一种滚动轴承早期故障诊断方法与流程

文档序号:15253461发布日期:2018-08-24 20:14阅读:231来源:国知局

本发明属于故障诊断方法领域,更具体地,涉及一种滚动轴承早期故障诊断方法。



背景技术:

滚动轴承是旋转机械中的关键部件之一,其被广泛用于化工、冶金、机械加工、航空等重要领域。滚动轴承经常处在高温、高速、重载等恶劣的工作环境中,导致滚动轴承是最易损坏的元件之一。因此,在旋转机械中,轴承故障诊断的时效性和精确性对提高加工效率和安全生产有着至关重要的作用。目前,针对滚动轴承故障诊断的方法有很多,涉及到的领域也很全面。从早期的时域分析、频域分析,到后来的时频域分析以及现在的机器学习领域。在众多故障诊断方法中,都有着各自的缺陷与限制,导致故障诊断技术应用于实际加工生产中的情况很少。一方面,由于很多机器结构紧凑,没有合适的位置安装传感器,导致采集到的故障信号无法满足实验要求,这就给后续的信号处理带来很大麻烦。另一方面,对预处理后的故障信号进行特征提取是一个难题,目前很多方法无法提取有效的特征,导致无法判断出轴承的工作状态,这也给故障诊断带来了不小麻烦。因此,针对滚动轴承的早期故障诊断变得尤为重要。在特征提取方面,频率特征最能反映出滚动轴承的工作状态。

在频率特征提取方面,首先是白噪声的影响,在实际生产加工中,由于背景噪声较大,轴承实际采集到的故障信号会淹没在背景噪声中,采用何种技术降噪、提高信噪比有待解决。采集到的故障信号中的干扰振动分量同样会影响到频率的提取,减小干扰振动分量的影响也是一直存在的问题。



技术实现要素:

针对现有技术的以上缺陷或改进需求,本发明提供了一种滚动轴承早期故障诊断方法,能够提高滚动轴承早期故障诊断的准确性和有效性。

为实现上述目的,按照本发明,提供了一种滚动轴承早期故障诊断方法,其特征在于,包括以下步骤:

1)采集到的故障信号预处理:对采集到的滚动轴承故障信号进行小波处理和时域同步平均处理,以降低噪声和减少干扰振动分量;

2)特征提取:对预处理后的故障信号进行分段相关性分析,获得包含故障信息较多的信号段,然后对这些信号段进行共振解调处理来提取特征频率;

3)故障类型判别:将提取到的特征频率与滚动轴承已知的故障特征频率相比较,从而判别出故障类型。

优选地,采集到的故障信号f(t)包括轴承振动分量s0(t)、干扰振动分量s(t)和噪声分量n(t),即采集到的故障信号f(t)表示为:

f(t)=s0(t)+s(t)+n(t)(1)

步骤1)中进行时域同步平均处理的具体过程如下:

以轴承振动分量s0(t)的周期t0的整数倍周期t为截取周期去截取信号f(t),共截得m段,然后将截取后的各信号段直接相加,得到新的故障信号f(t′):

其中,t′为新的时间序列,s0(t′)、s(t′)和n(t′)分别为截取后相加的轴承振动分量、干扰振动分量和噪声分量;

c为干扰振动分量的衰减因子且c<1,然后再对新的故障信号f(t′)进行平均,得到输出信号h(t′)为:

则输出信号h(t′)中的噪声分量是采集到的故障信号f(t)中噪声分量的输出信号h(t′)中的干扰振动分量得到抑制,衰减为采集到的故障信号f(t)中的c倍,轴承振动分量的信号得到保留。

优选地,所述分段相关性分析的具体过程如下:

1)对预处理后的故障信号x(t)作分段处理,分段后的故障信号x(t)表示为:

其中,xi(ti)=[xi(ti1),xi(ti2),...,xi(tin)],xi(ti)是分段后的第i段信号,ti是第i段信号的时间序列,i=1,2,...,p;p是分段数,即预处理后的故障信号x(t)一共分解为p段,tik是第i段信号时间序列ti的一系列时间点,k=1,2,...,n,n是每段信号的长度;

