具有固定档位功能的无级变速器中的模式转变控制的制作方法

文档序号:11633878阅读:348来源:国知局
具有固定档位功能的无级变速器中的模式转变控制的制造方法与工艺

本发明涉及无级变速器中模式转变的控制,无级变速器具有固定档位/强制接合(positiveengagement)功能。



背景技术:

无级变速器(cvt)是功率变速器,其在经校准范围提供无限的速度比变化。即,常规齿轮式变速器通常使用行星齿轮组和多个旋转和/或制动离合器以建立期望速度比,而cvt使用具有一对可变直径带轮的变化器组件作为代替,以在速度比的经校准范围中的任何位置进行转变。带轮经由环状可旋转驱动机构互连,例如链或驱动带。驱动机构位于通过带轮的圆锥形槽轮面限定的可变直径间隙中。一个带轮通常连接到发动机曲轴且由此作为驱动/主带轮在变化器组件中起作用。另一带轮连接到cvt的输出轴,以由此用作从动/次带轮。一个或多个行星齿轮组可按照需要用在变化器组件的输入和/或输出侧,以提供期望功率流动。

为了在cvt中改变速度比,夹持压力通常经由一个或多个带轮促动器施加到主和/或次带轮。夹持压力有效地将被促动带轮(一个或多个)的相对槽轮挤压在一起,以改变槽轮面之间的间隙宽度。间隙尺寸(其也称为节圆半径)的变化使得cvt的驱动机构在间隙中变得更高或更低,这取决于间隙尺寸变化的方向。间隙尺寸的变化改变变化器带轮的有效直径,结果,最终确定cvt速度比。

某些新出现的cvt设计除了常规摩擦驱动模式外还能实现固定档位运行模式。固定档位模式经由配合结构的强制接合而实现,所述配合结构例如驱动机构的齿或其他合适接合特征、变化器带轮轴、和/或带轮槽轮的圆锥形面。这种固定档位/接合类型cvt设计相对于常规cvt设计增加变化器组件的效率,其仅依赖于驱动机构和带轮槽轮之间的摩擦而经过变化器组件传输驱动扭矩。



技术实现要素:

从本文可理解,在改变固定档位/强制接合类型的无级变速器(cvt)的速度比时,除非如下文所述那样进行密切控制,否则摩擦驱动模式和强制接合/固定档位驱动模式之间的转变会不利地影响总体行走舒适性和cvt部件耐久性。本发明的控制方法和底层系统可用于任何强制接合cvt设计,其具有环状可旋转驱动元件,在本文使用的环状可旋转驱动元件意味着任何环状驱动元件,例如橡胶和/或金属驱动带、链、或其他闭环/环状可旋转元件。示例性的cvt实施例可以包括具有固定在带轮槽轮和/或带轮轴上的刚性齿槽或齿的cvt,用于与带的齿、可动槽轮/轴齿等配合接合。为了说明的一致性,带键/带齿的带轮和带设计在下文描述,而不限于用于这种设计的所公开方法。

本文所述的车辆使用这种控制方法。在可行实施例中,车辆包括动力装置、cvt、传感器和控制器。动力装置可以是发动机、电马达、或其他合适的扭矩产生装置,其可操作为产生至cvt的输入扭矩。cvt(其配置为实现固定档位/强制接合驱动模式和可变速度比/摩擦驱动模式)包括从动力装置接收输入扭矩的输入构件、输出构件和变化器组件。变化器组件包括经由环状可旋转驱动元件彼此连接且连接到输入和输出构件中相应一个的主/驱动带轮和次/从动带轮。变化器组件还包括第一和第二带轮促动器,其可操作为让变化器带轮中相应的一个的槽轮运动,由此改变cvt的速度比。

与各种传感器通信的控制器被编程为,以足够短的经校准控制回路计算带轮的相对打滑速度,使得使用通过传感器确定的一个或多个带轮或带轮促动器的经测量的输入速度、输出速度和线性位移进行的计算有效地连续。控制器还被编程为以校准速率降低经计算的相对打滑,直到计算的相对打滑低于经校准速度极限或在经校准速度范围内,例如在不同示例性实施例中在0.5到2.5%的总相对打滑内或约5-10rpm,经由对第一和第二带轮促动器中的至少一个的促动器控制信号(例如主和/或次压力命令)来实现这一点。控制器经由强制接合控制信号向cvt的传送而启动从摩擦驱动模式到固定档位/强制接合驱动模式的转变,且在计算的相对打滑到达零时确认实现了该转变。后一控制动作的目的是将环状可旋转驱动元件和带轮一起锁定到固定模式,且可以取决于cvt的设计而实施一些步骤,诸如让夹持压力阶跃上升和促动机电装置。

