多模态成像系统及方法与流程

文档序号:11451067阅读:2526来源:国知局
多模态成像系统及方法与流程

本发明的实施例一般涉及使用多成像模态的组合检测中的图像生成的系统和方法。



背景技术:

混合成像装置(如组合的pet-mr系统或组合的pet-ct系统)能够用于同步或异步地记录mr或ct测量数据和正电子断层显像测量数据。常规的mr或ct的第一成像模态能够描绘要显示在第一图像中的检测体积(examinationvolume),其可以显示待检测患者中的解剖特征。可以是例如pet的第二成像模态可以用来生成另外的图像。它可被用于显示放射性物质在体内的分布,因此能够描绘患者的生化和生理特征。mr或ct测量数据可以在进行pet测量数据记录之前、之后记录或与其同时记录。

使用两种或更多种不同模态并行创建医学图像可以改善对待检测患者状态的评估。例如,pet图像可以与mr图像组合或叠加,以给出患者的感兴趣区域的各种特征的图示。然而,在医学检测中进行混合医学成像时,患者的定位可能是一个问题。在检测期间,待检测的对象,或是患者,可能需要移动到不同的床位置,以执行同一感兴趣区域的不同类型的成像。利用传统的pet-mr成像,可以利用记录时间表(有时称为“静态调强”时间表)来连续地记录不同床位置的pet测量数据。记录时间可以针对每个床位置预先确定。

在常规pet-mr混合系统中,记录pet测量数据的时间相对较长,每个床位置持续5至15分钟。这可能会对躺在床上的患者造成一些问题,特别是那些有幽闭恐惧症的患者。其中一个提出的解决方案是,通过使用所谓的“定位像”,提供更有针对性和准确的检测程序。例如,定位像可以用于定位患者的潜在恶性区域,并且定位像的照射往往相当快,以减少患者遭受的剂量和暴露量,并允许医生更密切地对目标进行检测。

多床mr或ct图像有时用作定位像,例如参考美国专利申请2007/0173716,其中描述了在不同床位置处的定位像被组合在一起,以生成患者的全身图像。它可用于以后的医学检测。然而,有需要使用不同的模态(如pet)来更快更方便地生成定位像。



技术实现要素:

本发明的实施例一般涉及使用两种成像模态进行组合检测的系统和方法。本发明的至少一个实施例一般涉及一种用混合成像装置产生和处理定位像数据的方法,其能够执行和准备作为第一成像模态的断层显像发射。本发明的至少一个实施例还通常涉及混合成像装置。这种混合成像装置例如是组合的pet-mr系统或组合的pet-ct系统或组合的spect-mr系统或组合的spect-ct系统。

本公开的目的是提供一种定位像处理系统和定位像处理方法。该定位像处理方法可适用于核医学成像系统。该核医学成像系统还可以是混合成像系统。例如,pet-mr系统或pet-ct系统或spect-mr系统或spect-ct系统。该定位像可以是pet图像。pet定位像的生成可能在5到15秒之内。可选地,pet定位像的生成可以基于界标或指示标识的使用。

本文公开的混合系统提供了一种用于对点扩散函数(psf)进行建模的方法和装置,使得点扩散函数可用于在可接受的处理时间内提供改进的图像重建。pet系统将psf与列表模式下的pet飞行时间(tof)数据一起建模。

本文公开的混合系统提供了利用某些迭代类型算法中的点扩散函数估算来进行图像重建的方法和装置。该迭代算法可以是最大似然期望(mlem)算法。该迭代算法可以是有序子集最大期望值(osem)算法。

根据本发明的一个实施例,本文公开的pet系统提供生成pet定位像的医学检测过程。该医学检测过程可以包括以下步骤:数据获取,直方图化,以及传输/衰减,归一化,衰减校正,重新归一化,散射校正,图像重建和图像显示。

附图简要说明

并入并构成本说明书的一部分的附图示出了下面所描述的几个方面。

图1是示出根据本发明的实施例的pet/mr成像系统的图;

图2-a和2-b示出了示例性3-dpet系统中的多个探测器环;

图3-a示出了511kev湮灭光子的非共线性;

图3-b示出pet系统中的示例性响应线;

图4图示了重组算法的原理。

图5是在不同床位置处记录的pet定位像数据的表示;

图6-a至6-d示出了四环扫描器的代表性响应线;

图7为流程图,其示出根据本发明的实施例获取pet定位像的过程。

图8为根据本发明的一个实施例的使用pet定位像的医学检测过程的示意图表示;

图9为根据本发明的实施例的用于生成组合或叠加图像的装置的配置的图;

图10为流程图,其示出根据本发明的实施例利用点扩散函数(psf)生成图像的过程。

图11为流程图,其示出根据本发明的实施例用于重建pet扫描图像的示例性过程;

图12为根据本发明的实施例的用于获取核医学图像数据的过程的流程图;

图13为用于pet图像重建的并行/流水线架构的框图。

图14示出了利用x射线变换的二维和三维pet成像的空间不变性。

详细说明

在阅读本说明书之后,对于本领域技术人员来说,如何在各种可替代实施例和可替代应用中实现本公开将变得明显。然而,本文中并没有具体描述本公开的所有实施例。应当理解,这些实施例仅以示例的方式呈现,而不是限制。因此,各种可替代实施例的这种详细描述不应被解释为限制如下所述的本发明的范围或广度。

应当理解,下面描述的这些方面不限于具体系统,当然可以改变制造这样的系统的方法或其用途。还应当理解,本文使用的术语仅出于用于描述特定方面的目的,而不是限制性的。

根据本申请的说明书和权利要求书,除非内容中另有规定,诸如“一”,“一个”和/或“所述”之类的词不一定表示单数形式,还包括复数形式。通常,诸如“包括”或“包含”之类的表达仅用于指示编号的步骤或元件。然而,这些步骤和元素的列表不是排他的,并且方法或装置可以包括其他步骤或元件。

