基于烧结实际生产条件下的铁矿粉液相流动性检测方法

文档序号:24544869发布日期:2021-04-06 11:58阅读:268来源:国知局
基于烧结实际生产条件下的铁矿粉液相流动性检测方法

本发明为炼铁烧结技术领域,涉及一种基于烧结实际生产条件下的铁矿粉液相流动性的检测方法。



背景技术:

烧结矿作为我国高炉最主要的含铁原料,其质量优劣直接关系到高炉顺行程度及技经指标情况。在烧结矿生产过程中,铁矿粉搭配一定比例的熔剂、燃料、返矿以及钢铁企业内部固体废弃物等物料充分混匀,在烧结温度下,部分混合料熔融液化形成液相并向四周铺展黏结周围细粉颗粒,在冷却作用下形成液相固结生成烧结矿。烧结液相流动性过大或过小,引起粘结相强度变化,都会导致烧结矿强度、粒度组成、冶金性能、烧结机利用系数等技经指标恶化。因此,适宜的液相流动性是衡量和表征铁矿粉高温烧结性能的重要指标之一,是保证烧结矿质量的基础,关于铁矿粉液相流动性的检测也进行了大量研究。

中国专利cn102809579a公布了一种烧结铁矿石高温成矿特性的检测方法,通过采用综合热分析仪测定烧结过程中液相生成的动态变化;中国专利cn105463188a公布了一种测定铁矿粉烧结液相流动性能的方法,采用可视化技术记录液相生成过程;中国专利cn109490351a公布了一种铁矿粉液相流动性的检测方法,采用分级检测法测定铁矿粉不同粒级的高温特性;中国专利cn106769661a公布了一种铁矿石粉液相流动性的评价方法,测定了烧结温度、碱度参数对流动性的影响。北京科技大学吴胜利教授在国内率先提出了一套基于铁矿粉基础特性定量评价体系,被广泛应用于指导烧结配矿生产。文献资料《铁矿粉烧结液相流动特性》、《铁矿粉烧结液相流动性评价》、《烧结过程中铁矿粉的液相流动性及其互补配矿方法的研究》等对铁矿粉液相流动性进行了相关研究。

但上述检测方法未充分考虑烧结实际生产情况,均存在如下弊端:一是在烧结实际生产中,烧结配矿以平衡sio2为基准,虽各个钢铁企业由于铁矿粉资源条件不同,烧结矿sio2的实际控制水平也有所差异,但在sio2控制相对稳定的前提下,烧结成品矿二元碱度一般控制在2.0-2.2之间,cao质量分数也基本稳定在某一水平区间,而上述检测方法多以采用固定二元碱度为4.0作为单一铁矿粉液相流动性的测定基础,人为因素提高了铁矿粉中cao的有效成分;二是在烧结生产使用钙灰作为熔剂,钙灰中cao质量分数77%-80%、sio2质量分数3.5%-4.5%、mgo质量分数1.5%-2.0%,其sio2、mgo成分会对铁矿粉本身液相生成及流动延展性产生一定的干扰,但上述方法采用的是分析纯cao试剂,其cao质量分数高达99.9%以上;三是关于反应后形成的不规则形状熔融体的垂直投影面积未给出详尽的计算方法。上述检测方法,特别是针对高硅铁矿粉配入了过量且离散度更好的纯cao,人为增大了cao与sio2、fe2o3等成分的有效接触面积,不能与烧结真实生产过程相吻合,铁矿粉的液相流动性检测结果与其在实际生产过程中的液相生成及流动特性存在一定偏离性,无法完全有效表征烧结生产过程,依据上述方法的检测结果,在采用互补性原则进行烧结配矿时会出现一定偏差。



技术实现要素:

本发明目的是提供一种基于烧结实际生产条件下的铁矿粉液相流动性的检测方法,根据生产现场原料条件,最大限度模拟实际生产情况,使铁矿粉液相流动性检测结果更加贴合生产实际,以便准确、高效、简便的指导现场烧结配矿生产,有效解决背景技术中存在的上述问题。

本发明的技术方案是:基于烧结实际生产条件下的铁矿粉液相流动性的检测方法,包含如下步骤:

1)前期准备:在有机玻璃板上刻画出等距网格线,本发明为5mm×5mm的单位网格,采用微分法+割补法计算熔融后试样的垂直投影面积。为提高数据结果的精确度和准确性,可根据加工能力,进一步缩小单位网格边长,提高测量精度。

2)试样准备:本发明选用烧结生产现场的钙灰作为熔剂,将钙灰与待测铁矿粉试样在105℃温度下,烘干2个小时;烘干后的钙灰和铁矿粉进行研磨,并过-200目工艺筛,取筛下物化验cao、sio2质量分数。

3)试样制备:以烧结矿中cao质量分数的实际值或某一设定的固定值为试验基准,确定钙灰与铁矿粉的配料结构;将配比好的混合料充分混匀后称重3.5g,置于磨具中,设定压力机压力260mpa,压制成直径15mm、高6mm的圆柱体试样;为提高试验精准度,每批次试样可同时制备三个,并置于表面光滑的耐高温载板平台上;

4)熔融试验:将三个试样同时放入加热炉内,按照烧结现场升温曲线,将加热炉温度升至1280℃后,恒温20min;待试样自然冷却后,放置于步骤1)所述的带有等距网格的有机玻璃板下方,采用微分法+割补法计算熔融后试样的垂直投影面积;

