一种零热流感温探头、体温检测装置和使用方法与流程

文档序号:22167892发布日期:2020-09-11 20:46阅读:179来源:国知局
一种零热流感温探头、体温检测装置和使用方法与流程

本申请涉及医疗器械技术领域,特别涉及一种零热流感温探头、体温检测装置和使用方法。



背景技术:

零热流技术在20世纪70年代被提出并得到应用,其要求加热覆盖测量点周围,以阻挡测量点朝外散失热量,影响测量精度。但是由于人体组织的不平整性和延展性,布置在人体测量点周围的加热装置会因为人体运动时的牵拉扰动出现空隙,无法实现对测量点的完整覆盖,难以真正发挥阻挡热流动的功能。



技术实现要素:

本申请的主要目的为提供一种零热流感温探头、体温检测装置和使用方法,旨在解决现有的零热流技术的加热装置无法完整覆盖人体测量点的弊端。

为实现上述目的,本申请提供了一种零热流感温探头,包括柔性加热体和温度传感器,所述温度传感器设置在所述柔性加热体上;

所述温度传感器用于测量温度;

所述柔性加热体用于阻挡所述温度传感器对应的温度测量点的热量散失。

进一步的,所述柔性加热体包括包材、柔性保温体和温控加热装置;

所述温控加热装置与所述温度传感器连接,用于根据所述温度传感器的检测信号执行对应的加热动作;

所述温控加热装置包括加热元件,所述加热元件和所述柔性保温体层叠部署;

所述包材完整包裹所述柔性保温体和所述加热元件;

所述温度传感器设置在所述柔性加热体的外表面,与所述加热元件位于同一侧。

进一步的,所述柔性加热体在所述加热元件的一侧外凸,所述温度传感器部署在所述柔性加热体的外凸区域。

进一步的,所述柔性加热体还包括若干个介质传感器,各所述介质传感器部署在所述柔性加热体内部,均与所述加热元件处于同一层,各所述介质传感器与所述加热元件之间互不接触。

进一步的,所述介质传感器的数量不少于4个,各所述介质传感器围绕所述温度传感器部署。

进一步的,所述加热元件为导电布、导电海绵或导电硅胶,整体铺设在所述柔性加热体内;

所述导电布、所述导电海绵或所导电硅胶上开设有劈空,所述介质传感器设置在所述劈空处。

进一步的,所述感温探头还包括隔热层,所述隔热层设置在所述温度传感器和所述柔性加热体之间。

本申请还提供了一种零热流体温检测装置,包括处理器和如上所述的感温探头;

所述处理器分别与所述温度传感器、所述柔性加热体连接;

所述处理器用于处理所述温度传感器的检测信号和所述柔性加热体的反馈信息。

本申请还提供了一种零热流体温检测装置的使用方法,所零热流体温检测装置为上述的零热流体温检测装置,所述使用方法包括:

实时监控所述温度传感器的检测温度和所述柔性加热体的第一温度是否相同;

若所述检测温度和所述第一温度不相同,则控制所述柔性加热体将所述第一温度调节至与所述检测温度相同;

在所述第一温度调节至与所述检测温度相同后,监控所述检测温度在预设时间段内是否保持不变;

若所述检测温度在预设时间段内保持不变,则将所述检测温度作为第一检测结果。

进一步的,所述使用方法,还包括:

实时监控所述柔性加热体的测量面与温度测量点的贴合度是否达到预设标准,其中,所述测量面为所述柔性加热体布置有所述温度传感器的一面;

若所述柔性加热体的测量面与温度测量点的贴合度没有达到预设标准,则触发报警和热补偿。

进一步的,所述触发热补偿的步骤之后,包括:

对所述第一检测结果添加补偿值,得到第二检测结果;