2)求取各分段信号xi(ti)与无故障轴承振动信号x0(t)的互相关系数,再根据互相关系数的大小确定所要选取的信号段,具体过程如下:

其中:是分段信号xi(ti)和无故障轴承振动信号x0(t)的互相关函数,是无故障轴承振动信号x0(t)的均值和标准差;分别是各分段信号xi(ti)的均值和标准差;是各分段信号xi(ti)与无故障轴承振动信号x0(t)的互相关系数,i=1,2,...,p;

3)将上面所得的各互相关系数从小到大排序,分别用ρ1,ρ2,...,ρp表示,其中:ρl≤ρl+1,l=1,2,...,p-1;ρ1,ρ2,…,ρp对应的各分段信号分别为y1(t),y2(t),…,yp(t),选择相关系数较小的q组分段信号用于后续处理,即选择y1(t),y2(t),…,yq(t)用于后续处理,其中,q为选择的分段信号数,且q<p,得到待处理的分段信号为:

其中,yd(td)=[yd(td1),yd(td2),...,yd(tdn)],yd(td)是选择的q组信号中的第d段信号,td是第d段信号的时间序列,d=1,2,...,q;q是选择的信号组数;tdk是第d段信号时间序列td的一系列时间点,k=1,2,...,n,n是每段信号的长度。

优选地,所述共振解调方法包括带通滤波和包络解调,其中,所述带通滤波采用切比雪夫滤波器进行带通滤波;所述包络解调将经过带通滤波处理后的各分段信号yi(ti)进行hilbert变换,以求取预处理后的故障信号的包络谱,从包络谱中提取特征频率,其具体过程如下:

a)先获得预处理后的故障信号经hilbert变换后的信号

其中,h[yd(td)]表示对各分段信号yd(td)进行hilbert变换而获得的变换后的信号;

b)获得预处理后的故障信号的解析信号z(t):

其中,j为虚数单位,j2=-1;表示对各分段信号yd(td)进行hilbert变换而获得的变换后的信号;

c)得到预处理后的故障信号的包络信号z(t):

d)对该包络信号z(t)进行快速傅立叶变换处理,获得包络信号的频谱,即包络谱,在包络谱中找到相应的故障特征频率,从而识别出故障类型。

优选地,已知的故障特征频率是指根据主轴转速和轴承各参数确定的轴承内圈、外圈和滚动体的故障频率,其中,轴承各参数包括轴承节径、滚动体直径、接触角、滚动体个数。

优选地,所述干扰振动分量包括机械设备的直线进给振动分量和齿轮的旋转振动分量。

总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:

本发明在采集到的轴承故障信号预处理阶段利用时域同步平均技术减少机械设备的直线进给振动分量和齿轮的旋转振动分量,能够突出预处理后的轴承故障信号;在轴承故障识别阶段,提出的分段相关共振解调法可以准确、快速的识别故障类型。本专业技术人员只需要将该方法用于采集到的轴承故障数据,即可判断出轴承故障类型。

附图说明

图1为本发明的滚动轴承早期故障诊断总体流程图。

图2为本发明的分段相关共振解调法的原理图。

图3为本发明的分段相关共振解调法的执行过程图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

图1为本实施方式的滚动轴承早期故障诊断总体流程图。如图1所示,首先对采集到的故障信号进行预处理;将预处理后的信号进行分段相关共振解调法处理;根据提取到的特征频率与计算所得故障特征频率相比较,判断故障类型。

图2为本实施方式的分段相关共振解调法的原理图。如图2所示,根据采集到的故障信号,利用小波分解与重构技术对原始信号进行降噪处理,提高信噪比。接着利用时域同步平均技术去除采集到的故障信号中的其他频率,以突出采集到的轴承故障信号。时域同步平均处理过程可表示为:

采集到的故障信号f(t)包括轴承振动分量s0(t)、干扰振动分量s(t)和噪声分量n(t),即采集到的故障信号f(t)表示为:

f(t)=s0(t)+s(t)+n(t)(1)