应当理解,术语pet指的是正电子发射断层显像,术语ct是指计算断层显像,术语mr指的是磁共振,术语spect是指单光子发射计算断层显像。

所谓的“混合模态”,例如pet-ct,spect-ct,pet-mr和spect-mr,近年来在医学成像领域引起了大量的关注。这种组合的优点是将具有高的局部分辨率(例如mr或ct)的一种模态连接到具有高灵敏度(例如spect或pet)的模态。以下参考组合的pet-mr或pet-ct系统进行说明。然而,本发明的实施例一般可以用于混合模态的所有形式或相关的测量方法。例如,本发明的实施例可以用在spect-mr混合系统中,其中可以在如下所述的本发明的范围或宽度内以相同或相似的精神进行适当的调节或改变。

混合成像装置(例如组合的pet-mr系统或pet-ct系统)可用于同步或异步地记录mr或ct测量数据和正电子发射断层显像测量数据。在一些实施例中,第一成像模态(mr或ct)能够描绘要在第一图像中显示的检测体积,其可以显示待检测对象中的解剖特征。例如是pet的第二成像模态可能用来生成另外的图像。另外的图像可能用于显示放射性物质在对象体(bodyoftheobject)内的分布,因此能够描绘对象体的生化和生理特征。mr或ct测量数据可能在进行pet测量数据记录之前、之后记录或与其同时记录。

在其他实施例中,第一成像模态可以是pet,显示放射性物质在对象体内的分布,因此能够描绘对象体的生化和生理功能(功能成像)。第二成像模态可用于生成另外的图像。第二成像模态可以是mr或ct成像装置,被配置以显示待检测对象中的解剖关系。

mr系统可以包括控制单元,测量单元和成像单元。在一些实施例中,测量程序可以在控制单元上运行,使得测量单元被激活,并根据计划的测量顺序记录mr信号。在一些其他实施例中,测量程序可以包括大量的程序步骤和可选地测量中断,在此期间,操作者可以例如调整患者位于或躺着的床的位置,或患者支架的高度,或向患者施用造影剂。在一些实施例中,可以为每个程序步骤分配测量协议,该测量协议控制用于测量目的的测量单元的物理参数。

pet使用正电子发射体和正电子湮灭的特征来定量地确定器官或细胞区域的功能。为此,可以在医学检测之前将相应的放射性药物施用于患者。在放射性药物的衰变过程中,放射性核素发射正电子,其可以在行进短距离之后与电子相互作用,其中所谓的湮灭发生。通过探测这些湮灭“事件对”一段时间,可以重建在患者身体的横截面中的放射性药物的同位素分布。这些事件可能被依次映射到患者的身体,从而允许定量测量体内感兴趣体积的代谢,生物化学和/或功能活性。

在一些实施例中,可以使用pet图像(通常与假设的生理学模型结合)来评估各种生理参数,包括但不限于葡萄糖代谢率,脑血流量,组织存活力,氧代谢和体内脑神经元活动。

在一些实施例中,可以通过利用特定时间窗内的两个相对的pet探测器块来捕获湮灭“事件对”(符合测量),其中可以在两个探测器块之间的连接线上的位置处确定湮灭位置。在其他实施例中,pet探测器可以具有多对探测块,每对探测块位于样本区域的侧面,其闪烁体面彼此相对。pet探测器的多个探测块可以形成各种不同的配置,包括但不限于立方柱配置和桶形配置。例如,在立方体柱配置中,四个探测块形成两个相对的对,每对探测块位于样本区域的侧面,从而形成立方柱;相邻探测块之间的角度为90度。而在桶形配置中,八个探测块形成四个相对的对,每对位于样本区域的侧面,从而形成桶;八个探测块平均分布在360度圆上。pet探测器的其它可能配置可以与本系统结合使用。

在一些实施例中,所谓的示踪剂可用于在pet数据中显示不同的生物学特征,从而在一次成像过程中进一步优化感兴趣的区域,然后在随后的检测中对其进行分析。

在一些实施例中,pet图像可以用作定位像或预扫描图像,以示出感兴趣的体积或感兴趣的区域。pet定位像可用于指导医生进行进一步的医学检测,例如混合pet/mr检测。pet定位像可以在短时间窗中产生。例如,时间窗可能是几秒到几十分钟。更优选地,时间窗可以是数十秒到几分钟。甚至更优选地,时间窗可以是5秒到15秒。

在一些其他实施例中,可以使用各种图像重建算法再现pet定位像。例如,可以使用osem(有序子集最大期望值)算法或mlem(最大似然期望)算法或3drp算法来再现pet定位像。

图1示出了根据本发明的某些实施例的混合pet-mr成像系统的图。

用于提供pet成像的装置100可以响应于伽马光子来探测响应射线,所述伽马光子可以通过显像装置101从测量对象102照射的。mr成像装置107可以位于显像装置101的外部。该装置100可以产生正弦图,并且可以使用生成的正弦图获得pet定位像。所获得的pet定位像可以被输出到显示装置中。

用于提供pet成像的装置100可以包括响应射线探测器103,正弦图提取器104,存储装置105以及图像重建单元106。

响应射线探测器103可以响应于由测量目标辐射的伽马光子来探测响应射线。在一些实施例中,测量目标可以是模体。在其他实施例中,测量目标可以是患者。正弦图提取器104可以从探测到的响应射线中提取正弦图。在一些实施例中,多个响应射线可以被转换成正弦图。将响应射线转换为声波图的各种方法是本领域普通技术人员所熟知的,包括但不限于列表模式方式。

存储装置105可以存储由正弦图提取器104提取的正弦图。在一些实施例中,存储装置105可以对从正弦图提取器104获得的提取的正弦图执行一些初步操作。仅作为示例,存储装置105可以使用最大预期最大化算法(map-em),例如最大似然期望(mlem)算法或有序子集最大期望值(osem)算法,将所提取的正弦图转换为高分辨率声波图。根据本发明的某些实施例的存储装置105可以存储一组高分辨率正弦图。

根据本发明的一些实施例,通过应用可以基于mlem算法的osem算法,可以在计算正弦图的计算中维持非负特性。此外,可以通过将mlem算法或osem算法应用于存储装置105或图像重建单元106来维持正弦图的非负特性。

图像重建处理单元106可以根据存储装置105中存储的声波图重建pet定位像。在一些实施例中,图像重建处理单元106可以使用在正弦图提取器104中生成的正弦图像和/或存储装置105中存储的一组声波图重建pet图像。