将所述第二检测结果和标注信息作为输出结果。

本申请中提供的零热流感温探头、体温检测装置和使用方法,感温探头包括柔性加热体和温度传感器,温度传感器设置在柔性加热体上。其中,温度传感器用于测量温度,而柔性加热体用于阻挡温度测量点的热量散失。在使用过程中,温度传感器对准人体测量点进行部署(比如将感温探头夹在腋下),柔性加热体整体受压迫后,由于本身的延展性,柔性加热体部署有温度传感器的一面能够与测量点表面完整接触,填充在人体肌肤之间的空隙,从而形成对测量点的完整覆盖,实现完全阻挡测量点朝外散失热量。温控加热装置与温度传感器连接,能够根据温度传感器的检测温度执行对应的加热动作,最终迫使测量点温度近乎皮下深处的核心温度,有效提高核心温度的测量精度。

附图说明

图1是本申请一实施例中零热流感温探头的截面结构图;

图2是本申请一实施例中零热流感温探头部署在测量点时的截面结构图;

图3是本申请一实施例中介质传感器部署在加热元件的俯视结构图;

图4是本申请一实施例中零热流体温检测装置的整体结构图;

图5是本申请一实施例中零热流体温检测装置的使用方法的步骤流程图。

本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。

具体实施方式

为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。

参照图1、图2,本申请一实施例中提供了一种零热流感温探头3,包括柔性加热体1和温度传感器2;

所述温度传感器2设置在所柔性加热体1上;

所述温度传感器2用于测量温度;

所述柔性加热体1用于阻挡所述温度传感器2对应的温度测量点的热量散失。

优选的,所述柔性加热体1包括包材11、柔性保温体12和温控加热装置;

所述温控加热装置与所述温度传感器2连接,用于根据所述温度传感器2的检测信号执行对应的加热动作;

所述温控加热装置包括加热元件13,所述加热元件13和所述柔性保温体12层叠部署;

所述包材11完整包裹所述柔性保温体12和所述加热元件13;

所述温度传感器2设置在所述柔性加热体1的外表面,与所述加热元件13位于同一侧。

本实施例中,感温探头3包括柔性加热体1和温度传感器2,温度传感器2设置在柔性加热体1上。温度传感器2用于测量温度,在使用温度传感器2对温度测量点(比如人体皮肤表面)进行测量时,柔性加热体1受压紧贴温度测量点。在温度测量点的表面因为用户运动的牵拉扰动出现空隙时,由于柔性加热体1整体具有延展性和弹性,能够自动填充空隙处,从而实现阻挡温度测量点的热量散失。

优选的,柔性加热体1包括包材11、柔性保温体12和温控加热装置。温控加热装置包括加热元件13、温度开关、温度继电器和电源,与温度传感器2连接,能够根据温度传感器2的检测信号,即温度传感器2所测量的检测温度执行对应的加热动作。具体地,温控加热装置用于加热柔性加热体1,温控加热装置需要保证柔性加热体1的第一温度保持与温度传感器2所测量的检测温度保持一致。当温控加热装置检测到被加热物体的第一温度小于温度传感器2的检测温度时,温控加热装置内的继电器闭合电路,加热元件13开始工作,开始加热。当被加热物体的第一温度上升到与检测温度一致时,温度继电器控制温度开关断开,从而切断加热元件13与电源的连接,温控加热装置停止加热。由于温控加热装置在热流失的方向产生跟测量点一致的温度,实现阻挡测量点的热流失,同时也不会主动产生热量影响测量点温度升高,这样就极大提升温度从而测量点到体外的热阻抗。在经过一定时间后,柔性加热体1的温度与温度传感器2所检测的温度,即测量点的温度保持一致,此时测量点的温度就会等同于人体皮下深处的核心体温,有效提高体温检测的精准度。优选的,加热元件13和柔性保温体12设置在柔性加热体1内部,两者之间层叠部署。包材11将柔性保温体12和加热元件13完整包裹,形成整体具有弹性形变能力的柔性加热体1。温控加热装置的其他元器件,比如温度继电器、温度开关等,可以部署在柔性加热体1内部,也可以设置在柔性加热体1外部(比如设置在包材11外表面),本领域技术人员可以根据需要进行相应的位置部署,在此不做限定。温度传感器2设置在柔性加热体1的外表面,即安装在包材11上,并且温度传感器2与加热元件13位于柔性加热体1的同一侧。感温探头3在使用时,将温度传感器2对准人体测量点进行布置,而柔性加热体1布置有温度传感器2的一面则贴合在测量点表面(即人体皮肤)。柔性加热体1本身具有良好的弹性和延展性,在整体受压迫后(比如感温探头3被夹在腋下),会发生一定的形变,柔性加热体1会填充在人体肌肤之间的空隙。即使感温探头3部署后,用户产生肢体动作导致人体组织之间相互牵拉扰动,测量点表面的平整性发生变化,具有弹性和延展性的柔性加热体1也会在压迫力的作用下产生与测量点表面相应的形变,从而使得柔性加热体1部署有温度传感器2的一面能够与测量点表面完整接触,形成对测量点的完整覆盖,避免人体所产生的热量和/或温控加热装置所产生的的热量从人体肌肤的空隙处流散,实现完全阻挡测量点朝外散失热量。

