本发明涉及材料性能测试技术领域,特别是涉及一种材料性能测试装置及制作方法。
背景技术:
led(light-emittingdiode,发光二极管)已普遍应用在各行各业,随着技术的发展进步,相继出现了oled(organiclight-emittingdiode,有机发光二极管)和woled(whiteorganiclight-emittingdiode,白光有机发光二极管),目前led、oled和woled已经被广泛应用到各行各业,包括作为指示灯或者应用到台灯、电视机、显示面板、显示器中等,因此led的发光效果尤为重要。
led、oled和woled在制作过程中需要用到一种像素定义材料,该材料的性能好坏直接关系到最终产品led、oled和woled的发光效果,特别是该材料的含氧量和含水量情况,因此对即将使用在led、oled和woled产品上的像素定义材料都需要检测。
制作材料检测装置的过程中首先在一基板上通过曝光显影蚀刻形成金属栅极,然后在基板上通过曝光显影形成一层彩色滤波层和/或绝缘层,以配合测试像素定义层材料。在彩色滤波层和/或绝缘层形成过程中,需要先在基板和金属栅极上整面涂覆有机光阻形成一层膜,然后通过曝光显影将金属栅极上的有机光阻材料及基板上多余的有机光阻材料去除,留下有用的部分形成彩色滤波片和/或绝缘层。由于有机光阻在金属上的附着力差,经常造成有机光阻膜破,影响有机光阻膜厚的均匀性,从而导致后续曝光显影后形成的彩色滤波片和/或绝缘层图案不理想,对测试装置的测试效果影响甚大。
技术实现要素:
基于现有的材料检测装置存在有机光阻材料在金属上的附着力差,导致曝光显影后的彩色滤波片和/或绝缘层图案不理想的问题,本发明提供一种材料性能测试装置及制作方法。
本发明提供一种材料性能测试装置,用于测试材料的性能,包括:
基板;
金属栅极,设置于所述基板一侧;
辅助层,设置于所述金属栅极背对所述基板一侧;
功能层,包括有机光阻材料,设置在所述基板的具有所述金属栅极的一侧,所述功能层在形成过程中,所述有机光阻至少有一段时间附着在所述辅助层上,所述功能层用于配合发光器件检测材料的性能。
本发明还提供一种材料性能测试装置的制作方法,包括:
提供一基板;
在所述基板上沉积一层金属材料,通过曝光显影蚀刻得到金属栅极;
在所述基板及所述金属栅极上沉淀一层辅助材料,通过曝光显影蚀刻在所述金属栅极上得到辅助层;
在所述基板及所述金属栅极上沉淀一层有机光阻材料,通过曝光显影在所述基板的具有所述金属栅极的一侧形成功能层。
本发明的上述材料性能测试装置及制作方法在金属栅极表面上形成一辅助层,该辅助层为非金属材料,因此在制作功能层的过程中,有机光阻沉淀在基板和辅助层上,由于有机光阻在辅助层上的附着力强,因此沉淀的有机光阻膜均匀,进而使得在曝光显影后得到理想的功能层,进而保证材料性能测试装置的测试效果。
附图说明
图1是本发明材料性能测试装置一实施例的结构示意图;
图2是本发明材料性能测试装置另一实施例的结构示意图;
图3是本发明材料性能测试装置又一实施例的结构示意图;
图4是发明材料性能测试装置再一实施例的结构示意图;
图5是图4实施例对应的其他实施例中辅助孔结构示意图;
图6是本发明材料性能测试装置制作方法一实施例的流程示意图;
图7是本发明材料性能测试装置制作方法另一实施例的流程示意图;
图8是本发明材料性能测试装置制作方法又一实施例的流程示意图。
具体实施方式
下面结合附图详细讲解材料性能测试装置及该装置的制作方法。
参见图1,图1是本发明的材料性能测试装置一实施例的结构示意图,该材料性能测试装置包括基板100,设置在基板100一侧的金属栅极200,形成在金属栅极200背对基板100一侧的辅助层300,以及通过曝光显影形成在基板100具有金属栅极200的一侧上的功能层400。