在一些实施例中,图像重建单元106可以使用解析重建算法或迭代重建算法来重建pet图像。在一些实施例中,图像重建单元106可以使用类似于滤波反投影(fbp)算法的解析重建算法来重建pet图像。在其他实施例中,图像重建单元106可以使用类似于三维重投影(3drp)算法的解析重建算法来重建pet图像。在一些实施例中,图像重建单元106可以使用类似于有序子集最大期望值(osem)算法的迭代重建算法来重建pet图像。在其他实施例中,图像重建单元106可以使用类似于最大似然期望(mlem)算法的迭代重建算法来重建pet图像。

除了上述简要介绍有关生成pet图像的系统和过程之外,随后介绍了获得pet图像所涉及的成像方法和装置的更系统和详细的解释。在一些实施例中,图1中的显像装置101可以是pet扫描器。在图2-a中示出了示例性的具有多个探测器环的pet扫描器,其中未显示pmt。如图所示,pet扫描器200包括三个探测器环201,202和203。图2-b是根据一些实施例的pet扫描器的探测器环的透视图。图2-b示出了具有16个探测器环的扫描器204。如果探测到伽马射线对的这些探测器位于相同的环上,则符合平面(其为过轴平面)可以被称为直接平面。如果探测到伽马射线对的这些探测器位于不同的环上,那么符合平面(其为倾斜平面)可以被称为交叉平面。

探测器环可以捕获由正电子和电子之间的相互作用引起的湮灭中产生的伽马量子(“光子”)。由于可能存在与正电子相关的一些剩余动量,所以两个湮灭光子可能以稍微偏离180°的角度发射。在一些实施例中,两个配对探测器以略微偏离原始湮灭线的直线探测这些光子。最大偏差可能为±0.25°。

因此,这两个探测器之间的观察到的响应线(lor)可能不会与湮灭点相交,而是可能稍微偏离它,如图3-a所示。该误差(re)可能会降低扫描器的空间分辨率,并会随着这两个配对探测器之间的距离而恶化。可以通过使用点扩散函数(psf)方法来计算该误差。在一些实施例中,如果d是这两个探测器之间的距离(cm)(即探测器环直径),则可以从点扩散函数(psf)计算误差如下:re=0.0022d。

图3-b示出了pet系统中的示例性响应线(lor)。在一些实施例中,与符合事件相关联的数据可以基于它们对应的lor以正弦图的形式存储。仅作为示例,在如图3-b所示的pet扫描器中,如果由两个相对的探测器303和304探测到一对符合事件,则可以建立lor作为连接这两个探测器的直线305。可以使用两个坐标(r,θ)来识别该lor,其中r是lor与探测器环300的中心轴线的径向距离,θ是lor和x轴之间的过轴角度。探测到的符合事件可以被记录为2-d矩阵λ(r,θ)。当pet扫描器沿着各种lor继续探测符合事件时,这些事件可以在矩阵λ(r,θ)的相应元素中进行分组和累加。结果可以是二维正弦图矩阵λ(r,θ),其每个元素都保存特定lor的事件计数。在三维pet扫描器中,可以使用四个坐标来定义lor,其中第三坐标是lor和探测器环的中心轴之间的轴向角度,z是沿z轴lor距离探测器中心的距离。在一些实施例中,第三和第四坐标可以被组合成一个变量,v,其可以定义和z坐标。在这种情况下,探测到的符合事件可以以三维正弦图矩阵λ(r,θ,v)存储。

除了上述真实的符合事件之外,pet扫描器也可以探测到另外两种类型的符合事件。这些额外的事件可能使数据收集和图像重建过程复杂化。第一种类型的混淆事件出现是因为湮灭光子在从患者体内发出时可能表现出散射效应。在其中一个或两个湮灭光子都散射并且随后被探测到符合的情况下,它们将沿着不对应于湮灭事件的位置的lor来登记符合事件。这些事件可以被称为散射符合。在某些情况下,散射符合可能与真正的符合不同之处在于散射的光子具有小于511kev的能量。然而,在实践中,不是每个探测到的光子的能量都能被精确测量。因此,伴有一些散射符合的一些散射光子可能被扫描器接受。在图像重建过程中,可以通过使用点扩散函数法,再归一化方法,或类似方法,或上述方法的组合来考虑散射效应。

第二种类型的混淆符合事件可能是由同时发生的两个不同湮灭事件产生的两个光子的基本同时探测而产生。这些符合可以被称为“随机符合”。可以通过减少用于限定符合的光子的同时探测的计时窗来减少随机符合的贡献,但是一些随机符合仍然可能被扫描器接受。根据本发明的一些示例性实施例,可以通过一些方法来估算随机符合接受率,包括但不限于延迟窗方法,来自单例法的随机性方法,或类似方法,或上述方法的组合。

在显像pet中,作为本发明的示例性实施例,正弦图数据的记录可以以“列表模式”的形式实现,或者根据到达的时间或位置,或探测的时间或位置,在列表模式文件中列出。列表模式数据格式是指原始数据,即由探测器探测到并的与时间戳一起记录的事件。在一些实施例中,以预处理格式记录测量数据,这便于发射断层显像重建。仅作为示例,在某列表模式数据格式中,每个事件由成像探测器编号和x,y坐标位置进行识别。在一些示例中,列表模式数据格式中的数据可以由(ia,ib,ra,rb)给出,其中(ia,ib)是与一个lor方位角相关联的一对探测器环的标记,(ra,rb)是这对探测器环纵向上的标记。

在本发明的一些实施例中,图6-a至6-c示出了四环扫描器601的列表模式数据格式。图6-a示出了直接符合平面0,2,4,6和一对倾斜符合平面1,3,5。图6-b示出了倾斜符合平面7,8,9,图6-c示出了相应的倾斜符合平面10,11,12。图6-d示出了那些符合平面在矩阵602上的放置,矩阵602是组合在一起以减少3dpet中数据集大小的响应平面的图形表示。参考图6-d的矩阵602,符合平面0至12由与图6-a至6-c所示的环i,j的坐标对应的单元格中的数字指示。