本实施例中,柔性保温体12优选为海绵、棉花等具有弹性、透气性和保温性能的填充材料,而包材11同样采用具有良好透气性的布料等织物。由于零热流体温计大多数情况下是长时间连续测量体温,感温探头3需要压迫覆盖在体表。因此,具有良好透气性的柔性加热体1能够大幅度减小对皮肤的刺激,提高用户的使用体验。

进一步的,所述柔性加热体1在所述加热元件13的一侧外凸,所述温度传感器2部署在所述柔性加热体1的外凸区域。

本实施例中,柔性加热体1在布置有加热元件13的一侧外凸,温度传感器2则部署在柔性加热体1的外凸区域。外凸的柔性加热体1可以更好地压迫测量点表面,完整覆盖测量点表面凹凸不平的皮肤。而温度传感器2设置在柔性加热体1的外凸区域,则可以使得温度传感器2更好地与测量点表面紧密接触。优选的,外凸区域位于柔性加热体1中心。温度传感器2部署在测量点表面后,温度传感器2本体的体积会将柔性加热体1的表面撑起一定空间,而外凸区域位于柔性加热体1中心,能够使得柔性加热体1与测量点表面的接触区域分布均匀(以温度传感器2为中心分布),柔性加热体1能够更好的保证对测量点区域的完整覆盖,有效提高零热流体温测量的精准度,也方便用户部署感温探头3。

进一步的,所述柔性加热体1还包括若干个介质传感器14,各所述介质传感器14部署在所述柔性加热体1内部,均与所述加热元件13处于同一层,各所述介质传感器14与所述加热元件13之间互不接触。

优选的,参照图3,所述介质传感器14的数量不少于4个,各所述介质传感器14围绕所述温度传感器2部署。

本实施例中,柔性加热体1还包括若干个介质传感器14,各个介质传感器14均部署在柔性加热体1内部,并且均与加热元件13处于柔性加热体1内的同一层。介质传感器14与加热元件13之间互不接触,从而避免因加热元件13发热,损坏介质传感器14。介质传感器14用于检测感温探头3测量体温的过程中,柔性加热体1是否与测量点表面(即人体皮肤)完全接触。具体地,介质传感器14优选为电容传感器,电容传感器根据与人体皮肤之间的不同距离,会输出不同的电容值。由于电容传感器与加热文件处于同一层,因此设计人员可以根据电容传感器的型号等,设置有对应的电容值区间,该电容值区间实质上表征加热元件13所处的这一层与测量点表面的距离区间。其中,设计人员所设定的电容值区间,为柔性加热体1与测量点表面完全接触所对应的距离区间。当各个电容传感器所输出的电容值均在电容值区间,则说明柔性加热体1与测量点完全接触,或者说柔性加热体1与测量点的贴合度达到预设标准,柔性加热体1能够实现对测量点的完整覆盖,当前次所测得的温度值具有高置信度,有效保证了测量的精准度。而当出现一个或多个电容传感器所输出的电容值不在电容值区间时,则该电容传感器部署位置所对应的柔性加热体1区域,与测量点表面脱离,柔性加热体1与测量点的贴合度没有达到预设标准,即柔性加热体1并没有实现对测量点的完整覆盖。因此,当前次所测得的温度值的置信度低,需要对检测结果进行热补偿。

