本发明涉及空气压缩机技术领域,尤其是指一种空气压缩机的汽缸出气构造。
背景技术:
现阶段所使用的空气压缩机,其构造基本上具有一汽缸,该汽缸内可提供活塞体进行往复运动而产生压缩空气,所产生的压缩空气可由汽缸的出气孔推移一阀门机构,让压缩空气进入另一用于储存压缩空气的空间,该空间可为一储气座(或是集气箱tank)内的空间,储气座另设有出气口,可将压缩空气输往待充气的物品上,以完成整个充气的目的。由于习知汽缸及储气座二者间的中间壁上仅设有单一出气孔,该出气孔的开启或关闭受制于一阀门机构,而阀门机构是由一阀座及一弹簧所构成,活塞体所产生的压缩空气将阀座推移并压缩弹簧,压缩空气可进入储气座的储气室内,由于集存在储气室内的压缩空气会对阀座产生背向压,在打气阶段该背向压会压制阀座的开启,相对的即是让活塞体运作时所产生的压缩空气要推移该阀座时更具有阻力而不顺畅,此种让活塞体运作时更具有阻力的因素,充气速度变慢,非常容易造成空气压缩机之马达过热,马达运转效率衰减,以致于潜伏马达烧毁的缺失。本发明人即是鉴于习知空气压缩机的汽缸结构设计仍存有缺失,乃予以研发,经多次努力乃发展出本发明。
技术实现要素:
本发明的目的在于提供一种使活塞体的运作更为顺畅而提升打气效率的空气压缩机的汽缸出气构造。
基于此,本发明主要采用下列技术手段,来实现上述目的。
一种空气压缩机的汽缸出气构造,空气压缩机基本上具有一提供马达固定的机板及一提供活塞体运作的汽缸,当马达转动后,该活塞体在汽缸内进行往复运动而能产生压缩空气,该压缩空气通过顶壁的多个出气孔进入储气座的储气室内,汽缸顶壁上设有多个阻风壁,该汽缸及多个出气孔、多个阻风壁与前述机板为一体成型制造,所述阻风壁将多个出气孔相阻隔,所述出气孔均设置一控制出气孔的启闭状态的阀门机构,所述阀门机构受到压缩空气推移振动进行启闭动作,所述阻风壁将所喷射出的瞬间高压空气相阻隔,使阀门机构在启闭动作阶段彼此之间不会互相干扰,致使活塞体的运作更为顺畅而提升打气效率。
进一步,多个阻风壁为圆环状的阻风壁,框围着汽缸顶壁上的出气孔外围并向上延伸,前述多个出气孔均设置一相同结构的阀门机构,每一阀门机构均包含一阀座及一弹簧,所述阀座分别容置在阻风壁内并封闭住前述出气孔,阀座的面积均相应于出气孔的孔径,于汽缸顶端上设有一环垣,该环垣外周边延伸出一环状的外环凸垣,该外环凸垣与汽缸顶端存有一卡沟槽,前述弹簧分别置于阀座上;前述储气座设有二相对向的嵌夹体,于储气座的内平面往下延伸出多个相隔离的竖柱,借由储气座的嵌夹体置进并卡扣于汽缸的卡沟槽中,前述储气座的相隔离的三只竖柱套入前述弹簧的另一端,三只竖柱的末端以些微距离位于前述阀座的上方,限制阀座在启闭动作的弹升高度以达到控制压缩空气的进气量;前述阀座因弹簧的弹张力而完全闭塞出气孔。
进一步,前述多个出气孔均设置一相同结构的阀门机构,每一阀门机构均包含一阀座及一弹簧,所述阀座分别容置在阻风壁内并封闭住前述出气孔,阀座的面积均相应于出气孔的孔径,所述阻风壁的高度高于阀座被空气推移的最高行程的高度,使阀座受到压缩空气推移而进行启闭动作,所述阻风壁将所喷射出的瞬间高压空气相阻隔,使阀座在启闭动作阶段彼此之间不会互相干扰。
进一步,前述汽缸的顶壁的多个出气孔为相同孔径的气孔。
进一步,前述汽缸的顶壁的多个出气孔为不同孔径的气孔。
本发明空气压缩机的汽缸出气构造采用上述技术手段后,空气压缩机于汽缸顶壁上设有多个阻风壁,所述阻风壁将多个出气孔相阻隔,从而使一控制出气孔的启闭状态的阀门机构受到压缩空气推移振动进行启闭动作,所述阻风壁将所喷射出的瞬间高压空气相阻隔,使阀门机构在启闭动作阶段彼此之间不会互相干扰,致使活塞体的运作更为顺畅而提升打气效率。
除此之外,空气压缩机中提供活塞体进行往复运动的汽缸设有多个出气孔,使空气压缩机从开始到结束打气的进行期间,让汽缸内的活塞体在进行往复压缩运动时,在单位时间进入汽缸的储气室的压缩空气量大增,使被压缩空气能快速地通过出气孔进入储气室内,致使活塞体的运作更为顺畅而提升打气效率,而能轻松快速地达成充气速度。
附图说明
图1为本发明的立体图。
图2为本发明汽缸、阀门机构、储气座的立体分解图。
图3为本发明具有多个出气孔的汽缸的平面示意图。
图4为图3的出气孔上置设有阀座的平面示意图。
图5为本发明储气座结合在汽缸的平面示意图。
图6为图5的a-a剖面图。
图7为本发明的局部剖面立体图。
图8为图1由齿轮方向观视的平面示意图。
【符号说明】
11机板
12马达
13齿轮
14活塞体
2汽缸
21顶壁
22环垣
221外环凸垣
222卡沟槽
3储气座
30压力表
31歧管
32泄气阀
33、34歧管
35嵌夹体
36储气室
37、38、39竖柱
4、5、6出气孔
41、51、61阻风壁
7、8、9阀座
71、81、91弹簧。