从图6-b和6-c中可以看出,符合平面8和11限定了对于扫描器601中的环数的倾斜平面将具有的相对于直接平面的最大角度。该角度可以被称为接受角。

在一些实施例中,在获取列表模式数据之后,随后可以呈现用于同步或异步处理所获取的数据的流线化过程。仅作为示例,流线化过程可以通过执行直方图化,归一化,传输/衰减,衰减校正,散射校正,重组,图像重建和图像显示来启动。在其他一些示例中,可以省略重组过程,并且可以在完成散射校正之后直接执行图像重建。在一些其他实施例中,归一化可以与图像重建同时执行。

对于混合pet/mr系统,可能需要衰减校正。在一些实施例中,虽然mr线圈可能是部分辐射透明的,如果数据未对由线圈和其他附近的物体包括例如床(正在检测的患者所在的位置)引起的衰减进行校正,则mr线圈可能会降低图像质量。

执行衰减校正可能有几种方法。在一些实施例中,pet/mr混合系统可以使用mr扫描来进行pet图像的衰减校正。在其他实施例中,对于混合pet/mr系统,可以基于pet定位像来开发患者衰减图。可以分割pet患者定位像,识别各种组织和器官,并应用适当的衰减系数。

有两类图像重建可以适用于pet扫描器:解析技术和迭代技术。解析技术包括但不限于滤波反投影(fbp)技术。fbp方法可用于计算断层显像(ct)等发射断层显像系统,因为其结构简单,计算时间相对较短。迭代技术可用于pet系统。示例性迭代技术包括但不限于最大似然期望(mlem),其将原始数据的泊松特性合并到算法中。

随着最大期望(em)算法迭代地推测图像估算,图像的低频分量出现在前几次迭代中。随着ml估算的进行,图像中越来越多的高频清晰度被解决,有效地为重建增加了差异。可以通过早期停止算法或通过对重建进行后平滑来减小该差异。mlem的收敛速度可以是图像相关的。在一些实施例中,mlem可能需要大约20-50次迭代来达到可接受的解决方案。

在一些实施例中,可以应用有序子集最大期望值(osem)算法,因为它提供超过mlem的数量级加速度。与使用所有投影数据来更新图像数据的mlem不同,osem将投影数据组合到有序序列的子集(或块)中,并逐渐处理每个迭代过程中的每个投影子集。每个子集可以更新整个图像强度数据,并且当使用所有的投影数据(假设有k个子集)时,图像强度数据被更新k次,并且这被称为一步。图像数据在mlem的每个迭代步骤中更新一次,但在osem中更新k次。

osem重建算法的示例性说明如下:

s1,s1,...,sl为l个排序的子集,本公开采用正交分割,因此每个子集中的投影数据(探测器)数量为表示fbp算法使用的初始化图像。xi表示迭代i后的图像。所构建的os-em算法的具体步骤是:

1.设置i=0,使用fbp算法初始化图像x=x0

2.迭代以下步骤,直到图像xi满足收敛请求:

a)设置x=xi,i=i+1;

b)对于每个子集:si,l=1,2,...,l,进行如下迭代:

(1)投影:对于子集si中的每个探测器i(i=1,2,…,m),假设aij表示xj对探测器i的贡献,计算其数学期望值

(2)反投影:在迭代l更新图像

(3)l=l+1;

本公开在等式(1)仅使用一部分投影数据,子集si,,而在等式(2)中更新整个图像x.

(c)如果l=l+1,那么xi=xl,通过重复步骤a)和b)进行重新迭代。

本领域技术人员将认识到,在不脱离本发明的精神和范围的情况下,可以修改处理阶段,或者可以在该算法中添加附加的处理阶段(各种校正,例如弧度校正等)。例如,在上面的步骤1中,图像的初始化可以通过将初始图像设置为图像的每个像素具有值1来给出。作为另一示例,可以通过利用以下步骤来给出osem算法:

其中,第sk为第k个子集,是第k个子集中第ik个lor,wt是对应的点扩散函数(psf),是与lor和第j个像素对应的系统矩阵的值,在第n次迭代之后的第j个像素的值,是在归一化过程之后的第ik个lor上的实际计数。

除了可以用于图像重建的迭代技术之外,解析技术也可以用于图像构建。仅仅作为示例,也可以使用三维重投影(3drp)算法来获得pet定位像。

为了解释3drp算法的机理,人们注意到,空间变化的扫描器响应可以被理解为扫描器的有限轴向范围的结果,导致截断的投影。在二维环形扫描器中,不管点源在扫描器的fov内的位置如何,点源的观察强度将保持大致恒定,如图14所示。然而,对于三维圆柱形扫描器,具有截断的突起,点源的观察强度将根据扫描器的fov内的点源的位置而变化,特别是当点源轴向移动时(如图14所示)。

仅作为示例,3drp方法的步骤可以如下:

(1)对于收集的投影数据,从角度足够小(例如,低于20%,或低于15%,或低于10%,或低于5%,或低于3%)的投影数据的子集形成三维低统计图像。

(2)然后将第一图像向前投影或重新投影到投影平面的剩余子集中的丢失投影数据的区域上。

(3)将新的投影数据集合进行过滤,并与原始完整投影一起反投影,以使用适当的过滤器(例如,高通滤波器,低通滤波器,柯塞尔滤波器,巴特沃斯滤波器,汉恩滤波器)形成高统计的三维图像。

在一些实施例中,测量的数据可以用于通过使用经由三维x射线变换的某种形式的信号平均来估算二维横向正弦图的堆叠(体积)集合。这样的过程称为重组算法。可以用分析或迭代二维重建方法有效地重建每个重新组合的正弦图。另外重组可能会减小数据的大小。

在一些实施例中,可以通过使用二维切片技术对三维数据进行重组处理。图4示出了重组算法的原理。可以从扫描器获取三维数据,并处理成n2倾斜正弦图402,其中n表示扫描图像的直接切片或正弦图的数量。倾斜的正弦图被重组成2n-1个普通的正弦图403,它们表示相隔距离为相邻探测环之间的轴距的一半的切片。通过使用2d数值算法(包括但不限于滤波反投影(fbp)算法),将重组的数据403转换为3d图像404的2n-1个切片。该重组方法对于本领域普通技术人员是已知的。