优选的,介质传感器14的数量不少于4个,各个介质传感器14以温度传感器2为中心,围绕温度传感器2进行部署。其中,各个介质传感器14之间的间隔距离相等,从而使得各介质传感器14分布均匀。感温探头3在使用时,温度传感器2需要与测量点紧密接触,因此介质传感器14的数量选择不少于4个,并且各个介质传感器14围绕温度传感器2进行部署,能够最大限度的保证温度传感器2周边的柔性加热体1与测量点表面完全接触,提高介质传感器14的监测效率。

进一步的,所述加热元件13为导电布、导电海绵或导电硅胶,整体铺设在所述柔性加热体1内;

所述导电布、所述导电海绵或所导电硅胶上开设有劈空,所述介质传感器14设置在所述劈空处。

本实施例中,加热元件13优选为导电布、导电海绵或导电硅胶,整体为大面积的块状,具有形变能力,能够整体铺设在柔性加热体1内,与柔性保温体12形成不同的分层。导电布、导电海绵或导电硅胶上开设有劈空,其中,整块的加热布料(即导电布、导电海绵或导电硅胶)上面有一些缺损,这些缺损可以部署那些不能接触到加热元件13的元件,工艺上这种故意缺损的地方就叫劈空。各个介质传感器14分别部署在导电布、导电海绵或导电硅胶上的劈空处,以避免与加热直接接触。

进一步的,所述感温探头3还包括隔热层,所述隔热层设置在所述温度传感器2和所述柔性加热体1之间。

本实施例中,感温探头3还包括隔热层,该隔热层由常规的隔热材料制成。隔热层优选为隔热膜,具有一定的形变能力,同时厚度较小。隔热层设置在温度传感器2与柔性加热体1之间,避免升温后的柔性加热体1对温度传感器2造成损害。

本实施例提供的零热流感温探头3,包括柔性加热体1和温度传感器2,柔性加热体1包括包材11、柔性保温体12和温控加热装置。温控加热装置包括加热元件13,加热元件13和柔性保温体12层叠部署,而包材11完整包裹柔性保温体12和加热元件13,从而形成整体具有弹性形变的柔性加热体1。温度传感器2部署在柔性加热体1的外表面,与加热元件13处于同一侧。在使用过程中,温度传感器2对准人体测量点进行部署(比如将感温探头3夹在腋下),柔性加热体1整体受压迫后,由于本身的延展性,柔性加热体1部署有温度传感器2的一面能够与测量点表面完整接触,填充在人体肌肤之间的空隙,从而形成对测量点的完整覆盖,实现完全阻挡测量点朝外散失热量。温控加热装置与温度传感器2连接,能够根据温度传感器2的检测温度执行对应的加热动作,迫使测量点温度近乎皮下深处的核心温度,有效提高温度的测量精度。

参照图4,本实施例还提供一种零热流体温检测装置,包括处理器和上述的感温探头3;

所述处理器分别与所述温度传感器2、所述柔性加热体1连接;