具体实施方式
为能详细了解本发明的具体结构,请参考图1及图2,本发明中的空气压缩机基本上具有一机板11,该机板11上同时固定一马达12,该马达12可带动齿轮13旋转,由齿轮13同时连动一设在汽缸2内的活塞体14,该活塞体14可在汽缸2内进行往复运动而能产生压缩空气,该压缩空气可进入储气座3内,当然,该储气座3是用于集存所产生的压缩空气,而储气座3上设有一个或多个出气歧管,譬如用于连接压力表30的歧管31,用于连接泄气阀32的歧管33,另一歧管34则可衔接软管(图中未示出)至待充气物上。
请同时参考图2至图7,本发明在汽缸2的出气孔设计完全不同于习知的设计方式,压缩空气输出的汽缸2的界面,在本发明实施例中可为汽缸2的顶壁21,于顶壁21上设有多个出气孔及多个阻风壁,该汽缸2、多个出气孔及多个阻风壁与前述机板11可被一体成型制造完成,于本发明的多个出气孔即为出气孔4、5、6,多个阻风壁为圆环状的阻风壁41、51、61,框围着汽缸2的顶壁21上的出气孔4、5、6外围并向上延伸。前述出气孔4、5、6是为开启或关闭状态,其完全受控于各出气孔所属的阀门机构,每一阀门机构均是由一阀座及一弹簧所构成;所述阀座7、8、9可分别容置在阻风壁41、51、61内并封闭住前述出气孔4、5、6(可参考图4);弹簧71、81、91的一端可分别置于阀座7、8、9上(可参考图6及图7);于汽缸2顶端上设有一环垣22,该环垣22外周边延伸出一环状的外环凸垣221,该外环凸垣221与汽缸2顶端存有一卡沟槽222;前述储气座3设有二相对向的嵌夹体35,于储气座3的内平面往下延伸出多个相隔离的竖柱37、38、39,借由储气座3的嵌夹体35置进并卡扣于汽缸2的卡沟槽222中,如图8所示,前述储气座3的相隔离的三只竖柱37、38、39可分别套入前述弹簧71、81、91的另一端,让三只竖柱37、38、39的末端以些微距离位于前述阀座7、8、9的上方,限制阀座7、8、9在启闭动作的弹升高度以达到控制压缩空气的进气量;另一方面,前述阀座7、8、9因弹簧71、81、91的弹张力而完全闭塞出气孔4、5、6后,储气座3可和汽缸2相结合成一完整体,此种初始结合动作即如图1所示。
请参考图6至图8,活塞体14在汽缸2内持续进行往复运动所产生的压缩空气,可分别推移出气孔4、5、6上的阀座7、8、9来进行压缩弹簧71、81、91,使压缩空气可经由出气孔4、5、6进入储气座3的储气室36内。汽缸2的活塞体14从开始运动到结束运动的期间,在初期打气阶段所产生的压缩空气量,压缩空气可同时由出气孔4、5、6快速进入储气室36内,使单位时间进入汽缸2的储气室36的压缩空气量大增;当到中后期打气阶段时,由于已有大量的压缩空气进入储气室36内,在储气室36内的压缩空气会对阀座7、8、9产生反作用力,在本文中以背向压表示,这种背向压现象会抑制阀座7、8、9的开启,也意味着活塞体14推送压缩空气更具有阻力,然本发明因汽缸2顶壁21具备多个出气孔及与其相称的阀座7、8、9作为配合,储气室36内所存在的背向压虽会令阀座7、8、9呈受压状态,但当储气室36内所存在的背向压减少时,汽缸2内所持续产生的压缩空气会快速由出气孔4、5、6进入储气室36内,另一方面,因阀座7、8、9可分别容置在阻风壁41、51、61内,所述阻风壁41、51、61的高度高于阀座7、8、9被空气推移的最高行程的高度,使阀座7、8、9受到压缩空气推移而进行启闭动作,所述阻风壁41、51、61将所喷射出的瞬间高压空气相阻隔,使阀门机构所设的阀座7、8、9在启闭动作阶段彼此之间不会互相干扰,整体而言,其可让活塞体14的运作顺畅而具备打气效率,而能更轻松快速地达成充气速度。
本发明的多个出气孔4、5、6,出气孔4的孔径x、出气孔5的孔径y、出气孔6的孔径z,在实施上,孔径x、y、z,彼此可为相同孔径的气孔(可参考图3,该图示并非作为限制本发明出气孔),所述出气孔4、5、6的孔径x、y、z亦可展现不同孔径的实施方式,前述阀座7、8、9的面积均相应于出气孔4、5、6的孔径。
综观前论,本发明突破习知空气压缩机的汽缸及储气座二者间的中间壁上仅设有单一出气孔的设计方式,本发明借由在汽缸2的顶壁21设有多个出气孔4、5、6及多个阻风壁41、51、61及与其相称的阀座7、8、9作为配合,在单位时间进入汽缸2的储气室36的压缩空气量大增,使被压缩空气能快速地通过出气孔4、5、6进入储气室36内,且因阀座7、8、9可分别容置在阻风壁41、51、61内,使阀座7、8、9受到压缩空气推移而进行启闭动作,所述阻风壁41、51、61将所喷射出的瞬间高压空气相阻隔,使阀门机构所设的阀座7、8、9在启闭动作阶段彼此之间不会互相干扰,致使活塞体14的运作更为顺畅而提升打气效率,本发明显然具有进步性及实用性。