具体的,金属栅极200位于基板100与辅助层300之间,金属栅极200用于与其他部件电连接。功能层400由有机光阻材料制成,用于配合发光器件检测材料的性能,功能层400在形成过程中,有机光阻至少有一段时间附着在辅助层300上。更具体的,功能层400在形成在基板100上的过程为:有机光阻正面涂覆在基板100和辅助层300上,然后通过不同的曝光量,将金属栅极300上的有机光阻材料及基板100上多余的有机光阻材料去除,留下有用的图案形成功能层400,如图1所示。以上方案中,功能层400在形成过程中,位于金属栅极200所在位置,有机光阻涂覆在辅助层300上,没有直接与金属栅极200接触,由于有机光阻在辅助层300上的附着力强,因此沉淀的有机光阻膜均匀,进而使得在曝光显影后得到理想图案的功能层400,进而保证材料性能测试装置的测试效果。
优选地,金属栅极200位于基板100上靠近边缘的位置,功能层400位于基板100的中间位置。
优选地,基板100可以是透明的玻璃基板或者石英基板。
可以理解的,辅助层300为非金属层。优选地,辅助层300可以是单层的sinx或者siox,也可以是sinx和siox的混合物,还可以是一层sinx和一层siox。
参见图2,一实施例中,辅助层300包括第一本体301和第二本体302,第一本体301设置于金属栅极200背对基板100一侧上,第二本体302设置于基板100的具有金属栅极200的一侧上,第二本体302位于功能层400和基板100之间。由于有机光阻在辅助层300上的附着力强,因此在基板100上设置第二本体302能够保证在形成功能层的过程中有机光阻能够整面非常均匀地涂覆,进而保证最终形成理想图案的功能层400,确保材料性能测试装置的测试效果。
材料性能测试装置在对材料测试的原理是:将被测试材料形成在材料性能测试装置中,并与发光器件连接,发光器件发光打到基板100上,如果发光效果理想(主要考虑发光的色彩、亮度和清晰度)说明被测材料的性能好。
参见图3,优选地,功能层400包括彩色滤波层401。彩色滤波层401主要起到滤光的作用,如果发光器件所发的光为白光,比如woled,则需要与彩色滤波层401进行配合,通过彩色滤波层401是白光分解成彩色光,进而观察发光效果。具体的,彩色滤波层401由丙烯酸树脂和/或压克力树脂制成。
另一实施例中,功能层400还包括绝缘层402,彩色滤波层401位于基板100与绝缘层402之间。绝缘层402起到绝缘和隔离的作用,一般情况下,如果彩色滤波层401接触到与金属栅极200连接的部件会影响彩色滤波层402的滤波效果,同时也会影响与金属栅极200连接的部件的工作过程,因此在彩色滤波层401上设置一层绝缘层402能够保证与金属栅极200连接的部件及彩色滤波层401各自的工作性能。优选地,绝缘层402由聚酰亚胺和/或丙烯酸材料制成。
参见图4,一实施例中,本发明的材料性能测试装置还包括依次形成在辅助层300及功能层400上的阳极层500、被测材料层700、发光材料层600及阴极层800,其中阳极层500与金属栅极200电连接,被测材料层700位于阳极层500和阴极层800之间,并与阳极层500和阴极层800之间构成空腔900,供以设置发光材料层600,发光材料层600容置在空腔900中并与被测材料层700抵接。以下进一步阐述本实施例中材料性能测试装置的工作原理:金属栅:200与外部电源(图未示)连接,然后传递给阳极层500,使阳极层500及阴极层800之间形成电压差作用在发光材料层600上,使发光材料层600发光,光线打在基板100上,以观察发光效果。由于被测材料层700与发光材料层600抵接,进而直接影响发光材料层600的发光效果,因此可以从发光材料层600的发光效果检测出被测材料层700性能的好坏。
