本发明涉及流量计检测技术领域,更具体而言,涉及一种气体流量计检测设备。
背景技术:
随着家用燃气表的大量投入使用,气体流量计检测要求也不断提高。但目前集气体流量、温度、压力、气体组分及其相关流量计算和体积修正一体的测量设备不完善。
在气体流量计中燃气家用流量计的测量属于流量小,波幅相对较大的流量计,因此在流量计检测时需要测量气体流量、温度、压力、气体组分几个参数,然后将这些测量信号输入到流量计算机或体积修正仪,在按照流量计算气态方程进行计算和补偿,最终得到标况流量。
检测流量计中气体标况体积流量、温度、压力、气体组分等参量,其中任何一个量测量不准确,都会影响流量计计量的准确性。目前家用燃气表皮膜表没有考虑温度、压力等因素的影响,实际上是进行工况体积计量,但如何标定相关流量计,这里就需要一个稳定可靠的设备进行标定。现有的流量计检测设备无法模拟不同环境条件,以检测流量计适用范围和稳定性。并且,通常,现有的流量计只能对一个待测流量计进行检测。
技术实现要素:
针对相关技术中存在的问题,本发明的目的在于提供一种能够模拟不同环境条件,并同时检测多个流量计适用范围和稳定性的气体流量计检测设备。
为实现上述目的,本发明提供一种气体流量计检测设备,包括输气模块、与输气模块连接的多个阀门组模块、以及与阀门组模块连接的检测模块,其中,检测模块包括多个待测流量计,阀门组模块与待测流量计一一对应连接。
根据本发明的一个实施例,输气模块包括用于容纳检测气的配气模块,以及用于对检测气进行加压的加压模块,加压模块的气体入口与配气模块的气体出口连通,加压模块的气体出口与阀门组模块一一对应的连接,。
根据本发明的一个实施例,加压模块包括一个腔室、以及用于对腔室进行压力调节的自重密封活动部,其中,阀门组模块与腔室连接。
根据本发明的一个实施例,加压模块多个腔室、用于对所有腔室同步地进行压力调节的自重密封活动部,其中,腔室与阀门组模块一一对应连接。
根据本发明的一个实施例,每个腔室分别设置自重密封活动部,其中,所有自重密封活动部的顶部通过连杆相互连接。
根据本发明的一个实施例,每个腔室构造成柔性腔室,并且所有柔性腔室经由共用的自重密封活动部同步地进行压力调节。
根据本发明的一个实施例,检测模块包括恒温柜,待测流量计设置在恒温柜中。
根据本发明的一个实施例,还包括数据分析模块和数据采集反馈模块,其中,数据分析模块用于接收数据采集反馈模块采集的数据并对数据进行分析,以获得待测流量计的参数,数据采集反馈模块包括采集阀门组模块的流量数据,还包括组分反馈模块和温度压力反馈模块,组分反馈模块将配气模块中的气体组分反馈至数据分析模块;温度压力反馈模块F将检测模块中的温度和压力反馈至数据分析模块。
根据本发明的一个实施例,每个阀门组模块包括至少一个阀门支管;检测模块或者阀门支管中设置至少一个标准流量计。
根据本发明的一个实施例,每个待测流量计的入口和出口分别设置至少一个温度压力传感器。
本发明的有益技术效果在于:
在本发明涉及的气体流量计检测设备中,由于设置有多个阀门组模块,可以同时对多个待测流量计进行检测;通过将多个待测流量计安装在同一个恒温柜中,可以控制温度,在不同温度条件下检测待测流量计,并且可以实现在相同温度条件下对不同流量计进行检测;并且通过输气模块提供稳定压力的检测气,并可以使待测流量计在不同检测气压力条件下进行检测;此外,还可以通过阀门组模块控制检测气流量,以得到待测流量计在不同流量下的相关参数。
附图说明
图1是本发明气体流量计检测设备工艺流程的示意图;
图2是本发明实施例1的实施例气体流量计检测设备的示意图;
图3是本发明一个实施例加压罐的结构示意图;
图4是本发明实施例2气体流量计检测设备的示意图;
图5是本发明实施例3气体流量计检测设备的示意图。
具体实施方式
以下将结合附图,对本发明的实施例进行详细描述。
