一种3D打印隧道模型应用压电传感器的监测方法

文档序号:25291884发布日期:2021-06-01 17:43阅读:134来源:国知局
一种3D打印隧道模型应用压电传感器的监测方法

本发明涉及3d打印技术领域,特别是涉及一种3d打印隧道模型应用压电传感器的监测方法。



背景技术:

地质试验模型是岩体工程安全性研究的重要手段,可以为岩土科学项目研究提供基础性、机理性和直观性的结果。传统地质模型制作通常采用块体堆砌或者相似材料填筑的方法,不仅需要大量不规则的模板辅助模型成型,而且成型精度难以保证,特别是无法制作地质模型内部的结构面、夹层和洞室等隐蔽缺陷。

目前基于传统浇筑和混凝土3d打印这两种模型制作方式,模型内部监测构件的埋设方法有直埋法和钻孔灌浆(水泥砂浆或硅胶)法。但直埋法适用于少量传感器以线型等简单形式埋设,对于单层布设多根传感器、埋设方式复杂的情况,具有人工定位速度缓慢、精度差等缺点,并且由于上层混凝土的浇筑和振捣使得传感器产生一定的位移;钻孔灌浆法具有影响结构整体性和强度、减弱模型内部监测构件的监测精度等缺陷,且对于模型内部监测构件的选择上普遍达不到频响范围宽、响应速度快、结构简单、功耗少、成本低的目的。因此,为了解决上述问题,本发明提供一种3d打印隧道模型应用压电传感器的监测方法来解决压电传感器埋设精确度不高,且模型内部监测精度不高的问题。



技术实现要素:

本发明的目的是提供一种3d打印隧道模型应用压电传感器的监测方法来达到提高压电传感器埋设精确度和模型内部监测精度的目的。

为实现上述目的,本发明提供了如下方案:

本发明提供一种3d打印隧道模型应用压电传感器的监测方法,包括以下步骤:

利用3d打印设备打印隧道模型,并将压电传感器埋设在指定位置;

所述压电传感器包括至少一组压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器,所述压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器布设在所述隧道模型洞口周向的同一截面;

利用在所述隧道模型外部的与所述压电陶瓷机敏模块驱动器相连接的波形发生器发射激励信号,激励所述压电陶瓷机敏模块驱动器发射应力波信号,所述压电陶瓷机敏模块接收器接收所述应力波信号并传输至所述隧道模型外部的数字化采集器;

所述数字化采集器对所述应力波信号进行分析,分解不同结构状态下的应力波信号,获取不同节点的应力波节点能量,通过同一所述节点能量下的变化情况判断结构的健康状况,最终达到结构损伤的监控。

优选的,所述压电陶瓷机敏模块接收器与所述数字化采集器之间连接有数字滤波器。

优选的,所述压电陶瓷机敏模块驱动器与所述波形发生器通过信号线连接,所述压电陶瓷机敏模块接收器与所述数字化采集器之间通过信号线连接。

优选的,所述压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器在安装之前用酒精除去表面的氧化膜,待表面干燥后在其外围覆盖一层液体绝缘胶。

优选的,所述压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器在埋入所述隧道模型之前两侧均粘接有粘结块,所述粘结块对所述压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器形成包裹状态。

优选的,所述压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器均通过粘接剂与所述粘结块粘接,所述粘接剂为加入水泥干粉的环氧树脂。

优选的,所述粘结块的材质与所述隧道模型的材质相同。

优选的,所述压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器与所述粘结块粘接完成后,在25℃的温度下静置6小时。

本发明相对于现有技术取得了以下技术效果:

1.本发明中利用3d打印技术在隧道模型中埋设压电传感器的方式,实现对压电传感器埋入的精准定位,同时,压电传感器具有频响范围宽、响应速度快、结构简单、功耗少、成本低等优点,由其构成的结构健康监测系统能够灵敏的感应监测到结构损伤的存在和强度的变化情况。

2.本发明中压电陶瓷机敏模块接收器与数字化采集器之间连接有数字滤波器,过滤掉应力波信号中的低频噪音信号,然后传输至数字化采集器采集分析,没有了低频噪音信号的干扰可以得到更加准确的分析结构,变相的提高了压电传感器的监测精度。

3.本发明中压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器在安装之前用酒精除去表面的氧化膜,待表面干燥后在其外围覆盖一层液体绝缘胶,可以有效的保护压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器在打印完毕后与隧道模型的材料发生反应,从而影响压电传感器的使用寿命和使用精度。

4.本发明中压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器在埋入隧道模型之前两侧均粘接有粘结块,粘结块对压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器形成包裹状态,当隧道模型在进行3d打印过程时,包裹状态的粘结块可以对压电陶瓷感应器形成保护作用,避免了打印材料下落冲击过程中对压电陶瓷感应器产生损伤,进而影响压电陶瓷感应器本身的使用问题。

附图说明

为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

附图1为本发明的3d打印隧道模型应用压电传感器的监测方法流程图;

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明的目的是提供一种3d打印隧道模型应用压电传感器的监测方法来达到提高压电传感器埋设精确度和模型内部监测精度的目的。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