所述处理器用于处理所述温度传感器2的检测信号和所述柔性加热体1的反馈信息。

本实施例中,零热流体温检测装置包括处理器和上述的零热流感温探头3(以下简称感温探头3),处理器分别与温度传感器2、柔性加热体1连接。具体地,处理器与柔性加热体1内的温控加热装置连接,处理器用于处理温度传感器2的检测信号和柔性加热体1的反馈信息。感温探头3包括柔性加热体1和温度传感器2,其中,柔性加热体1包括包材11、柔性保温体12和温控加热装置。温控加热装置包括加热元件13、温度开关、温度继电器和电源,与温度传感器2连接,能够根据温度传感器2的检测信号,即温度传感器2所测量的检测温度执行对应的加热动作。具体地,温控加热装置用于加热柔性加热体1,温控加热装置需要保证被加热物体,即柔性加热体1的第一温度保持与温度传感器2所测量的检测温度保持一致。当温控加热装置检测到被加热物体的第一温度小于温度传感器2的检测温度时,温控加热装置内的继电器闭合电路,加热元件13开始工作,开始加热。当被加热物体的第一温度上升到与检测温度一致时,温度继电器控制温度开关断开,从而切断加热元件13与电源的连接,温控加热装置停止加热。由于温控加热装置在热流失的方向产生跟测量点一致的温度,实现阻挡测量点的热流失,同时也不会主动产生热量影响测量点温度升高,这样就极大提升温度从而测量点到体外的热阻抗。在经过一定时间后,柔性加热体1的温度与温度传感器2所检测的温度,即测量点的温度保持一致,此时测量点的温度就会等同于人体皮下深处的核心体温,有效提高体温检测的精准度。优选的,加热元件13和柔性保温体12设置在柔性加热体1内部,两者之间层叠部署。包材11将柔性保温体12和加热元件13完整包裹,形成整体具有弹性、延展性的柔性加热体1。温控加热装置的其他元器件,比如温度继电器、温度开关等,可以部署在柔性加热体1内部,也可以设置在柔性加热体1外部(比如设置在包材11外表面),本领域技术人员可以根据需要进行相应的位置部署,在此不做限定。温度传感器2设置在柔性加热体1的外表面,即安装在包材11上,并且温度传感器2与加热元件13位于柔性加热体1的同一侧。感温探头3在使用时,将温度传感器2对准人体测量点进行布置,而柔性加热体1布置有温度传感器2的一面则贴合在测量点表面(即人体皮肤)。柔性加热体1本身具有良好的弹性和延展性,在整体受压迫后(比如感温探头3被夹在腋下),会发生一定的形变,柔性加热体1会填充在人体肌肤之间的空隙。即使感温探头3部署后,用户产生肢体动作导致人体组织之间相互牵拉扰动,测量点表面的平整性发生变化,具有弹性和延展性的柔性加热体1也会在压迫力的作用下产生与测量点表面相应的形变,从而使得柔性加热体1部署有温度传感器2的一面能够与测量点表面完整接触,形成对测量点的完整覆盖,避免人体所产生的热量和/或温控加热装置所产生的的热量从人体肌肤的空隙处流散,实现完全阻挡测量点朝外散失热量。

体温检测装置在使用过程中,处理器实时监控温度传感器2的检测温度和温控加热装置的被加热物体(即柔性加热体1)的第一温度是否相同。若检测温度和第一温度不相同,则控制温控加热装置进行发热,将柔性加热体1整体的第一温度调节至与温度传感器2所测量的检测温度相同。在第一温度调节至与检测温度相同后,处理器监控检测温度在预设时间段内是否保持不变。若检测温度在预设时间段内保持不变,则说明温度传感器2在人体皮肤表面所测量得到的检测温度等同于人体皮下的核心温度,此时处理器将检测温度作为第一检测结果,通过体温检测装置的显示装置4输出。