如图1和图2所示,本发明的实施例1提供一种气体流量计检测设备,包括输气模块T、与输气模块T连接的多个阀门组模块E、以及与阀门组模块E连接的检测模块C,其中,检测模块C包括多个待测流量计,阀门组模块E与待测流量计一一对应连接。
在上述实施例中,由于设置有多个阀门组模块E,可以同时对多个待测流量计进行检测;此外,还可以通过阀门组模块E控制检测气流量,以得到待测流量计在不同流量下的相关参数。
进一步地,根据本发明的可选实施例,输气模块T与阀门组模块E一一对应的连接,并且每个阀门组模块E包括至少一个阀门支管。
根据本发明的一个实施例,输气模块T包括用于容纳检测气的配气模块A,以及用于对检测气进行加压的加压模块B,加压模块B的气体入口与配气模块A的气体出口连通,加压模块B的气体出口与阀门组模块E一一对应的连接。
进一步地,在一个可选实施例中,每个阀门组模块E包括阀门支管与连接在阀门支管上的阀门,阀门打开时为完全打开,关闭时为完全关闭;每个阀门组模块E中包含多个彼此并联的阀门支管。
在本发明的一些可选实施例中,检测模块C包括恒温柜10,待测流量计设置在恒温柜10中。
进一步地,恒温柜10中设置有的与阀门组模块E一一对应连接的至少两个待测流量计;检测模块C或者阀门支管中设置至少一个标准流量计。
需要注意的是,上述阀门支管中设置至少一个标准流量计指的是,在每个阀门组模块E中,均至少有一个阀门支管中串联有标准流量计。并且,每个阀门组模块与不同的待测流量计分别连接。
应该可以理解,阀门组模块E用于为待测流量计提供稳定的气流量,因此,关闭阀门时应完全关闭,避免待测气体逸出,并且,当打开阀门使待测气体进入待测流量计时,应完全打开阀门,这使得每个阀门支管中的气体流量可以相当于阀门支管的标准流量,使进入待测流量计的气体流量更准确,并避免由于阀门打开不完全影响进入待测流量计的气体流量的精确性。
此外,在上述实施例中,通过将多个待测流量计安装在同一个恒温柜10中,可以控制温度,在不同温度条件下检测待测流量计,并且可以实现在相同温度条件下对不同流量计进行检测;并且通过输气模块A提供稳定压力的检测气,并可以使待测流量计在不同检测气压力条件下进行检测
如图4所示,图4示出了根本发明实施例2气体流量计检测设备的示意图,应该可以理解,本实施例与前述实施例的不同之处在于:加压模块B包括一个腔室20,以及用于对腔室20进行压力调节的自重密封活动部12,其中,阀门组模块E与腔室20连接。其他相同部件在此处不再进行描述。还应该理解的是,本发明的各个实施例并不独立存在,各个实施例之间可以以任意形式相互结合和替换。
进一步地,如图4所示,配气模块A包括一个钟罩7和至少一个气囊1,其中,钟罩7的气体出口与加压模块B的气体入口相连。
如图5所示,根据本发明的实施例3,加压模块B包括多个腔室20,用于对所有腔室20同步地进行压力调节的自重密封活动部12,其中,钟罩的气体出口一一对应地与腔室20的气体入口相连,其中,多个腔室20与阀门组模块E一一对应连接。
进一步地,如图5所示,配气模块A包括至少两个钟罩,每个钟罩设置至少一个气囊1。
参照图3,根据本发明的一个实施例,每个腔室20分别设置自重密封活动部12,其中,所有自重密封活动部12的顶部通过连杆相互连接。
或者,每个腔室20构造成柔性腔室,并且所有柔性腔室经由共用的自重密封活动部12同步地进行压力调节。
进一步地,根据本发明的一个实施例,所有加压罐20构造成独立的腔室,并且每个加压罐20的开口端分别设置压盖,其中,所有压盖的顶部通过连杆相互连接。
或者,在本发明的另一个实施例中,所有加压罐20构造成独立的柔性腔室,并且所有柔性腔室经由共用的压盖进行挤压以同步地进行压力调节。这样,多个加压罐20通过同一套自重密封活动部12同时调节输出压力。这可以保证各自加压储罐20输出压力为同一,即保证同压力下不同组分、温度、流量的检测。