参考图1,本发明公开了一种3d打印隧道模型应用压电传感器的监测方法,包括以下步骤:利用3d打印设备打印隧道模型,并将压电传感器埋设在指定位置;压电传感器包括至少一组压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器,压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器布设在隧道模型洞口周向的同一截面;利用在隧道模型外部的与压电陶瓷机敏模块驱动器相连接的波形发生器发射激励信号,激励压电陶瓷机敏模块驱动器发射应力波信号,压电陶瓷机敏模块接收器接收应力波信号并传输至隧道模型外部的数字化采集器;数字化采集器对应力波信号进行分析,分解不同结构状态下的应力波信号,获取不同节点的应力波节点能量,通过同一节点能量下的变化情况判断结构的健康状况,最终达到结构损伤的监控;本发明中利用3d打印技术在隧道模型中埋设压电传感器的方式,实现对压电传感器埋入的精准定位,同时,压电传感器具有频响范围宽、响应速度快、结构简单、功耗少、成本低等优点,由其构成的结构健康监测系统能够灵敏的感应监测到结构损伤的存在和强度的变化情况。

进一步的,本发明中压电陶瓷机敏模块接收器与数字化采集器之间连接有数字滤波器,过滤掉应力波信号中的低频噪音信号,然后传输至数字化采集器采集分析,没有了低频噪音信号的干扰可以得到更加准确的分析结构,变相的提高了压电传感器的监测精度。

进一步的,压电陶瓷机敏模块驱动器与波形发生器通过信号线连接,压电陶瓷机敏模块接收器与数字化采集器之间通过信号线连接,彼此之间通过电信号进行数据的传输,可以高效的将隧道模型内部的应力波迅速高效的传递到数字化采集器,增加数字化采集器的分析效率。

进一步的,压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器在安装之前用酒精除去表面的氧化膜,待表面干燥后在其外围覆盖一层液体绝缘胶,可以有效的保护压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器在打印完毕后与隧道模型的材料发生反应,从而影响压电传感器的使用寿命和使用精度。

进一步的,压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器在埋入隧道模型之前两侧均粘接有粘结块,粘结块对压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器形成包裹状态,当隧道模型在进行3d打印过程时,包裹状态的粘结块可以对压电陶瓷感应器形成保护作用,避免了打印材料下落冲击过程中对压电陶瓷感应器产生损伤,进而影响压电陶瓷感应器本身的使用问题。

进一步的,压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器均通过粘接剂与粘结块粘接,粘接剂为加入水泥干粉的环氧树脂,从而形成环氧树脂水泥砂浆,具有高粘结力,高抗压强度且不受结构形状限制,抗渗、抗冻、耐盐、耐碱、耐弱酸腐蚀的性能极强,可以有效的保证粘接剂对粘结块与压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器的粘接固定,同时,可以有效的抵御隧道模型本身的材料对粘接剂的腐蚀效果,从而增加压电传感器的使用寿命。

进一步的,粘结块的材质与隧道模型的材质相同,粘结块在浇筑在隧道模型当中时,可以与隧道模型很好的融合在一起,保证了隧道模型的整体性和强度,且并不会因为材质上的不同形成相互的腐蚀状态,从而在保证隧道模型整体强度的同时,增加了该隧道模型的使用寿命。

进一步的,压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器与粘结块粘接完成后,在25℃的温度下静置6小时,模型经过养护完成后,其密度、强度和弹性模量等参数十分接近岩石材料的参数,并且这种材料的压缩强度比拉伸强度可到达10:1以上,符合脆性断裂的特征。

本发明中3d打印隧道模型应用压电传感器的监测方法实施如下:

首先,根据理论分析和数值模拟结果确定模型参数以及压电传感器在模型中埋设信息,优选的埋设信息选择如下,压电传感器包括四个压电陶瓷机敏模块驱动器和八个压电陶瓷机敏模块接收器,四个压电陶瓷机敏模块驱动器分别布置在隧道模型洞口的四个方向,每个压电陶瓷机敏模块驱动器的两侧各布置一个用于接收应力波信号的压电陶瓷机敏模块接收器,所有的压电陶瓷机敏模块驱动器和压电陶瓷机敏模块接收器布设在隧道模型洞口周向的同一截面上,每个压电陶瓷机敏模块驱动器与隧道模型外部的波形发生器通过信号线连接,每个压电陶瓷机敏模块接收器与隧道模型外部的数字化采集器之间通过信号线连接;然后,利用建模软件根据模型参数和埋设信息设计生成3d三维数字模型,导入控制系统生成3d打印增材制造和减材填充制造两条机器人手臂的运作路径;按照比例称取硅酸盐水泥、石英砂、石英粉、硅灰、铜炉渣粉末、水和添加剂放入搅拌锅中混合搅拌,启动搅拌锅搅拌300秒,直至混合的水泥基材料完全混合,可以从手掌间连续顺化地挤出,将混合料放入储料泵送系统中,启动泵车和振动器,使混合料可以顺利进入泵送管道中,使用泵送管连接储料泵送系统和固定在双臂机器人端部的打印头,通过泵送管给打印头供料,利用3d打印设备打印模型至需要埋设压电感器的高度,暂停打印过程,利用减材制造机按照设置的所述打印路径在该高度处进行刻划,沿着需要埋设压电传感器的路径减材开挖,开挖完毕后将压电感器埋设在开挖路径内,然后继续利用3d打印设备打印上部模型覆盖住压电传感器,直至整个模型打印完成停止工作;利用在隧道模型外部的与压电陶瓷机敏模块驱动器相连接的波形发生器发射激励信号,激励所述压电陶瓷机敏模块驱动器发射应力波信号,压电陶瓷机敏模块接收器接收所述应力波信号并传输至所述隧道模型外部的数字化采集器;数字化采集器对所述应力波信号进行分析,分解不同结构状态下的应力波信号,获取不同节点的应力波节点能量,通过同一所述节点能量下的变化情况判断结构的健康状况,最终达到结构损伤的监控。

根据实际需求而进行的适应性改变均在本发明的保护范围内。

需要说明的是,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1