。
虽然本发明描述了相关具体细节,它的目的并不在于被视为限制本发明,除非它们都包含在随附的权利要求中。