如图2所示,在本发明的实施例1中,气囊1设置在钟罩内部;或者,在如图5所示的实施例3中,气囊1设置在钟罩外部。
例如,在如图2所示的实施例1中,气囊1设置在钟罩7或13内部并且二者并联后连接至加压模块B。进一步地,气囊1上可以设置有气体放散口与钟罩7或13连接,气囊1中的气体可以输送至钟罩7或13中储存。或者,在如图5所述的实施例3中,气囊1与钟罩7或13串联后连接至加压模块B。在本发明一个可选实施例中,气体流量计检测设备可以包括两个与钟罩7或13分别连接的气囊1。在上述实施例中,可以根据检测气组成比例进行配比,配比后气体可以直接进入后续系统(加压模块B中),也可暂时储存于配气模块A的钟罩7或13内。
如图2至图5所示,根据本发明的一些实施例,配气模块A包括至少两个钟罩7和13,其中,钟罩与所有加压罐20一一对应地连接。例如,在如图2所述的实施例1中,钟罩7和钟罩13分别与两个加压罐20连接。也就是说,两个加压罐20分别连接两个独立的支路,在进行实验时,可以采用不同检测气对相同或不同型号的待测流量计进行检测。
如图3所示,在本发明的一个实施例中,多个加压罐20通过同一套自重密封活动部12同时调节输出压力。这可以保证各自加压储罐20输出压力为同一,即保证同压力下不同组分、温度、流量的检测。
根据本发明的一个实施例,每个腔室20上设置有与一一对应的钟罩连通的排放放散口21。在系统出现故障时,罐内检测气体可以通过排放放散口21输送到钟罩中。
根据本发明的一个实施例,检测模块C的气体出口连接至气体储罐6。这样,检测气在通过检测模块C后可以进入气体储罐6中集中收集处理。
或者,在本发明的一个实施例中,检测模块C的气体出口还可以与钟罩7和/或13连通。这样,根据具体情况,检测气在通过检测模块C后可以回流回配气模块A的钟罩7和或13中继续实验使用。进一步地,气体储罐6可以构造为具有至少两个腔室,分别与钟罩7和第一阀门组模块以及钟罩13和第二阀门组模块连接。
应该可以理解,例如在如图2所示的实施例1中,钟罩可以构造为多个,以实现进行多组分比对实验。或者,如图4所示的实施例2中,也可以设置一个钟罩7,这能够实现同一气体组分多个表的对比实验。
如图1所示,根据本发明的一个实施例,还包括数据分析模块D和数据采集反馈模块,其中,数据分析模块D用于接收数据采集反馈模块采集的数据并对数据进行分析,以获得待测流量计的参数,其中,数据采集反馈模块包括采集阀门组模块E的流量数据,还包括组分反馈模块G和温度压力反馈模块F,其中,组分反馈模块G将配气模块A中的气体组分反馈至数据分析模块D;温度压力反馈模块F将检测模块C中的温度和压力反馈至数据分析模块D。
根据本发明的一个实施例,参数包括待测流量计的流量范围、压力损失、流量随温度及压力波动范围和精度中的一种或多种。
根据本发明的一个实施例,每个阀门组模块E包括至少一个阀门支管;检测模块或者阀门支管中设置至少一个标准流量计。
根据本发明的一个实施例,阀门组模块E包括阀门支管与连接在阀门支管上的阀门,阀门打开时为完全打开,关闭时为完全关闭;每个待测流量计的入口和出口分别设置至少一个温度压力传感器。
也就是说,在上述实施例中,沿待测气体的流动方向,在恒温柜10中依次串联有温度压力传感器、待测流量计和另一个温度压力传感器。这样,可以通过位于待测流量计上游和下游的的温度压力传感器分别测出待测的检测气进入待测流量计之前和之后的温度和压力,可以得出待测流量计的压力损失情况。
根据本发明的一个实施例,阀门组模块E包括阀门支管3或16与连接在阀门支管3或16上的阀门,阀门打开时为完全打开,关闭时为完全关闭。