5)流动性指数计算:s熔/s原

式中,s熔为熔融后面积、s原为试样原始面积

6)取每种铁矿粉单次试验的三个试样流动性指数的均值,作为该种铁矿粉的流动性指数。

7)以固定铁混料cao质量分数,作为多种铁矿粉之间液相流动性横向比对的基础条件,根据上述检测方法绘制流动性指数对比图,以此为依据指导烧结配矿。

本发明和现有检测方法相比,具有如下有益效果:

该检测方法以烧结实际生产为前提,最大限度模拟烧结生产的原辅料条件及微观过程。以生产现场通用的钙灰为熔剂,充分考虑钙灰中sio2、mgo等杂质成分对铁矿粉自身流动性检测结果的影响;以固定cao质量分数来模拟烧结矿的实际成分,在充分混匀的前提下,保证了单种铁矿粉在单位配比条件下与钙灰中cao相接触的机会是均等的,在此基础上根据单种铁矿粉液相流动性能的高低优化烧结配矿结构。该检测方法可有效避免传统方法(固定二元碱度r=4.0),特别是针对高硅铁矿粉,人为因素增大混合料中cao有效组分的弊端,确保铁矿粉液相流动性检测结果更加贴合生产实际。

该检测方法是一种基于烧结实际生产条件下的铁矿粉液相流动性的检测,具有操作容易、设备简单、试验成本低、精准度高等特点,充分模拟烧结矿实际生产过程,更适合于企业烧结技术人员现场操作。

附图说明

为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。

本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。

图1为根据一示范性实施例示出的一种两种检测方法液相流动性指数比对图;

图2为基于烧结实际生产条件下的铁矿粉液相流动性的检测方法的流程图。

具体实施方式

为了更加详细说明本发明的技术方案,下面通过实施例进行详细阐述,需要特别说明的是,本发明中的实施例及实施例中的特征并非是对本发明技术方案的限定,在不冲突的情况下,本发明中的实施例及实施例中的技术特征可以相互结合。

实施例总体思路及实施步骤如下:

1)前期准备:在有机玻璃板上刻画出等距网格线,本发明为5mm×5mm的单位网格,采用微分法+割补法计算熔融后试样的垂直投影面积。

2)试样准备:本发明选用烧结生产现场的钙灰作为熔剂,将钙灰与待测铁矿粉试样在105℃温度下,烘干2个小时;烘干后的钙灰和铁矿粉进行研磨,并过-200目工艺筛,取筛下物化验cao、sio2质量分数。

3)试样制备:以烧结矿中cao质量分数的实际值或设定某一固定值为前提,设定混合料中cao质量分数为恒定量,并根据钙灰和铁矿粉cao、sio2质量分数,确定钙灰与铁矿粉的结构配比;将配比好的混合料充分混匀后称重3.5g,置于磨具中,设定压力机压力260mpa,压制成直径15mm、高6mm的圆柱体试样;为提高试验精准度,每批次试样可同时制备三个,并置于表面光滑的耐高温载板平台上;

3)熔融试验:将三个试样同时放入加热炉内,按照烧结现场升温曲线,将加热炉温度升至1280℃后,恒温20min;待试样自然冷却后,放置于步骤1)所述带有等距网格的有机玻璃板下方,采用微分法+割补法计算熔融后试样的垂直投影面积;

4)流动性指数计算:s熔/s原

式中,s熔为熔融后面积、s原为试样原始面积

5)取每种铁矿粉单次试验的三个试样流动性指数的均值,作为该种铁矿粉的流动性指数。

6)以固定cao质量分数,作为多种铁矿粉之间液相流动性横向比对的基础条件,根据上述检测方法绘制流动性指数对比图,以此为依据指导烧结配矿。

本发明实施例铁矿粉工业分析如表1所示。

表1铁矿粉工业分析/%

本发明实施例以恒定碱度和恒定cao质量分数两种方法测定铁矿粉流动性指数比对情况如图1所示。

从实施例铁矿粉液相流动性检测结果,如图1所示,可以明显看出:两种检测方法的最终结果截然相反,现有技术(固定二元碱度r=4.0)铁矿粉液相流动性指数由高到低依次为:一钢粉﹥超特粉﹥fmg﹥蒙古粉﹥澳粉﹥pb粉﹥卡粉≧pmc粉;而恒定混合料cao质量分数时检测的上述铁矿粉液相流动性指数由高到低依次为:卡粉﹥蒙古粉﹥pb粉﹥fmg≧澳粉﹥一钢粉≧pmc超特粉。

分析认为:现有技术将sio2视为影响液相生成的最主要组分,恒定混合料二元碱度为4.0时,铁矿粉sio2质量分数升高,相应配入大量的cao,液相生成量大,铁矿粉液相流动性指数基本与其sio2质量分数呈正向关系。但在实际生产中,生产高碱度烧结矿,混合料中可参与化学反应的有效cao组分高低是影响铁矿粉液相产生及流动延展能力的关键因素之一。当模拟烧结矿实际成分恒定cao质量分数时,低硅铁矿粉(实施例中sio2质量分数较低的卡粉和pmc粉)由于铁酸钙液相生成,表现出良好的液相流动性;高硅铁矿粉(实施例中sio2质量分数较高的一钢粉和超特粉)在烧结温度下形成高熔点物质,熔融物黏度增大,液相流动性能变差。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1