本实施例中金属栅极200包括两块,位于基板100上靠近边缘的位置,将基板划分为金属区101、中央区102及外围区103。功能层400也形成在基板100上,位于两块金属栅极200之间的中央区102,阳极层500位于金属区101和中央区102,同时覆盖在辅助层300和中央区102的部分基板100和功能层400之上。发光材料600层于中央区102,形成在阳极层500上。阴极层800位于金属区101、中央区102及外围区103,发光材料层600位于阳极层500和阴极层800之间。被测材料层700位于外围区103、金属区101及部分中央区102,在外围区103,被测材料层700位于基板100与阴极800之间,在金属区101及部分中央区102,被测材料层700位于阳极500与阴极800之间。以上结构保证了产品的整体外观结构整洁,简化了加工工艺。可以理解的,在其他实施例中,阴极层800至少形成在中央区102即可,只要能保证阳极层500和阴极层800之间能形成电压差供给发光材料层600即可。在其他实施例中,被测材料层700至少有一部分形成在阴极层800与阳极层500之间,并与发光材料层600抵接即可。
具体的,阳极层500上设有一与金属栅极200电连接的延伸体501,本实施例中,延伸体501与金属栅极200的侧面连接,此时辅助层300仅包括位于金属栅极200上方的第一本体301,或者第二本体302与第一本体301断开,以在金属栅极200的侧面位置空出间隙,用于容置阳极层500的延伸体501,实现阳极层500与金属栅极200电连接。
参见图5,另一实施例中,第一本体301上开设一与金属栅极200连通的辅助孔303,延伸体501通过辅助孔303与金属栅极200抵接,进而实现阳极层500与金属栅极200电连接。
本发明的材料性能测试装置通过在金属栅极200上形成一辅助层300,后续功能层400在形成过程中,位于金属栅极200所在位置,有机光阻涂覆在辅助层300上,没有直接与金属栅极200接触。由于有机光阻在辅助层300上的附着力强,因此沉淀的有机光阻膜均匀,进而使得在曝光显影后得到理想图案的功能层400,进而保证材料性能测试装置的测试效果。
本发明还提供一种材料性能测试装置的制作方法。
参见图6和图1,为本发明材料性能测试装置的制作方法一实施例的流程示意图,该方法包括:
s101:提供一基板100。
优选地,该基板100可以是透明的玻璃基板或者石英基板。
s102:在基板100上沉积一层金属材料,通过曝光显影蚀刻得到金属栅极200。
其中,在基板100上沉淀一层金属材料,一般采用物理沉淀或者化学气相沉淀的方法,然后在金属材料层上涂覆一层光蚀刻胶,然后根据不同的曝光量,经过曝光显影得到想要得到的金属栅极大小的光蚀刻胶附在金属材料上,其他即将去除的金属材料表面裸露,再然后通过蚀刻工艺将表面裸露的金属蚀刻掉,留下光蚀刻胶保护下的金属材料形成金属栅极200。
s103:在基板100及金属栅极200上沉积一层辅助材料,通过曝光显影蚀刻在金属栅极200上得到辅助层300。
沉积曝光显影蚀刻的过程与形成金属栅极200的过程一样,此不赘述。其中,辅助层300可以是仅仅形成在金属栅极200上,也可以还包括形成基板100上,位于金属栅极200侧面的部分。
s104:在基板100及金属栅极200上涂覆一层有机光阻材料,通过曝光显影在基板100的一表面形成功能层400。
其中,有机光阻材料类似于步骤s101中所用到的光蚀刻胶,有机光阻正面涂覆在基板100及金属栅极200上,然后根据想要得到的功能层的图案设定不同的曝光量,然后通过曝光显影将位于金属栅极200上的及其他不需要的部分有机光阻去除掉,最终得到特定图案的功能层400。具体的,功能层400为彩色滤波层,主要用于配合其他发光器件检测被测材料的性能,或者包括彩色滤波层和绝缘层。