如图2所示,根据本发明的实施例1,流量计检测设备至少包括:第一阀门组模块和与第一阀门组模块相连的第一待测流量计5;以及第二阀门组模块和与第二阀门组模块相连的第二待测流量计19。这样,第一阀门组模块中输出的检测气经过温度压力传感器4进入第一待测流量计5,并经由另一个温度压力传感器4排出检测模块C;第二阀门组模块中输出的检测气经过温度压力传感器18进入第二待测流量计19,并经由另一个温度压力传感器18排出检测模块C,两个待测流量计的测量过程彼此独立,互不干扰。
再次参照图2,根据实施例1,在每个阀门组模块E中,包括阀门支管与连接在阀门支管上的阀门,其中,任一阀门组模块E的阀门支管中串联标准流量计。在上述实施例中,标准流量计仅串联在一个阀门支管中,其他支路根据该标准流量计进行校订,在测试过程中通过开启阀门实现对不同流量的检测。
进一步地,第一阀门组模块包括多个并联的第一阀门支管3,第一阀门支管3中的一个串联有第一标准流量计11;第二阀门组模块包括多个并联的第二阀门支管16,第二阀门支管16中的一个串联有第二标准流量计17。
根据本发明的一个可选实施例,阀门构造成防爆气动阀门,阀门支管构造为固定管道,每个阀门组模块E通过的流量是固定的或者可以测量的,在测试过程中可以通过全开阀门实现对待测流量计不同流量的检测。
在每次实验中,根据待测流量计的量程和精度将同一型号的阀门支管安装在阀门组模块E中上,在两次实验中,阀门组模块E安装的阀门支管可能不同,例如,安装的阀门支管流量可以具有5m3/h、1m3/h或者更多不同的流量。也就是说,在一次实验中,安装的阀门支管的流量均相同,当待测流量计的量程和精度变化时,可以更换不同流量的阀门支管进行实验。
根据本发明的一个实施例,配气模块A、加压模块B、阀门组模块E与检测模块C之间可拆卸连接。这样,当需要清洗或更换某些模块时,可以对所需更换的模块进行拆卸。并且,可以根据检测要求对上述模块进行选型组装,在一个实施例中,模块之间采用软管加管卡进行连接,每次检测前均需对设备的气密性进行检测。
如图2所示,根据本发明的实施例1,检测设备由两个或多个检测单个气体流量计的气体流量计检测设备组成,因此为不同检测流量计的配套同型设备。检测气可以配置统一组分的检测气也可配置不同组分的检测气。当配置统一组分的检测气情况下,可以采用一个钟罩,气囊1在钟罩外按比例输入到钟罩内即可。当配置多组分气体时则采用多个钟罩进行配置,例如如图2所示的钟罩7和13。
在图4所示实施例2中,如果进行多表同组分检测,检测气配置将多个单质气囊1放入配气模块A的钟罩7内,每个气囊1配有自动调节阀门,根据气体组成要求开启各自气囊1阀门配比检测气体。配出来检测气组分已知,气体可以直接进入加压罐20内,也可以暂时储存于钟罩7中。
待检测气体配置完毕后,打开阀门8,关闭阀门9和15,外力拉动自重密封活动部12的配重2将检测气体吸入加压罐20中,然后关闭阀门8,配气阶段已经完成。后续为将被测流量计连接,恒温柜10升温到制定温度后,系统进入检测模式。开启阀门9和阀门15,如果检测气体的组分为检测使用过的就可采用已知阀门组模块的阀门支管流量进行实验检测。如果为未使用组分可以通过支管上带标准流量计11的阀门支管进行测量同时校订其他阀门支管。检测气体进入检测模块C中,检测气体通过直管恒温加热后进入安装在待测流量计安装部件5和19上的待测流量计,实验过程中温度压力传感器4和温度压力传感器18不断将实时数据传输给数据分析模块D。数据分析模块D根据采集的数据进行分析得出相关流量计流量范围、压力损失情况、流量随温度、压力波动范围、精度等参数。检测气体可以回收到气体储罐6中集中收集处理。
在如图5所示的实施例3中,不同组分气体检测设备可以将配气的气囊1放在钟罩7和钟罩13外部,这里举例钟罩7配气介绍。
将多个气囊1放入配气模块A的钟罩7内,每个气囊1配有自动调节阀门,根据气体组成要求开启各自气囊1的阀门配比检测气体。配出来检测器组分已知,气体可以直接进入加压罐20内也可以暂时储存于钟罩7中。钟罩13的配气过程相同。