还在本文公开了cvt组件,其在示例性构造中包括以输入速度旋转的输入构件、以输出速度旋转的输出构件、变化器组件、传感器、和控制器。变化器组件包括一对变化器带轮和环状可旋转驱动元件,其在带轮之间连接并传输扭矩。带轮包括连接到输入构件的驱动带轮和连接到输出构件的从动构件。带轮每一个包括相应一对槽轮。变化器组件进一步包括第一和第二带轮促动器,其可操作为让驱动带轮和从动带轮中相应的一个的槽轮运动,以由此改变cvt的速度比。

该具体实施例中的控制器使用经测量的输入速度、输出速度和带轮或带轮促动器的一个或多个线性位移而连续计算cvt摩擦驱动模式期间驱动和从动带轮的相对打滑。控制器还减少摩擦驱动模式期间的计算相对打滑,直到计算的相对打滑低于经校准打滑极限或在经校准速度范围内,经由促动器控制信号向带轮促动器中之一或两者的传送而实现这一点。如本领域已知的,次夹持压力确定总打滑,但是为了维持恒定速度比和降低打滑,调整主压力和次压力二者。另外,控制器经由强制接合控制信号到cvt的传送而命令cvt的固定档位/强制接合模式,直到计算的相对打滑到达零,零打滑对应于固定档位模式。

还公开了一种控制车辆中模式转变的方法,车辆具有cvt,cvt具有双摩擦驱动模式和固定档位/强制接合功能。在一具体实施例中,方法包括测量cvt的变化器组件的输入速度和输出速度以及变化器组件的驱动带轮和从动带轮每一个的线性位移。方法进一步包括在摩擦驱动模式期间经由控制器使用测量的输入速度、输出速度和线性位移计算带轮的相对打滑。

另外,方法包括,在计算的相对打滑在经校准速度范围内时,将促动器控制信号从控制器传送到一对带轮促动器中的至少一个,其每一个经由环状可旋转驱动元件连接到另一个,且可操作为让相应驱动带轮和从动带轮的槽轮平移或运动,以由此以校准速率降低计算的相对打滑。一旦计算的相对打滑低于经校准打滑极限或在经校准速度范围内,则强制接合控制信号随后从控制器传送到cvt,以由此将cvt从摩擦驱动模式转变为固定档位/强制接合模式。

在下文结合附图进行的对实施本发明的较佳模式做出的详尽描述中能容易地理解上述的本发明的特征和优点以及其他的特征和优点。

附图说明

图1是示例性车辆的示意图,车辆具有内燃发动机和如本文所述控制的固定档位/强制接合无级变速器(cvt)。

图2是示例性固定档位/强制接合cvt的示意图,其可用作如图1所示车辆的一部分且可经由图3的方法控制。

图3是流程图,显示了用于控制cvt中摩擦驱动模式和固定档位/强制接合模式之间的转变的方法。

具体实施方式

参见附图,其中几幅图中相同的附图标记表示相同或类似的部件,示例性车辆10在图1中被示意性示出。车辆10包括动力装置12,被显示为是示例性的内燃发动机(e),但是其可以被替换地实施为电机或其他合适的扭矩产生装置。出于示例性目的,动力装置12在下文被描述为发动机12,但并不限于这种设计。

图1的车辆10还包括固定档位/强制接合无级变速器(cvt)14和相关的控制器(c)50。如参考图2和3在下文进一步详细描述的,控制器50配置(即经由用于实施方法100的计算机可读和可执行指令在软件中编程并配备足够的硬件)为控制cvt14的两个可能的扭矩传递模式之间的模式转变,即摩擦驱动模式和固定档位/强制接合驱动模式。控制器50被编程为将经过cvt14的相对打滑降低到零,如下所述,这是经由促动器控制信号的传送(箭头pa)而发生的,其在一个实施例中可以是去往第一带轮促动器28的主压力命令(箭头pp)和去往第二带轮促动器30的次压力命令(箭头ps)中的至少一个。