在一些实施例中,可以在重组过程中使用单片重组(ssrb)算法,其中重组的正弦图是通过平均所有倾斜正弦图形成,这些倾斜的正弦图在过轴的视场的中心处与直接平面相交。在一些实施例中,可以使用傅里叶重组(fore)算法,其基于在傅里叶变换的倾斜和横向声波图中的特定元素之间的相当精确的等价。换句话说,傅立叶变换的倾斜正弦图可能会被重新归类到横向正弦图,并且在进行傅里叶变换采样的归一化后,进行逆变换,以恢复准确的直接正弦图。

除了pet定位像的图像重建问题,还可能需要解决多个定位像及其组合或融合的问题。仅作为示例,在检测期间,待检测对象,或是患者,可能需要移动到不同的床位置以确保感兴趣区域的成像。利用混合pet-mr成像,可以使用有时称为“静态调强”时间表的记录时间表,以在不同的床位置连续地记录pet测量数据。记录时间可以针对每个床位置预先确定。在其他实施例中,记录时间可由操作者手动设置。

在一些实施例中,ct预扫描图像或mr预扫描图像可以用作定位像。定位像可用于计划和监视医学扫描采集。此外,定位像可以用于缩短获得足够的几何细节所需的时间,同时将辐射剂量(如果有的话)保持在可接受的水平。仅作为示例,在使用mr图像作为定位像的情况下,首先设置开始位置和结束位置,以便基于待成像的对象的区域获得定位像。定位像可以被称为概览定位图像或定位器图像。在获得用于诊断目的的mr图像之前可以获取定位像,以确定可以获取横截面图像的角度。定位像也可以用作mr图像数据的位置的索引。通常,定位像可以用于识别内部器官或病变的位置和整体形状,并且以比诊断mr图像更低的分辨率获得。

在本发明的一些示例性实施例中,该定位像可以用于确定患者的感兴趣体积或感兴趣区域。仅作为示例,在使用pet图像作为定位像的情况下,可以在查看定位扫描图像之后由操作者手动选择示例性的感兴趣的体积。可选地,可以通过将用于生成定位像的扫描数据与历史扫描数据进行比较,由pet成像系统自动选择感兴趣的体积。

此外,可以使用定位像,使得可以以不同的灵敏度和分辨率执行患者的多次扫描。

作为示例,可以以更高灵敏度和更低分辨率的配置获取定位像。在某些示例性实施例中,第一图像可以是患者的肾脏。然后,根据患者的具体位置,其大小,其形状和伽马射线衰减组织的分布,可以调整准直器配置。该调整可以改善正在进行或将进行的成像的灵敏度和分辨率之间的平衡。然后,不移动患者,在相同的检测期间获得第二个图像。基于该调整,该第二图像可以具有比第一图像更高的分辨率,但是灵敏度更低。

进一步地,可以通过使用界标描述患者的多次扫描之间的相对位置,来实现定位像。仅作为示例,该方法可以包括获得将用于如下所述的界标校正的图像。在一些实施例中,可选地获得校准图像,其可以被自动地或手动地执行。例如,在具有并行成像的pet扫描中,可以获得跨越患者的大区域的定位扫描,作为“校准”扫描的一部分,以获取校准图像。

该方法还可以包括可选地获取的定位器图像,其可被自动或手动执行。该定位器图像可以用于将患者的感兴趣区域本地化。使用混合模态成像系统可以获取定位器图像。此外,单一模态成像系统可以是pet成像系统或mr成像系统。该定位器图像可以用于确保例如心脏区域的感兴趣区域位于一个或多个定位器图像的视场内。术语视场(fov)在各种实施例被用于指获取的物理尺寸。例如,可以获取代表患者的胸部和/或心脏区域的图像或图像体,使得图像包括心脏。定位器图像可以包括定位像,定位器,扫描图,计划扫描等。

在各种实施例中,可以获取2d定位器图像或3d定位器图像。定位器图像可以在矢状平面,冠状平面,轴向平面,单个感兴趣体积,多个感兴趣体积中或在任何平面或其组合中获得。

应当注意,如果使用多模态成像系统获取定位器图像,则可以将每个所获取的定位器图像中的特征空间标准化,以便匹配多模态空间中的数据。该特征可以是定位器图像中的特征点。该特征也可以是具有最大灰度级的定位器图像中的区域。使用校准和/或定位器图像,可以确定图像中的一个或多个界标位置。仅作为示例,根据特定感兴趣区域,例如感兴趣的解剖结构,可以确定一个或多个界标位置,如本文更详细地描述的。通常,定位器图像可以被处理,例如使用合适的图像分割或其他分解方法来识别特定的患者解剖结构,其然后用于识别一个或多个界标位置,所识别的一个或多个界标位置可以是确定的一组理想的界标位置中的一个或多个。因此,在一些实施例中,定位器图像的分割可以识别患者体内的子解剖结构。基于子解剖结构的已知关系(例如,身体中的相对位置)或统计或其他测量,可以确定一个或多个界标。因此,在一些实施例中,可以通过鉴别或识别成像的界标,然后选择任何理想的界标,例如两个识别的界标(例如两个器官)之间的中点来提供校正。

以这种方式,计算初始界标和所识别的界标之间的偏移。仅作为示例,确定该界标的位置与初始界标和从校准和/或定位器图像确定的期望或理想界标之间的差异。例如,使用一个或多个校准和/或定位器图像,这些图像可以与来自初始患者界标的图像进行比较。该比较可以确定校准和/或定位器图像与初始界标之间的任何差异。例如,可以执行图像的逐像素比较,以确定当前界标和期望或理想的界标之间的偏移。

在相关技术的pet装置中,可能难以在宽范围内拍摄定位像。为了通过使用定位像来设置fov,可以在每个成像区域上重复执行上述方法n次。

针对包括两个成像区域(n=2)的示例设置fov的过程。将等角点设置在相对于第一成像区域的对象上,然后将等角点移动到pet成像装置(例如,机架)的不同部分的等角点。设置用于获得定位像的开始位置和结束位置,并且获取定位像。通过使用从定位像获得的信息来设置详细的fov,并且对第一成像区域进行检测。在完成第一成像区域的检测之后,对于第二成像区域重复相同的操作。然后可以将这两个定位像组合在一起以形成感兴趣区域的定位像,提供关于患者的特定身体区域的更详细和完整的信息。

在混合医疗成像系统中,对于测量计划的模态的不同要求可能会增加最佳测量顺序的规划难度。为了对使用混合模态获取的数据记录进行最佳诊断评估,需要以适当的方式准备和进行检测。