加压罐20在不同组分气体时,为多个独立的罐体,每个罐上部都是与自重密封活动部12连接,即自重密封活动部12的运作会作用于每个独立加压罐20,将不同组分的检测气压入后续系统中。
待检测气体配置完毕后,打开阀门8、阀门14,关闭阀门9和15,外力拉动自重密封活动部12的配重2将检测气体吸入加压罐20中,后关闭阀门8和阀门14,配气阶段已经完成。后续为被测流量计连接,恒温柜10升温到制定温度后,系统进入检测模式。开始阀门9和阀门15,如果检测气体的组分为检测使用过的就可采用阀门组模块E的已知阀门支管流量进行实验检测。如果为未使用组分可以通过阀门支管上带标准流量计11和17的阀门支管进行测量同时校订其他阀门支管。检测气体进入检测模块C中,检测气体通过直管恒温加热后进入安装在待测流量计安装部件5和19上的待测流量计中,实验过程中温度压力传感器4和温度压力传感器18不断将实时数据传输给数据分析模块D。数据分析模块D根据采集的数据进行分析得出相关流量计流量范围、压力损失情况、流量随温度、压力波动范围、精度等参数。检测气体可以回收到气体储罐6中集中收集处理。
根据本发明的一个实施例,采用天然气为检测气,配比设备中可以采用甲烷和氮气(二氧化碳)的气囊1,也可以采用现在市面的天然气直接作为检测气。这里采用配置气甲烷或氮气。
将配置的天然气储存于钟罩7内,将设备其他组件连接后进行气密性检验,合格后安装好待测流量计(家用燃气表)。开始给恒温柜升温到20℃,待恒温气柜升温到20℃后。加压罐20内的检测气体通过阀门组模块E调控进入恒温柜10内。
不同组分天然气组分配置完毕后,打开阀门8、14,关闭阀门9和15,外力拉动自重密封活动部12的配重2将检测气体分别吸入不同的加压罐20中,后关闭阀门8、阀门14,配气阶段已经完成。后续为被测流量计连接,恒温柜10升温到制定温度后,系统进入检测模式。开始阀门9和阀门15,如果配置天然气体的组分为检测使用过的就可采用已知阀门组模块E阀门支管流量进行实验检测。如果为未使用组分可以通过支管上带标准流量计11和17的阀门支管进行测量同时校订其他阀门支管。检测气体进入检测模块C中,检测气体通过直管恒温加热后进入安装在待测流量计安装部件5和19上的待测流量计中,实验过程中温度压力传感器4和温度压力传感器18不断将实时数据传输给数据分析模块D。数据分析模块D根据采集的数据进行分析得出相关流量计流量范围、压力损失情况、流量随温度、压力波动范围、精度等参数。检测气体可以回收到气体储罐6中集中收集处理。
另外,数据分析模块D还可以根据采集到的数据,进一步地对阀门组模块E的流量、配气模块A中的气体组分、检测模块C中的温度和压力提供数据指令。
根据本发明的另一个实施例,本案例采用海洋天然气(天然)和煤制天然气为检测气体,将两种不同的天然气注入不同的加压罐20中,加压设备调压为10Pa。后关闭阀门8,配气阶段已经完成。后续为被测流量计连接,恒温柜10调温到10℃后,系统进入检测模式。开启阀门9、阀门15,天然气为未使用组分通过阀门支管上带标准流量计11和17的阀门支管进行测量同时校订其他阀门支管,这里每个阀门组模块E采用8支阀门支管,标定后流量最高上限为80m3/h。
两种天然气分别进入恒温柜10中,通过直管恒温加热后进入安装在待测流量计安装部件5和19上的待测流量计中,实验过程中温度压力传感器4和温度压力传感器18不断将实时数据传输给数据分析模块D。数据分析模块D根据采集的数据进行分析得出相关流量计流量范围、压力损失情况、流量随温度、压力波动范围、精度等参数。检测气体可以回收到气体储罐6中集中收集处理。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。