在车辆10上经由控制器50自动执行方法100的优点包括实现驱动模式之间的更平稳转变,改进驾驶性能,减小噪声、振动、不顺性,且延长部件寿命。如本领域已知的,在具有固定档位/强制接合功能的cvt14中,摩擦驱动模式提供最低和最高可能速度比之间的无限速度比变化。这种无限变化会继续,直到实现强制接合,此时固定传动比被维持,直到控制条件使得变回到摩擦驱动模式。具有强制接合功能的cvt的增强可增加变化器效率,这是因为对液压和/或机电夹持力(为了维持摩擦驱动模式而普遍需要)的依赖减小。本发明的方法100和控制器50一起运行,以控制不同cvt驱动模式之间转变期间的打滑和接合,具体参考图3在本文描述。

图1的发动机12包括曲轴13,其可操作为以发动机速度(箭头ne)旋转。曲轴13直接或间接地连接到cvt14的输入构件130,例如经由变矩器或输入/断开离合器(未示出),这取决于设计。cvt14还包括输出构件15。输出构件15最终例如经由最终驱动部或差动器17将变速器输出扭矩(箭头to)输送到车辆10的驱动车轮组16。

如图1所示的cvt14包括变化器组件14v,其具有驱动/主带轮18和从动/次带轮20。主带轮18连接到cvt14的输入构件130且被其驱动。次带轮20连接到cvt14的输出构件150且对其进行驱动。cvt14还包括环状可旋转驱动元件或带22。如在本文使用的,术语“带”通常是指任何闭合/环状的可驱动元件或橡胶和/或金属材料的闭合环,其适用于在变化器组件14v中从主带轮18传递扭矩到次带轮20,包括链或常规的橡胶和金属cvt驱动带。换句话说,术语“带”包括可用于在例如图1的cvt14这样的cvt中的带轮之间传递扭矩的所有类型的环状可旋转驱动元件。在可行实施例中,带22可以包括多个互相间隔开的带齿22t(见图2),其用于实现cvt14的固定档位模式中的强制接合,如在下文参考图2进一步详细描述的。

相应的主带轮18和次带轮20每一个分别具有一对配合带轮槽轮19和21,其每一个具有相应的圆锥形槽轮面23或25,其限定可变宽度间隙26。cvt14的带22定位在间隙26中且接触槽轮面23和25。在示例性的图1实施例中,发动机速度(箭头ne)用作去往主带轮18的输入速度(箭头ωp)。在其他实施例中,并非发动机速度(箭头ne)的另一值可以用作输入速度(箭头ωp),例如在发动机12下游使用变矩器时的涡轮机速度、转子速度等。次带轮20总是以次速度(箭头ωs)旋转。

如本领域已知的,间隙26的宽度可以经由相应主带轮18和次带轮20每一个的带轮槽轮19和/或21中可动的一个的运动而变化,以改变的cvt14的速度比。对此,图1的车辆10包括对相应主压力和次压力命令(分别是箭头pp、ps)做出响应的相应第一和第二带轮促动器28和30,以将相应的主带轮18和次带轮20进行挤压,即让带轮槽轮19朝向彼此运动和/或将带轮槽轮21朝向彼此运动,这取决于变化器组件14v的驱动侧还是从动侧上的间隙26的宽度被改变。第一和第二促动器28和30的示例性实施例包括液压活塞/汽缸系统,但是可以在本发明范围中替换地使用机电、气动或其他线性促动器。

响应于主压力(箭头pp)的施加,如图1所示的第一促动器28作用在配合带轮槽轮19中可动的那个上(即在主带轮18的可动槽轮191上)。同样,响应于次压力(箭头ps),第二促动器30作用在次带轮20的可动带轮槽轮121。换句话说,对于带轮槽轮19和21每一个,带轮槽轮19和21中之一是可动槽轮,在该例子中是带轮槽轮191和121。夹持压力(箭头pc)(即箭头pp和/或ps,取决于带轮槽轮121和191中哪一个被运动)可以经由流体泵32提供到cvt14,所述流体泵进给主压力和次压力(箭头pp和ps),如所示的,流体泵32从槽34抽取合适流体33(例如油),并经由软管、装配件和其他合适流体管道(未示出)让流体33循环流动到cvt14。

图1的每一个带轮槽轮19和21的特征在于大致截头圆锥形形状,即其末端或窄端部被移除的圆锥形。每一个带轮槽轮19和21进一步包括在其槽轮面23、25上的相应的多个槽轮齿19t和21t,最佳如图2所示且在下文详细描述的。在该实施例中,带齿22t与槽轮齿19t和/或21t完全配合时确保相应主或次带轮18或20的旋转能造成带22的旋转,反之亦然。