在一些实施例中,两种模态都使用顺序记录。仅仅作为示例,可以一个接一个地规划mr测量和pet测量。例如,mr检测可以部署技术,使用这些技术可以检测身体的相当大的区域,其中,使其上支撑着患者的患者床穿过磁体,在不同的床位置进行检测。这使得可以检测身体的各个区域,可能大于系统中可用的检测体积。

在一些实施例中,可以检测大于可用图像场的身体区域,其中测量在多个所谓的水平处进行测量。身体区域被分为用于测量的单独段。在一些实施例中,测量区域可以包含在相关联的床位置中的多个子测量。通过以不同水平处(床位置或成像区域)检测不同的身体区域,可以将身体作为一个整体记录。在每个水平记录的图像均可以与一组测量参数相关联,所述测量参数包括例如回波时间,重复时间,层厚度,层数,体素大小,层取向等。

由于在不同床位置的停留时间长度不同,在某些床位置,与其他床位相比可以记录更少数量的数据或数据记录可以持续更短时间。在一些实施例中,可以预先确定在每个床位置处实现的重建的pet图像中的最小质量。质量的最低限度可以通过使用一些指标或指数进行量化。例如,pet定位像的对比度可以用作指标或指数(index)。在一些其他实施例中,pet定位像的灰度级可用作用于量化重建的pet图像的最小质量的指标或指数。

图5示出了相对于时间t绘制的示例性检测方法,描绘了根据本发明的一个实施例。

图像的上部t显示三个不同的床位置501,502,503,它们被接近用于执行pet检测。这些床位置可以例如对应于患者的大脑、腹部和腿部的检测。

图像的下部pet显示了pet测量数据521,521',522,523的记录。因此,记录可以在背景中以熟知的列表模式数据格式进行。同时记录床位置501,502,503,使得在进一步处理的过程中,可以将pet测量数据521,521',522,523分配给床位置501,502,503,其中在这些位置分别记录数据。

pet测量数据521,521',522,523的记录可以在床位置501,502,503处进行。仅在患者床从一个位置移动到另一位置的移动期间,pet测量数据521,521',522,523的记录被中断。如果等待时间较长,则也可以将床专为pet测量数据的记录移动到一个位置,在该位置处,仍然需要记录或补充pet测量数据(此处未示出)。

由于在不同床位置处的停留时间的长度不同,在某些床位置,与其他床位置相比可以记录更少数量的数据或数据记录可以持续更短时间。

然而,可以预先确定在每个床位置要实现的重建的pet图像的最小质量,以及所需的数据量或所需的记录持续时间(由表示)。

该示例表明,在第一床位置501,记录第一pet测量数据521,其数据量低于所需的数据量或采集时间

另一方面,在第二床位置502记录足够量的第二pet测量数据522。

在第三床位置503,再次记录不足量的第三pet测量数据523。因此,在第二pet测量数据522的记录完成之后,患者保持在第三床位置503,并且完成第三pet测量数据523的记录,直到已经获得第三床位置503的所需的pet测量数据的所需的数据量

然后,将床移回到第一床位置501,以便也记录附加的第一pet测量数据521',直到第一床位置501的所需的pet测量数据量已被记录。

图7示出根据本发明的实施例的获取pet定位像的方法的流程图。

如图所示,可以通过使用显像装置移动整个探测器或床来获得多组正弦图,并且可以通过对所获得的正弦图应用诸如osem算法的图像重建算法来重建pet图像。

在步骤701中,可以响应于从测量目标(例如物体或患者,或其一部分)发射的伽马光子来探测响应射线。

在步骤702中,可以从探测到的响应射线中提取正弦图。

在步骤702中,可以通过移动整个探测器或床来获得一组正弦图。在这种情况下,提取的一组正弦图可以对应于在pet系统中直接测量的数据。

在步骤703中,可以存储所提取的声波图。可选地,在该步骤中,可以将所提取的正弦图转换成高分辨率正弦图。

在操作704中,可以从存储的正弦图或从转换的高分辨率正弦图重建pet图像。

在操作704中,可以重构所转换的一组高分辨率正弦图,以提供pet概览图像。可以使用分析重建算法或迭代重建算法来实现重建。

在可以使用整个探测器的运动或床的运动的pet系统中,可以重建具有高分辨率的图像,并且可以通过对正弦图应用osem算法来获得高分辨率图像。

此外,根据本发明的一些实施例,通过应用可能基于mlem算法,osem算法或类似算法的重建算法,可以在计算正弦图时仅使用正数来维持pet正弦图的非负特性。

在一些实施例中,用于改善分辨率的装置可以使用离散摆动来减小正弦图的模糊程度。此外,图像重建过程可以涉及以下特征中的至少一个:基于在pet探测器中测量的信息自动评估pet图像的模糊核,基于可以在至少一个摆动位置中测量的至少一个正弦图来评估高分率正弦图与正常正弦图之间的相关性,评估可以使正常的正弦图为具有泊松分布的随机矢量的噪声分量,以及评估高分辨率正弦图。

在一些实施例中,图像重建过程包括可以计算下列矩阵中的至少一个,所述矩阵包括:至少一个摆动位置中的运动矩阵,指示下采样的矩阵和指示高分辨率正弦图与正常正弦图之间的模糊度差异的矩阵(基于估算的高分辨率正弦图和正常声波图之间的相关性)。

在一些实施例中,图像重建过程可以包括使用蒙特卡罗模拟来选择与至少一个角度对应的床位置中的数据,并且可以基于所选择的数据来估算模糊核。

在一些实施例中,该图像重建过程可以包括首先计算指示相对于正弦图中的至少一个角度的模糊和下采样的矩阵的一部分,并且可以使用计算出的结果导出该矩阵的剩余部分。

此外,图像重建过程可以包括使用例如关于泊松分布的map-em算法或总变分规则化算法,根据正则化来计算唯一解。

图8是根据本发明的一个实施例的使用pet定位像的医学检测步骤的示意图。

首先,记录患者的pet概览图像(所谓的定位像)(步骤801)。可以时间花费很少记录这个pet概览图像,例如每张床位置在5秒以内。在该记录期间,可以在背景中记录pet测量数据(步骤804)。它可用于规划后续的采集。