优选的,柔性加热体1内还部署有若干个介质传感器14,其工作原理和部署位置如上所述。处理器分别于各个介质传感器14连接,接收各个介质传感器14输出的电容值,从而可以通过各个介质传感器14所输出的电容值判断柔性加热体1整体是否与测量点表面完全接触。具体地,介质传感器14优选为电容传感器,电容传感器根据与人体皮肤之间的不同距离,会输出不同的电容值。由于电容传感器与加热文件处于同一层,因此设计人员可以根据电容传感器的型号等,设置有对应的电容值区间,该电容值区间实质上表征加热元件13所处的这一层与测量点表面的距离区间。其中,设计人员所设定的电容值区间,为柔性加热体1与测量点表面完全接触所对应的距离区间。当各个电容传感器所输出的电容值均在电容值区间,则说明柔性加热体1与测量点完全接触,或者说柔性加热体1与测量点的贴合度达到预设标准。而当处理器发现出现一个或多个电容传感器所输出的电容值不在电容值区间时,则说明电容值不在电容值区间的电容传感器部署位置所对应的柔性加热体1区域,与测量点表面脱离,柔性加热体1并没有实现对测量点的完整覆盖。此时,处理器会触发报警机制,通知用户当前次的测量结果置信度低,感温探头3没有完整覆盖测量点。并且,处理器需要对感温探头3所测得的测量结果进行热补偿。具体地,处理器对所述第一检测结果(即感温探头3当前次所测得的测量结果)添加补偿值,得到第二检测结果,然后将第二检测结果作为最终的输出结果,输出到显示装置4。比如,当前次感温探头3测量的第一检测结果是37.1℃,处理器会在第一检测加过的基础上添加补偿值,得到第二检测结果37.3℃。其中,补偿值的设定由设计人员预先设定后存储在处理器内,设计人员可以通过多次的实验得到补偿值,在此不做详述。

本实施例提供的零热流体温检测装置,包括处理器和感温探头3,感温探头3包括柔性加热体1和温度传感器2,柔性加热体1包括包材11、柔性保温体12和温控加热装置。温控加热装置包括加热元件13,加热元件13和柔性保温体12层叠部署,而包材11完整包裹柔性保温体12和加热元件13,从而形成整体具有弹性形变的柔性加热体1。温度传感器2部署在柔性加热体1的外表面,与加热元件13处于同一侧。在使用过程中,温度传感器2对准人体测量点进行部署(比如将感温探头3夹在腋下),柔性加热体1整体受压迫后,由于本身的延展性,柔性加热体1部署有温度传感器2的一面能够与测量点表面完整接触,填充在人体肌肤之间的空隙,从而形成对测量点的完整覆盖,实现完全阻挡测量点朝外散失热量。温控加热装置与温度传感器2连接,能够根据温度传感器2的检测温度执行对应的加热动作,迫使测量点温度近乎皮下深处的核心温度,有效提高温度的测量精度。

参照图5,本实施例还提供一种零热流体温检测装置的使用方法,所零热流体温检测装置为上述的零热流体温检测装置,所述使用方法包括:

s1:实时监控所述温度传感器2的检测温度和所述柔性加热体1的第一温度是否相同;

s2:若所述检测温度和所述第一温度不相同,则控制所述柔性加热体1将所述第一温度调节至与所述检测温度相同;

s3:在所述第一温度调节至与所述检测温度相同后,监控所述检测温度在预设时间段内是否保持不变;

s4:若所述检测温度在预设时间段内保持不变,则将所述检测温度作为第一检测结果。

本实施例中,体温检测装置通过感温探头3的温度传感器2获取测量点的检测温度;同时可以通过温控加热装置本身的温度敏感单元(温度敏感单元可以为温度传感器),获取被温控加热装置的加热元件13所加热的整个柔性加热体1,即被加热物体的第一温度。上述在感温探头3的工作原理中已说明,温控加热装置会根据温度传感器2的检测温度进行相应的加热动作,温控加热装置会保证被加热物体的第一温度保持与温度传感器2所测量的检测温度保持一致,以实现阻挡测量点朝周围热流失,最终迫使温度传感器2在测量点(人体皮肤表面)所测得的温度接近甚至与人体皮下深度的核心体温一致。体温检测装置会实时监控温度传感器2的检测温度和温控加热装置的被加热物体的第一温度是否相同。如果检测温度和第一温度不相同,则体温检测装置会控制温控加热装置工作,通过加热元件13将被加热物体的第一温度调节至与温度传感器2测量的检测温度相同。并且,在体温检测装置监控到被加热物体的第一温度已调节至于检测温度相同后,需要监控温度传感器2在测量点所测量的检测温度是否在预设时间段内保持不变。若检测温度在预设时间段内发生变化,比如温度升高,则说明温度传感器2当前所测得的检测温度与人体皮下深处的核心体温不一致,此时温度检测装置需要通过温控加热装置再次调整柔性加热体1的第一温度。若检测温度在预设时间段内保持不变,则说明温度传感器2当前所测得的检测温度近乎、甚至与人体皮下深处的核心体温一致,其测量精准度高,体温检测装置将检测温度作为当前次温度检测的第一检测结果。后续体温检测装置可以将第一检测结果输出到显示界面,以便用户知悉体温测量结果。