在如图1所示的cvt14的操作期间,发动机12将输入扭矩传递到主带轮18。这使得主带轮18旋转。随主带轮18旋转,槽轮面23接触带22。在槽轮面23和带22之间的界面处的摩擦使得带22旋转。因为带22可旋转地联接到次带轮20,带22的旋转又使得次带轮20旋转。在带22旋转时,促动器28和/或30可以分别施加压力到第一和第二带轮18和19的带轮槽轮191和/或121,以便改变cvt14的速度比。这种控制决策可以通过控制器50做出,作为总体cvt换挡控制策略的一部分。

用于控制cvt14的总体打滑和促动过程的控制器50可以配置为具有存储器(m)的一个或多个计算机装置。控制器50与多个传感器29通信,且被编程为使用被测量输入速度(ωp)、输出/次速度(ωs)和线性位移(dp、ds)来分别计算驱动带轮和从动带轮18和20的相对打滑速度,以将相对打滑降低到零。在摩擦驱动模式中,在相对打滑处于经校准的速度范围中时发生控制动作,且该控制动作经由促动器控制信号(箭头pcc)向第一和第二带轮促动器(28、30)中的至少一个的传送而实现。在相对打滑低于经校准打滑极限或处于经校准速度范围中时,控制器50还经由强制接合控制信号(箭头pa)到cvt14(即促动器28和/或30或另一促动器,取决于设计)的传送而命令从摩擦驱动模式变换或转变到cvt的固定档位/强制接合驱动模式。该控制动作被维持直到相对打滑到达零。

控制器50可以包括硬件元件,例如处理器(p),电路,包括但不限于计时器,振荡器,模拟-数字(a/d)电路、数字-模拟(d/a)电路、数字信号处理器、和任何所需的输入/输出(i/o)装置以及信号调制和缓冲电路。存储器(m)可以包括实体的非瞬时存储器,例如只读存储器(rom),例如磁性、固态/闪速、和/或光学存储器,以及足够量的随机访问存储器(ram)、电可擦写可编程只读存储器(eeprom),等。方法100可以记录在存储器(m)中且通过车辆10中的总体控制部分中的处理器(p)执行。

与第一和第二促动器28和30通信的控制器50从多个传感器29接收一组控制输入(箭头cci),作为方法100的一部分。传感器29可共同操作为连续或周期性地测量cvt14的输入速度(ωp)、cvt14的输出速度(ωs)和每一个驱动带轮和从动带轮18和20的轴向线性位移(dp、ds)。因此,传感器29可以包括速度传感器sp和ss和位移传感器sdp和sds。cvt14的输入速度(ωp)可以被速度传感器sp测量,或其可以根据发动机速度(ne)(例如来自发动机控制单元(未示出))而被计算或被报告。次带轮20的旋转输出速度(ωs)也可以被速度传感器ss测量。位移传感器sdp和sds分别测量可动带轮槽轮191和121中相应一个的轴向线性位移(dp、ds)。通过以下方程中的这些项,使用cvt14的已知几何设计信息,例如本领域已知的其半角和初始状态,控制器50可随后分别计算带轮18和20上的带位置的主半径rp和次半径rs。即,控制器50总是能得知主半径rp和次半径rs,其可以存储在其存储器m中且按照需要在方法100执行过程中使用。

作为其总体换挡控制功能的一部分,控制器50还可以接收或确定输出扭矩请求(箭头treq)。如本领域已知的,输出扭矩请求(箭头treq)主要通过车辆10的驱动器的动作而确定,例如经由油门请求、制动水平、当前定位状态等。控制器50响应于总体控制输入(箭头cci)而确定cvt14的速度比变化需要且经由促动器控制信号(箭头pcc)的传输而命令所需的夹持压力(箭头pc),以校准速率实现期望速度比变化。

作为该策略的一部分,控制器50最终调整促动器28和30的主和/或次压力(箭头pp和ps),以控制摩擦驱动和强制接合驱动之间的转变,如参考图3在下文描述的。在一些实施例中,促动器控制信号(箭头pcc)可以包括分开的强制接合控制信号(箭头pa),例如在cvt14的带22或另一部分配备有可动或可部署的齿(未示出)或被命令以强制接合cvt14且由此进入固定档位描述的其他机构时。

