本发明涉及根据权利要求1的前序部分的流体摩擦离合器。
背景技术:
这种类型的流体摩擦离合器从de102010043264a1已知。在这种已知的流体摩擦离合器中,以中间板或隔板的形式提供单独的部件用于将工作室从储存器分开。该隔板刚性地连接到从动侧,即连接到离合器的壳体。该隔板具有至少一个阀,但通常具有两个阀,以便控制储存器和工作室之间的流体流。此外,提供了布置在间隙处的至少一个挡板元件,以便使用转速差引起流体中的背压,从而支持流体流。
然而,由于该隔板的设置,出现了整个离合器的结构长度显著增加这一技术问题。这又具有如下缺点,即:这种类型的累积流体摩擦离合器不能在受限的安装条件下使用。
技术实现要素:
因此,本发明的目的是创建一种如权利要求1的前序部分所明确的类型的流体摩擦离合器,通过该流体摩擦离合器能够以简单的方式提高离合器效率并减小离合器的结构长度。
通过权利要求1的特征来实现该问题的解决方案。
由于用于控制离合器流体的供给的阀与离合器片中的供给泵元件的集成——供给泵元件也集成在离合器片中——所以能够以简单的方式利用泵元件与流体摩擦离合器的壳体或初级侧之间的转速差,从而根据转速差产生从储存器到工作室内的体积流量。
根据本发明的流体摩擦离合器的另外的特殊优点包括仅需要少量的离合器流体,因为由于先前说明的布置,在油储存器中形成了主动输送泵,这与用于填充工作室的离心力的已知使用相比,在离合器流体量方面是有利的。
此外,由于离合器流体的低比例,根据本发明的流体摩擦离合器的响应行为更快。
此外,出现了极为紧凑的设计,因为尤其可以减小离合器长度;离合器长度减小是因为代替用于分离工作室和储存器的单独的部件,这种分离通过离合器片唯一地进行,这导致的优点除了更紧凑的设计之外,还可以减少部件的数量,因而带来了成本高效的设计。
此外,根据本发明的结构产生的优点是不产生压力累积,这又导致了阻力损失的最小化。
从属权利要求以本发明的有利改进作为它们的主题。
有利地,所述阀设置有在离合器片的径向方向上并且在离合器片的内部延伸的阀销。
附图说明
对于故障保护功能,可以使用弹簧使阀在其空载状态下预张紧,这意味着对供给泵元件的通路是打开的。在关闭位置,阀可以由单独的致动器移动。本发明的附加细节、特征和优点来自后面参照附图对实施例的描述。
图1示出了根据本发明的流体摩擦离合器的截面图;
图2示出了在流体摩擦离合器的另一位置处根据图1的流体摩擦离合器的一部分的截面图;
图3和图4示出了根据本发明的流体摩擦离合器的处于空载状态和关闭位置的根据本发明的阀;
图5和图6以处于空载状态和关闭位置的根据本发明的阀的另一截面图示出了根据图3和图4的描绘;以及
图7和图8示出了根据本发明的流体摩擦离合器的离合器片的透视图。
具体实施方式
图1示出了根据本发明的流体摩擦离合器1的截面图,其具有壳体,壳体通常由壳体本体2和盖3设计而成。
离合器片4布置在壳体2、3中并且能够相对于壳体2、3旋转。离合器片4因此连接可旋转地固定到轴6的端部5,轴6居中地安装在壳体2、3的内部。在所述轴6的另一端(在图1中不可见),可以固定可驱动的有效机构,该机构可以例如设计为泵轮或压缩机。
工作室9布置在壳体2、3和离合器片4之间,并且从图1和图2能够清楚地看到,工作室9具有工作间隙15,工作间隙15使得能够基于供给到工作室9的离合器流体上的剪切效应进行转矩传递。
此外,为指定的离合器流体提供了储存器10,其中供给通道11a、11b从储存器10通向工作室9,从而形成供给源。
从图1和图2能够清楚地看到,储存器10向外布置,这意味着当从流体摩擦离合器1的纵向中心轴线l的方向观察时,储存器10布置在工作室9的径向外侧。
此外,根据本发明的流体摩擦离合器1可以设置有返回泵系统或再循环泵,返回泵系统或再循环泵用于将离合器流体从工作室9再循环到储存器10。该再循环泵还可以集成在离合器片4中;然而,再循环泵没有在附图中示出。但是,关于这一点,参考ep2679850a1中的说明,其公开内容通过明确的引用而成为本申请的公开内容的一部分。
主要来自图1至图4以及图7和图8的概示,根据本发明的流体摩擦离合器1还设置有供给泵元件14,该供给泵元件14集成在离合器片4中,并且因此被安装成旋转地固定在轴6上,因此相对于壳体2、3可旋转,但是不能相对于轴6旋转。
在描述的示例性情况下,供给泵元件14在其径向外边缘上具有剪切间隙12,该间隙相对于壳体2、3形成。
由于这种布置,形成了输送泵;由于在供给泵元件14与壳体2、3之间产生的转速差,该输送泵能够实现从储存器10到工作室9的离合器流体的体积流。
从储存器10到工作室9的体积流由前面提及的供给泵元件14结合剪切间隙12而产生。供给泵元件14和剪切间隙12由此形成输送泵;其功能原理基于转速差。
为了控制供给泵元件14的离合器流体供给,在离合器片4中集成有阀17;为此,离合器片4具有容纳凹部21,容纳凹部21在图4中被标示为代表不同实施例的所有容纳凹部。
阀17具体地包括阀销13,阀销13与容纳凹部21的取向相对应地布置在离合器片4的径向方向r上。
阀销13具有销头13a,销头13a与致动器18操作性地连接。在根据图3和图4的实施例中,致动器8是具有容纳凹部19的可旋转板,销头13a在图3描绘的空载位置插入容纳凹部19中。根据图3的描绘,为了将销头13a压入凹部19中,为此提供了附加设置的能够实现故障保护功能的弹簧16,使得在直径方向上相对的端部13c释放供给泵元件14,这能够从图3清楚地看到。该端部13c是在容纳凹部21中被引导的销轴13b的端部区域。此外,销板13d布置在销轴13b和销头13a之间。弹簧16的端部16a被支撑在该销板13d上,而弹簧16的在直径方向上相对的端部16b被支撑在离合器片4的壁区域4a上,这能够从图4中的描绘清楚地看到。
图5和图6仅示出了根据图3和图4的布置的另一截面图,从该截面图能够看到致动器20,致动器20由于在销头13a上的径向运动而使销头13a在空载状态和关闭位置之间移动。
图7和图8示出了离合器片4的透视图,其中从所述图7和图8的概示能够清楚地看到阀17或阀销13的径向方向r。从图8的表示中还能够清楚地看到,也可以将两个阀17集成到离合器片4中。
除了前面的书面描述之外,还明确地参考图1至图8中对本发明的图示以作为对本发明的公开内容的补充。
附图标记列表
1流体摩擦离合器
2,3壳体
4离合器片
5端部
6轴
7,8轴承
9工作室
10储存器
11a,11b供给通道
12剪切间隙
13阀销
13a销头
13b销轴
13c销端部
13d销板
14供给泵元件
15工作间隙
16弹簧
16a,16b弹簧端部
17阀
18,20致动器
19容纳凹部
21容纳凹部
l纵向轴线
r径向方向