可选地,pet概览图像还可以用于在pet图像的重建期间进行衰减校正,或者确定每个fov记录的pet测量数据的最小量。

随后,基于pet概览图像确定用于pet测量的fov(步骤802)。在pet概览图像期间已经记录的pet测量数据可能已被分配给各个fov。

在另一步骤803中,参考pet概览图像执行mr测量的患者和疾病特异性规划。在这个需要一定时间的规划阶段,可能会进行pet测量数据的记录(步骤804),测量数据可能会在后台被永久记录下来。

如果需要,在该阶段中,患者或患者的床可能已被移动到不同的位置,例如,仍然缺少pet测量数据的位置。。

之后是传统pet/mr测量数据的记录(步骤805)。在记录mr测量数据期间,pet测量数据继续并行记录。

当mr测量数据的记录完成时,可选地记录另外的pet测量数据(步骤806),直到记录所有fov的足够的pet测量数据,例如在步骤802中定义的。

在测量数据的记录完成之后,可以进一步协调pet测量数据。可以从mr测量数据或pet测量数据重建个体mr或pet图像和/或混合图像(步骤807)。

示例性实施例不应被理解为对本发明的限制。相反,在本公开的上下文中,许多变化和修改是可能的,特别是本领域技术人员可以通过以下方式实现目的而推断的那些变体和组合:例如通过组合或修改结合说明书的一般或特定部分所描述的并且包含在权利要求和/或附图中的单独特征或元件或方法步骤,并且,通过可组合的特征,得到新的主题或新的方法步骤或方法步骤的顺序,包括涉及生产,测试和操作方法。

图9是示出根据本发明的实施例的用于生成组合或叠加图像的装置的配置的示意图。

用于生成图像的装置可以响应于被照射到测量目标的放射线而探测响应光线,可以从探测到的响应射线中提取正弦图,并且可以通过将所提取的正弦图转换成高分辨率正弦图来重建pet定位像。

参考图9,该用于生成图像的装置可以包括信号分类器901,第一图像生成器902,参数测量单元903和第二图像生成器904。

该装置可以通过整个pet探测器的移动或床的移动来施加输入信号;可以基于根据pet探测器的位置分类的输入信号来生成第一图像集;可以基于第一图像集来测量点扩散函数(psf);然后可以生成通过例如osem成像技术改进的第二图像信息。

用于生成图像的装置的第二图像生成器904可以使用psf作为模糊模型来生成可能具有更好分辨率的第二图像信息。

该用于生成图像的装置可以通过应用以下osem算法来生成与高分辨率图像信息相对应的第二图像信息。

参考图10进一步描述通过osem成像技术生成改进图像的方法,该方法使用了根据本实施例的该用于生成图像的装置。

图10为流程图,示出根据本发明的实施例的用于生成图像的过程。

该用于生成图像的装置可以使用输入信号基于例如osem算法生成图像信息,该输入信号在测量目标(例如,模体或患者,或其一部分)穿过pet探测器时可以被应用。

本文公开的装置可以通过应用该输入信号生成该图像信息,该输入信号可以通过圆周运动(例如整个pet探测器或患者可能躺着的床的摆动运动)进行测量。

根据pet的位置,通过整个pet检测器的运动获得的输入信号或床的运动可以被分类(例如,使用信号分类器901),以便在步骤1001中通过应用osem算法生成图像信息。

然后,在步骤1002中,通过(例如使用第一图像生成器902)重建已分类的输入信号来生成第一图像集。

在这种情况下,该第一图像集可以对应于pet图像的集合。可以基于第一图像信息来生成第二图像信息。

例如,可以使用包括四张64×64图像的信息的第一图像集来生成包括一张128×128图像的信息的第二图像信息。

在步骤1003中,根据该实施例的用于生成图像的装置可以使用参数测量单元903,基于psf的先前测量的统计来测量点扩散函数(psf)。

在步骤1004中,该用于生成图像的装置的第二图像生成器904可以通过基于psf和第一图像集应用osem算法来生成第二图像信息。这里,根据参考图9描述的实施例的第二图像信息可以对应于关于高分辨率图像的信息。

图11示出了根据本发明的实施例的用于重建pet定位像的示例性方法的另一流程图。

在步骤1101中,可以在pet扫描器中探测符合事件。在一些实施例中,pet扫描器中的各个探测器可以探测由成像对象中的正电子湮灭产生的伽马光子(个体事件)。如果这些个体事件落在某些能量窗口内,则可能会记录这些个体事件。在一些数据格式中,例如列表模式,每个事件可以被分配一个位置id和一个时间戳,以分别指示探测到它的探测器和探测时间。然后可以处理事件数据以识别符合事件。在一些实施例中,可以将在预定的符合时间窗内探测到的两个事件确定为符合事件(包括真实符合事件以及散射和随机符合事件)。

在步骤1102中,与符合事件相关联的数据可以按时间顺序列表存储。也就是说,当探测和识别符合事件时,可以根据其探测时间将其数据顺序地存储在列表中。符合事件数据可以包括例如lor的坐标(例如,径向距离,角度),事件时间戳和入射光子能量等,或它们的组合。在一些实施例中,该符合事件数据可以是直方图。在其他实施例中,符合事件数据在可用时可以按时间顺序排列。

在步骤1103中,可以根据一个或多个标准可选地存储分类符合事件数据的列表。例如,可以基于入射光子能量对数据进行分类。记录某光子能量的符合事件可以被分组在一起以形成子集,以利于如本文中其他地方所描述的有序子集最大期望值(osem)算法。也可以基于例如,lor角度或直接切片平面对数据进行分类。

已经开发了诸如有序子集最大期望值(osem)的迭代处理技术作为加速迭代重建算法的一种方式。有序子集(os)方法基于在总可用数据集的较小子集上执行至少前几次迭代(以及可选地大部分或全部迭代)。迭代过程的转换可能需要子集的对称性与数据集整体的对称性相似。

仅作为示例,数据可以被布置为一组角度2d投影。使用os算法,该数据集中的投影可以被分为五个子集。第一子集包含在3度,18度,33度,…取得的投影1,6,11,…以及56。第二子集包含投影2,7,12,…以及57。继续该模式,第五子集包含投影5,10,15,…以及60。当使用作为总数据集的一部分的一个子集执行每次迭代时,计算时间较短。