包括图1的cvt14和控制器50的系统在图2中详细显示。在该具体非限制性例子实施例中,cvt14经由其带齿22t与相应带轮槽轮19和21的槽轮齿19t和21t的直接接合而提供固定档位/强制接合功能。带齿22t选择性地在槽轮191和121的运动极限处或附近接合槽轮齿19t和/或21t,以由此实现固定传动比。

槽轮齿19t和21t环状地布置在相应槽轮面23和25上,例如围绕主带轮18和次带轮20的相应带轮轴60和62的旋转轴线11p、11s。在可动带轮槽轮191和/或121的运动期间,当旋转带22接近槽轮齿19t或21t时,强制接合发生在槽轮齿19t或21t和带齿22t之间,使得带齿22t最终接触且随后接合槽轮齿19t和/或21t。该强制接合建立如上所述的固定档位模式。

带22具有所示的纵向中心轴线31。带齿21t可以布置为相对于带22的纵向中心轴线31正交,以从带22的侧向边缘63朝向槽轮齿19t、21t径向地延伸。虽然为了显示清楚而从图2省略,但是相似的齿可设置在带轮轴60和62上,和/或一些齿可以选择性地响应于图1的强制接合控制信号(箭头pa)而可动。对于控制方法100,cvt14的具体设计不受限制,主要只要cvt14可操作为建立摩擦驱动和强制接合模式即可。

对于图1和2所示的示例性cvt14,在一些速度比期间,槽轮齿19t和21t不接合带齿19t。在没有强制接合时,速度比无限地改变,扭矩单独地经由带22和主带轮18和次带轮20之间的摩擦而传递。随带齿22t直接接触槽轮齿19t或21t,控制器50经由方法100的执行且使用来自参考图1如上所述的传感器29的各种信号的反馈,开始经由促动器控制信号(箭头pcc)降低主带轮18和次带轮20之间的打滑,且最终降低主压力和次压力(pp,ps)。

图1的传感器29可以包括连接到所示的驱动带轮18的带轮轴60的第一或主速度传感器sp、和连接到从动带轮20的带轮轴62的第二或次速度传感器ss。在该实施例中,速度传感器sp和ss直接测量相应输入速度(ωp)和输出或次速度(ωs)。

在相对打滑低于经校准打滑极限或落入经校准打滑范围中时,控制器50经由强制接合控制信号(箭头pa)(例如主压力和次压力(pp,ps)或强制接合控制信号(箭头pa))以取决于实施例的方式而命令强制接合。控制器50随后在控制器50确定实现强制接合之后降低对促动器28和30的夹持压力(pc)。夹持压力的降低能降低主压力和次压力(pp,ps)中之一或两者,因为这些值构成总夹持压力(pc)。

参见图3,针对图1和2所示类型的cvt14的模式转变描述用于这种打滑和转变控制的方法100的示例性实施例。方法100的通常步骤也可通过具有相似功能的替换设计执行,且因此方法100并不限于用于如上所述的具体cvt14。

以步骤102开始,控制器50计算图1和2的cvt14的速度比(sr)和几何比(gr)。如本领域已知的,术语“速度比”是指主带轮18的旋转速度与次带轮20的旋转速度的比例,即。几何比是在带22的主侧和次侧处间隙的直径的分布(图1的箭头26),如通过经计算的主和次半径(rp和rs)确定的,所述主和次半径从位移传感器sdp、sds确定。因此,步骤102包括经由控制器50接收经测量移位(箭头dp和ds)和图1的经测量旋转速度(ωp,ωs)。

例如,使用主速度ωp和次速度ωs,绝对打滑速度(v)可以被计算为v=ωp·rp-ωs·rs,几何比(gr)限定为。一旦图1的控制器50已经最初计算了速度比和几何比,则方法100前进到步骤104。

步骤104对主带轮18和次带轮20的相对打滑率(sr)进行计算。相对打滑率(sr)可以被控制器50计算,如下:

在控制器50完成相对打滑率(sr)的计算之后方法100前进到步骤106。

在步骤106,控制器50接下来确定步骤104的经计算相对打滑(sr)是否低于经校准打滑极限或落入经校准打滑范围。如在本文使用的,“经校准”是指记录在控制器50的存储器(m)中且在步骤106执行期间被处理器(p)参考的预定临界值或值的范围。实际的经校准极限可以随速度、速度比或几何比和/或意图设计的扭矩而改变。在非限制示例性实施例中,相对打滑率可以是低的非零速度,例如5rpm到10rpm范围的速度。可使用其他范围,只要该范围是非零的且足够低以对主和/或次压力(箭头pp,ps)的增量调整进行响应即可,例如小于约50rpm。如果打滑率落入经校准极限或速度范围内,即小于经校准极限或在该范围中,则方法100前进到步骤108。否则,控制器50前进到步骤107。