区别于现有技术,本实施的制作方法得到的材料性能测试装置在制作过程中,先在金属栅极200上形成一辅助层300,在步骤s104中功能层400的形成过程中,位于金属栅极200所在位置的有机光阻涂覆在辅助层300上,没有直接与金属栅极200接触,由于有机光阻在辅助层300上的附着力强,因此沉淀的有机光阻膜均匀,进而使得在曝光显影后得到理想图案的功能层400,进而保证材料性能测试装置的测试效果。
参见图7和图4,为本发明材料性能测试装置的制作方法另一实施例的流程示意图,该方法包括:
s201:提供一基板100。
s202:在基板100上沉积一层金属材料,通过曝光显影蚀刻得到金属栅极200。
s203:在基板100及金属栅极200上沉积一层辅助材料,通过曝光显影蚀刻在金属栅极200上得到辅助层300。
s204:在基板及金属栅极200上涂覆一层有机光阻材料,通过曝光显影在基板100的一表面形成功能层400。
s205:在辅助层300和功能层400背对一面形成阳极层500,阳极层500与金属栅极200连接。
其中阳极层500形成的工艺与形成金属栅极200的过程一样,此不赘述。
s206:在阳极层500背对基板100一侧依次形成被测材料层700和发光材料层600,被测材料层700与发光材料层600抵接。
其中,被测材料层700通过沉淀、曝光显影、蚀刻工艺形成,具体的,先在阳极层500上沉淀被测材料,通过曝光显影后将阳极层500上的至少一部分被测材料蚀刻掉,以裸露出阳极层500,供以蒸镀发光材料层600。或者先将发光材料层600蒸镀在阳极层500上,然后再将被测材料沉淀在阳极层500和发光材料层600上,然后将发光材料层600上对应的被测材料蚀刻掉,为步骤s207做好准备。
s207:至少在发光材料层600背对阳极层500一侧形成阴极层800。
通过蒸镀的方式将阴极层800蒸镀在发光材料层600上。在其他实施例中,阴极层800也可以蒸镀延伸至发光材料层700对应的以外区域,例如延伸至被测材料层700上,以使整个装置外观更加平整。
参见图8、图4和图5,为本发明材料性能测试装置的制作方法又一实施例的流程示意图,该方法包括:
s301:提供一基板100。
s302:在基板100上沉积一层金属材料,通过曝光显影蚀刻得到金属栅极200。
s303:在基板100及金属栅极200上沉积一层辅助材料,通过曝光显影蚀刻在金属栅极200上得到辅助层300。
s304:在辅助层300上蚀刻一与金属栅极200连通的辅助孔303,供阳极层500通过辅助孔303与金属栅极200连接。
在其他实施例中,在辅助层300上蚀刻一与金属栅极200连通的辅助孔303的步骤也可以在形成功能层400的步骤之后,只要在s306步骤形成阳极层500之前完成即可。可以理解的,在其他实施例中,也可以不蚀刻所述的辅助孔303,而是在金属栅极200的侧面留一空隙,以供形成阳极层500的过程中沉淀阳极材料时填充,进而实现阳极层500与金属栅极200电连接。具体的,上述间隙可以形成在金属栅极200的侧面与功能层400之间,或者是当辅助层400包括覆盖在基板上的第二本体302时,辅助孔303蚀刻在第二本体302上位于金属栅极200的侧面位置,辅助孔303蚀刻形成之后刚好把金属栅极200的侧面裸露出来,即金属栅极200的一侧面作为辅助孔303的内壁。
s305:在基板100及金属栅极200上涂覆一层有机光阻材料,通过曝光显影在基板100的具有金属栅极200的一侧形成功能层400。
s306:在辅助层300和功能层400上形成阳极层500,阳极层500与金属栅极200电连接。
本实施例中,制作阳极层500的材料在沉淀的时候填充辅助孔303,以实现阳极层500与金属栅极200电连接。
s307:在阳极层500背对基板100一侧形成被测材料层700和发光材料层600,被测材料层700与发光材料层600抵接。
s308:至少在发光材料层600背对阳极层500一侧形成阴极层800。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。