以轴承振动分量s0(t)的周期t0的整数倍周期t为截取周期去截取信号f(t),共截得m段,然后将截取后的各信号段直接相加,得到:

其中,t′为新的时间序列,s0(t′)、s(t′)和n(t′)分别为截取后相加的轴承振动分量、干扰振动分量和噪声分量;

c为干扰振动分量的衰减因子且c<1,然后再对f(t′)进行平均,得到输出信号h(t′)为:

则输出信号h(t′)中的噪声分量是采集到的故障信号f(t)中噪声分量的输出信号h(t′)中的干扰振动分量得到抑制,衰减为采集到的故障信号f(t)中的c倍,轴承振动分量的信号得到保留。

在实施分段相关共振解调处理之前,需要先对预处理后的信号作分段处理,为了将包含故障不同的信号段分开。在进行分段相关共振解调法时,首先对截取的各信号段与轴承正常信号进行相关性分析,即确定它们的互相关系数,根据系数的大小,确定待处理信号段。

确定好待处理信号段后,对各信号段进行共振解调处理,获取各信号段的包络谱,从包络谱中提取信号的频率特征,将提取到的频率特征与计算所得的故障特征频率相比较,即可判别出故障类型,完成故障诊断。

图3为本实施方式的分段相关共振解调法的执行过程图。分段相关共振解调法是本发明的关键步骤。如图3所示,分段相关性分析首先要对采集到的故障信号x(t)作分段处理,分段后的信号表示为:

其中,xi(ti)=[xi(ti1),xi(ti2),...,xi(tin)],xi(ti)是分段后的第i段信号,ti是第i段信号的时间序列,i=1,2,...,p;p是分段数,即预处理后的故障信号一共分解为p段;tik是第i段信号时间序列ti的一系列时间点,k=1,2,...,n,n是每段信号的长度。

相关性分析,即求取各分段信号xi(ti)与无故障轴承振动信号x0(t)的互相关系数,根据互相关系数的大小确定所要选取的信号段,相关性分析过程表示为:

其中:是分段信号xi(ti)和无故障轴承振动信号x0(t)的互相关函数;是信号x0(t)的均值和标准差;是分段信号xi(ti)的均值,i=1,2,...,p;是各分段信号xi(ti)与无故障轴承振动信号x0(t)的互相关系数;

将上面所得的各相关系数从小到大排序,分别用ρ1,ρ2,...,ρp表示。其中:ρl≤ρl+1,l=1,2,...,p-1;ρ1,ρ2,…,ρp对应的分段信号分别为y1(t),y2(t),…,yp(t),选择相关系数较小的q组信号用于后续处理,即:y1(t),y2(t),…,yq(t),其中,q为选择的分段数,且q<p,可得待处理的数据段为:

其中,yd(td)=[yd(td1),yd(td2),...,yd(tdn)],yd(td)是选择的q组信号中的第d段信号,td是第d段信号的时间序列,d=1,2,...,q;q是选择的信号组数;tdk是第d段信号时间序列td的一系列时间点,k=1,2,...,n,n是每段信号的长度。

包络解调方法将经过切比雪夫滤波器带通滤波器处理后的各分段信号进行hilbert变换,以获得预处理后的故障信号的包络信号,进而求取预处理后的故障信号的包络谱,从包络谱中提取特征频率。

a)先获得预处理后的故障信号经hilbert变换后的信号

其中,h[yd(td)]表示对各分段信号yd(td)进行hilbert变换而获得的变换后的信号。

b)获得预处理后的故障信号的解析信号:

其中,j是虚数单位,j2=-1;表示对各分段信号yd(td)进行hilbert变换而获得的变换后的信号。

c)得到预处理后的故障信号的包络信号z(t)为:

d)对该包络信号进行快速傅立叶变换处理,获得包络信号的频谱,即包络谱,在包络谱中可以找到相应的故障特征频率,识别故障类型。

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1