步骤107涉及将相对打滑降低到低的非零值的过程,即小于常规cvt摩擦驱动模式中使用的典型打滑值。如本领域已知的,常规cvt以约1%的打滑运行,实际打滑取决于例如速度比这样的一些条件。在更高的夹持压力下,打滑可被减小但是不会为零,其是摩擦驱动模式的基本特征。

由此,步骤107的目标是增加带22上的张力且将打滑降低到低的非零水平,同时保持当前速度比。与该目标一致地,步骤107可以包括增加图1的夹持压力(箭头pc),其可以经由促动器控制信号的传送(箭头pcc)而被命令。取决于控制输入(cci),步骤107可以对主压力和次压力(分别是箭头pp和ps)中之一或两者进行调整,或在替换的马达驱动应用中调整一个或多个马达电流,以便以校准速率将相对打滑降低到零,且随后重复步骤102。校准速率应该提供期望换挡感觉,基本上降低、且如果可能的话消除任何噪声、振动、不顺性(其由于带齿22t与槽轮的配合齿的接合而造成)。在步骤107的这种控制可以被认为是“微打滑”控制,即对所需夹持压力(箭头pc)进行精细调整,以降低相对打滑,由此准备好用于步骤108的直接接合。

步骤108包括命令促动器接合(act),即命令cvt14的强制接合。因为步骤107实现了相对小的非零相对打滑,所以步骤108实现肯定地命令强制接合以到达零打滑所需的任何额外控制动作(一个或多个)。在示例性实施例中,步骤108可以调整夹持压力。然而,步骤108的压力调整方式不同于步骤107。不同于步骤107,步骤108涉及改变速度比以强制地接合cvt14的结构且由此进入固定档位模式。例如,步骤108可以经由强制接合控制信号(箭头pa)向第一或第二带轮促动器(在这种装置是cvt14中的唯一促动器时)的传送而实施,以由此实现夹持压力(箭头pc)的突然或阶跃的增加。如在本文使用的,阶跃的增加意味着夹持压力(箭头pc)的任何瞬时或临时的增加,以高于在步骤107中将相对打滑控制为零所需的水平。

步骤108的强制接合控制信号(箭头pa)可以随cvt14的设计而改变。例如,主和/或次压力(pp,ps)可以被控制为让主和/或次带轮18和/或20运动到与图2的示例性实施例中的带齿22t接合,且由此实现零打滑。在其他系统中,步骤108可以命令带22的可动齿(未示出)或cvt14的其他结构部署和接合成实现零打滑的最终效果。方法100随后前进到步骤110。

在步骤110,图1的控制器50确定相对打滑(sr)是否为零,且可以确保在经校准持续时间中存在零打滑,例如1-2秒或任何足以确定零打滑不是瞬时状态的任何持续时间。控制器50确定固定档位/强制接合模式已经实现并由于做出了该确定而继续进行到步骤112。强制接合实现控制器50中逻辑状态的改变,例如在控制器50配置为有限状态机时。在这种实施例中,通过在步骤110的确定(达到强制接合,触发状态改变),一组控制代码可以用在摩擦模式和另一强制接合模式中。在经计算的相对打滑不为零时,方法100重复步骤108。

步骤112包括在实现强制接合时自动地降低夹持压力(图1的箭头pc)。固定档位保持零打滑,且由此不需要维持更高的夹持压力(箭头pc)。夹持压力的需求通常在固定档位/强制接合模式下比在摩擦模式下更低。结果,作为肯定性的控制步骤,图1的控制器50可以在实现强制接合时在步骤112降低夹持压力(箭头pc)。夹持压力(箭头pc)的降低,通过需要更少的液压或机电力而实现图1的变化器组件14v的改善效率。另外,cvt14的驱动模式之间的转变在平稳性和噪声方面被优化,其又应减少cvt14的部件上的长期应力和磨损。

尽管已经对执行本发明的较佳模式进行了详尽的描述,但是本领域技术人员可得知在所附的权利要求的范围内的用来实施本发明的许多替换设计和实施例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1