一种带有湿度自检功能的安全插座的制作方法
【技术领域】
[0001]本发明属于插座领域,更具体涉及一种带有湿度自检功能的安全插座。
【背景技术】
[0002]插座是指有一个或一个以上电路接线可插入的座,通过它可插入各种接线,便于与其他电路接通。通过线路与铜件之间的连接与断开,来达到最终控制该电路的接通与断开。
[0003]现有插座一般不具有对周边环境的湿度检测功能。
【发明内容】
[0004]本发明针对【背景技术】存在的问题,提供一种带有湿度自检功能的安全插座。
[0005]本发明的目的通过以下技术方案实现:
[0006]—种带有湿度自检功能的安全插座,其特征在于,所述安全插座的外部安装有湿敏传感器模块,由于安全插座属于电学装置,工作环境中水蒸气的浓度会对其正常工作产生很大影响,严重者会导致安全事故,湿敏传感器模块可以对其环境水蒸气浓度进行检测,因此该湿敏传感器可以对安全插座的安全性起到保护和预警的作用。
[0007]该湿敏传感器模块包括从下到上依次布设的重掺杂硅片、紧贴重掺杂硅片的S12层、碳纳米管层、位于S12层间的下电极和位于碳纳米管层上的上电极,所述碳纳米管层生长于S12层上;所述下电极上有金属薄膜,所述金属薄膜从内到外依次为具有黏附性的Cr层、导电导热的Cu层和作为电极层的Au层,所述Cr层、Cu层和Au层的厚度依次为40nm、280nm和700nm;所述碳纳米管层采用催化剂和/或光刻法实现其定域生长,生长后的所述碳纳米管层采用等离子体使其产生羟基修饰,碳纳米管层在等离子体羟基修饰之前经过了加入微量钨粉的醋酸和双氧水混合溶液的处理;所述金属薄膜的表面紧贴有感测细菌生长的细菌酶膜层,该细菌酶膜层与金属薄膜一起形成感测水分的细菌湿敏感测器;所述下电极和上电极上连接有一个用于和客户端通信连接的微控处理器。
[0008]优选地,所述湿敏传感器的制作包括以下步骤:
[0009]Sl = S12层制作:取所述重掺杂硅片,将其放入管式炉中,按照10°C/min的速率升温到500°C,保温12h,然后自然冷却至室温,即可在重掺杂硅片表面形成S12层;
[0010]S2:下电极制作:将步骤SI中制得的有S12层的重掺杂硅片依次使用丙酮、乙醇、去离子水清洗15min后烘干,在其表面旋涂光刻胶,使用下电极掩模版对其曝光,120°C烘干2min后显影、烘干,在CHF3气氛下干法刻蚀Si02层,刻蚀30min,将刻蚀Si02层清洗后的重掺杂硅片放入磁控溅射仪中,在低于1.5X10—3pa真空下依次磁控溅射Cr层、Cu层和Au层;将磁控溅射好Cr层、Cu层和Au层的下电极(I)表面固定上细菌酶膜,然后清洗光刻胶;所述重掺杂硅片的尺寸大小为2cmX 2cm;
[0011]S3:气喷催化剂薄膜,步骤如下:
[0012]a.使用Fe/Ni纳米粒子作为碳纳米管生长的催化剂,首先,对带有下电极的重掺杂硅片旋涂光刻胶,采用催化剂的定域掩模版对其进行曝光,然后经过显影,清洗备用;
[0013]b.配制催化剂Fe/Ni的分散液:分别称取200mg、50mg的Fe纳米粒子和Ni纳米粒子,将其加入60ml的98 %H2SO4和40ml的69 %的HNO3混合溶液中,在80°C水浴中超声3h,然后用去离子水清洗后过滤,得到干燥的Fe/Ni混合纳米粒子,然后称取10mg的Fe/Ni纳米粒子,加入500ml的去离子水中,充分搅拌后得到Fe/Ni混合纳米粒子的分散液;
[0014]c.使用高纯氮气作为气喷载体,调节喷笔与重掺杂硅片之间的水平和垂直距离,使分散液的溶剂到达基片上时刚好挥发为准,气喷5次,每次气喷20s,使形成一层均匀的厚度约为20nm的催化剂Fe/Ni的混合纳米粒子薄膜;
[0015]S4: CVD法生长碳纳米管:
[0016]碳纳米管反应气源为CHjPH2的混合气体,首先将带有图案化催化剂粒子的重掺杂硅片进行清洗,去除光刻胶,放入反应腔中;然后抽真空,达到真空要求后通入氢气,施加微波使反映腔中产生等离子体;加热衬底使其达到一定的温度并保持40min,通入甲烷气体,此时碳纳米管开始生长;在生长过程中腔中真空度保持不变;经过1min左右,关闭微波源和射频加热器,停止通入甲烷气体,关闭氢气,通入氩气,取出重掺杂硅片的衬底,得到图案化的碳纳米管;
[0017]S5:等离子体处理碳纳米管:
[0018]a.首先将40ml的60 %醋酸和20ml的10 %的双氧水放入烧杯,充分混合,在其中加入微量钨粉,然后将生长有图案化碳纳米管的重掺杂硅片的衬底放入,静置2h;
[0019]b.把生长有碳纳米管的重掺杂硅片的衬底送进等离子体发生器中,抽真空至1.0X 10—1Pa以下,然后以惰性气体N2为载气,将反应物氨水随N2气流带入仪器中,使气流流速稳定在20mL/min,等待lh,打开功率源,调节至50W,仪器中产生辉光,在等离子体作用下,气体分子价键被破坏,大量羟基产生,碳纳米管在醋酸和双氧水的环境中经过钨粉的作用,碳纳米管被产生的羟基修饰,等离子体处理30min后,关闭功率源,取出衬底;
[0020]S6:制备上电极:将步骤SI?S5中得到的重掺杂硅片用臭氧清洗20min,覆盖上电极的陶瓷掩模版,然后将重掺杂硅片放入磁控溅射仪中,在低于1.5 X 10—3pa真空下溅射具有Au层的上电极,其中,Au层的厚度约200nm;
[0021]S7:焊接封装:分别用引线使上电极和下电极连接,对所述湿敏传感器进行封装,并把数字电桥与碳纳米管电容式湿敏传感器焊接,数字电桥用来读取在湿度变化环境下湿敏传感器的电容变化,以此来标定水蒸气浓度。
[0022]优选地,步骤S2中旋涂光刻胶的参数如下设置:低速900rpm,15s;高速3500rpm,50so
[0023]本发明的有益之处在于:
[0024](I)本发明的实施例所提供的一种带有湿度自检功能的安全插座,在安全插座的外部设置有湿敏传感器,该湿敏传感器为电容式湿敏传感器,下电极与重掺杂硅片、上电极与碳纳米管均形成欧姆接触;下电极与硅片相连并与上电极形成电容的两个极板,S12层与碳纳米管为电容之间的介质,当器件所处环境湿度发生变化时,水蒸气分子与碳纳米管相互作用,导致碳纳米管的电学性质变化,即电容的介电常数变化,因此从输出结果可以监测环境的湿度变化。并且该湿敏传感器灵敏度高,响应时间短,制作过程简单,实验工艺的可重复性高,易于批量生产。
[0025](2)本发明的实施例所提供的一种带有湿度自检功能的安全插座,所采用的湿敏传感器,对生长后的碳纳米管进行等离子体处理,使碳纳米管修饰上羟基基团,由于其对水分子强相互作用,促进碳纳米管对水蒸气的吸附作用,进而增大了碳纳米管的湿敏性能,并且在其电极上紧贴有感测细菌生长的细菌酶膜层,该细菌酶膜层与金属薄膜一起形成感测水分的细菌湿敏感测器;该细菌酶膜通过感测细菌生长量进而感测环境湿度,可以双重感测湿度,解决了传统湿敏传感器在金属薄膜长期使用后性能下降的问题。
[0026](3)本发明的实施例所提供的一种带有湿度自检功能的安全插座,所采用的湿敏传感器的电极连接有一个微控处理器,用于连接移动客户端,用户可以通过客户端来查看湿度情况。
【附图说明】
[0027]利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
[0028]图1为本发明的不意图。
[0029]图2为本发明的实施例所提供的湿度传感器结构示意图。
【具体实施方式】
[0030]碳纳米管是碳的一种同素异形体,其结构为:径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口。它是由碳原子形成的六角密堆石墨片层卷成的无缝中空的管体,是一种准一维量子材料。由一层石墨卷曲而成为单壁碳纳米管(SWNT),多壁碳纳米管(MWNT)由数层到数十层的同轴圆管构成。碳纳米管具有良好的力学性能,其抗拉强度是钢的100倍,拥有良好的柔韧性,硬度与金刚石相当,是理想的高强度纤维材料。碳纳米管一般采用电弧放电、激光蒸发和化学气相沉积生长方法。研究表明,碳纳米管已显示出对水蒸气、氨气、二氧化氮、氢气、甲烷、二氧化硫、硫化氢和氧气等气体的响应。
[0031]湿度描述环境中含水汽或水分子多少的物理量,湿敏元件是指对环境湿度具有响应或能将环境湿度转换为相应的可测量信号(比如电阻、电容、频率等)的元件。湿度传感器把环境湿度转换为电信号的装置,其在工农业生产、环境检测、家用电器、气象、工程控制等领域有着广泛的应用。湿度传感器的核心是湿敏材料,其是利用吸附效应直接吸附大气中的水分子,使材料的电学特性等发生变化,从而检测湿度的变化。碳纳米管具有非常大的比表面积,与周围的介质之间有很强的相互作用,因此对外部环境的湿度等十分敏感,具有明显的湿敏特性。
[0032]碳纳米管电容式传感器主要通过