进一步的,所述使用方法,还包括:

s5:实时监控所述柔性加热体1的测量面与温度测量点的贴合度是否达到预设标准,其中,所述测量面为所述柔性加热体1布置有所述温度传感器2的一面;

s6:若所述柔性加热体1的测量面与温度测量点的贴合度没有达到预设标准,则触发报警和热补偿。

本实施例中,体温检测装置的柔性加热体1内部署有若干个介质传感器14,因此体温检测装置在体温检测的整个过程中,都可以通过各个介质传感器14所输出的电容值,实时监控柔性加热体1的测量面与温度测量点的贴合度是否达到预设标准。其中,测量面是指柔性加热体1布置有温度传感器2的一面,在使用感温探头3进行体温检测时,测量面需要与测量点表面完全接触,或者说两者之间的贴合度达到预设标准,以阻挡测量点朝周围热流失。预设标准的值根据不同形状、不同大小的柔性加热体1具有不同的设定,具体由设计人员根据实验结果进行相应的设定,在此不做详述。具体地,介质传感器14优选为电容传感器,电容传感器根据与人体皮肤之间的不同距离,会输出不同的电容值。由于电容传感器与加热文件处于同一层,因此设计人员可以根据电容传感器的型号等,设置有对应的电容值区间,该电容值区间实质上表征加热元件13所处的这一层与测量点表面的距离区间。其中,设计人员所设定的电容值区间,为柔性加热体1与测量点表面完全接触所对应的距离区间。当各个电容传感器所输出的电容值均在电容值区间,则说明柔性加热体1与温度测量点的贴合度达到预设标准。而当处理器发现出现一个或多个电容传感器所输出的电容值不在电容值区间时,则说明电容值不在电容值区间的电容传感器部署位置所对应的柔性加热体1区域,与测量点表面脱离,柔性加热体1与温度测量点的贴合度没有达到预设标准,柔性加热体1并没有实现对测量点的完整覆盖。体温检测装置如果检测到柔性加热体1的测量面与温度测量点的贴合度没有达到预设标准,则会触发报警和热补偿。具体地,体温检测装置触发报警机制后,通知用户当前次的测量结果置信度低,感温探头3没有完整覆盖测量点。并且,体温检测装置需要对感温探头3所测得的测量结果进行热补偿,对第一检测结果添加补偿值,得到第二检测结果。最后,体温检测装置将第二检测结果和标注信息作为输出结果,其中,标注信息为触发报警机制后的备注信息,用于说明当前次所输出的第二检测结果是通过补偿机制所得,置信度较低。

进一步的,所述触发热补偿的步骤之后,包括:

s7:对所述第一检测结果添加补偿值,得到第二检测结果;

s8:将所述第二检测结果和标注信息作为输出结果。

本实施例中,体温检测装置对第一检测结果添加补偿值,得到第二检测结果,然后将第二检测结果作为最终的输出结果,输出到显示装置4。比如,当前次感温探头3测量的第一检测结果是37.1℃,处理器会在第一检测加过的基础上添加补偿值,得到第二检测结果37.3℃。其中,补偿值的设定由设计人员预先设定后存储在处理器内,设计人员可以通过多次的实验得到补偿值,在此不做详述。

本实施例提供的零热流体温检测装置的使用方法,体温检测装置利用温控加热装置在测量点热流失的方向产生跟测量点一致的温度,阻挡测量点朝周围热流失。并且,温控加热装置也不会主动产生热量影响测量点温度升高,极大地提升了温度测量点到体外的热阻抗,最终迫使测量点的温度近乎、甚至等同于皮下深处的核心体温,有效提高了体温检测装置的测量精准度。

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其它要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。

以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1