具有多个较小尺寸的探测器的成像系统是期望的,因为可以更快地获取患者数据。多个探测器可以被布置在患者周围,并且可以同时获取感兴趣的解剖结构的数据。

回到步骤1104,可以通过将适合的算法应用于符合事件数据列表来计算pet图像。迭代算法可用于pet图像重建。迭代重建算法可能涉及符合事件数据的向前和/或向后投影。

应当注意,一旦数据变得可用,可以将符合事件数据馈送到迭代更新方程。由于符合事件数据被按时间顺序收集和存储,所以在开始图像重建过程之前可能无需等待数据采集完成。相反,重建迭代可以在数据采集开始后很快开始,使得可以在扫描完成之后立即产生重建的pet图像。为了合并对散射符合事件的校正,必须首先产生散射正弦图。然而,在完整的列表模式图像重建可以开始之前,生成散射正弦图可能仅导致短暂的延迟。

根据本发明的用于重建pet扫描图像的技术可以在基于计算机的系统中实现。该基于计算机的系统可以包括一个或多个能够进行数据处理,逻辑运算和数学计算的处理器和/或计算机。该系统例如还可以包括一个或多个用于存储和管理pet扫描原始数据和符合事件数据的存储装置。此外,可以为用户提供多个用户界面来启动重建过程并且查看重建的pet扫描图像。该技术可以在计算机或计算机网络上实现。

参考图12,在一些实施例中,获取多个pet定位像生成,作为在pet扫描期间执行的pet扫描图像采集的一部分,并且通常由虚线1200表示。多个pet扫描图像生成是迭代过程,其中使用步骤1201所示的规定的脉冲序列获取一组定位像,然后在步骤1202获取导航信号。获取视图,直到一个图像的所有视图都在步骤1201,1202和1204中被获取,如在步骤1203中所确定的那样。

如果多个pet定位像在判定框1205被确定为不可接受,则用于扫描作为定位像的pet图像的相关参数需要如步骤1206所示进行修改。不同床位置处的患者的各种定位像如前所述被获取,并且重复该过程,直到获取所有需要的pet定位像。

在步骤1207,只要包括但不限于医生或患者的主体检测pet定位像,则该主体可以决定对该患者执行常规的检测计划,例如pet和mr,指向表示位于定位像中的区域的患者的所指定的区域。在步骤1208中,来自一个或多个定位像的信息可以用于确定在mr检测或pet检测中使用的扫描参数。

定位像识别在mr系统和pet扫描器的视场中的每个体素的组织位置(加上例如空气)。在步骤1209,可以对患者的目标区域进行常规mr检测或pet检测。在步骤1210中,可以生成患者的组合pet/mr图像。然后,在步骤1211中,该组合的pet/mr图像将被输出以进行显示。

图13示出用于pet图像重建的并行/流水线架构的框图。虽然以下讨论是关于过程的,但是本发明的至少一些实施例包括用于实现各种过程步骤的硬件和软件。实现各个过程的手段在本领域中是已知的,控制过程之间的数据流的手段也是如此。在一个实施例中,列举的过程可以由在至少一台计算机上运行的多线程软件程序来实现。在另一个实施例中,使用硬件和软件的组合来实现列举的过程。

在图13中,第一方框表示从扫描器获取数据1301。获取过程1301包括从扫描器探测器收集原始数据,并将该数据存储在预定数据格式的文件中。该数据格式可以是例如列表模式。所获取的数据包括发射和/或传播事件以及关于患者床的当前位置和/或高度的信息。当患者床上的患者移动通过扫描器时,获取过程1301可以连续收集数据。在其他实施例中,当躺在患者床上的患者移动通过扫描器时,获取过程1301可以不连续地收集数据。来自获取过程1301的数据被同步或异步地输出到直方图过程1302。

直方图过程1302创建从获取过程1301接收的发射和/或传输事件的3d正弦图空间直方图,以及关于患者床的当前位置的信息。本领域技术人员将认识到,床位置信息可以是基于固定床速度的时间信号或基于床位置传感器的位置信号。基于当前患者床位置,发射事件被直方图化为3d正弦图空间。在一些实施例中,当患者床已经移动预定量时,直方图偏移相应的量。在其他实施例中,患者床可以根据指定的直方图数据量进行移动。通过这种偏移,3d正弦图空间的一部分不再在直方图区域内,该区域对应于已经穿过并且不在其内的断层显像机的轴向视场内的患者和患者床的部分。

直方图过程1302将同步和/或异步数据作为两个数据流1303,1304输出。来自直方图过程1302的第一数据流1303将在直方图过程1302期间创建的传输数据文件的内容传送到传输/衰减过程1305。该传输数据文件包含二维(2d)数据。该传输/衰减过程1305使用现有的空白传输数据文件来创建衰减数据文件。该传输/衰减处理1305将数据流输出到衰减校正过程1308和mu图像重建过程1306。mu图像重建过程1306创建mu图像数据文件,并将数据流输出到衰减校正过程1308。

第二数据流1304传送在直方图过程1302期间创建的3d发射数据文件的内容。第二数据流1304将数据传送到归一化过程1307。归一化过程1307使用现有的归一化文件来创建第二发射数据文件。现有的归一化文件包含归一化系数。归一化过程1307将数据流输出到衰减校正过程1308。

衰减校正过程1308接受来自传输/衰减过程1305和mu图像重建过程1306和归一化过程1307的数据流。衰减校正过程1308创建正弦图数据文件,并将数据流输出到散射校正过程1309,其创建图像数据文件并将3d数据流输出到图像重建过程1310。

在一些实施例中,图像重建过程1310可以采用迭代型过程,例如3dosem过程或分析重建过程,例如3drp过程。

通过散射校正过程1309的数据对应于床移动。病床移动预定量后,3d正弦图空间的一部分不再在散射校正处理1309区域内。3d正弦图空间的这一部分对应于已经穿过且不在其内的断层显像机的轴向视场内的患者和患者床的部分。散射校正过程1309的输出被传送到图像重建过程1310。在重建过程1310完成之后,图像被存储,和/或在图像显示1311处进行显示。

上述并行/流水线架构的所有阶段可以同时对数据进行操作。在一些实施例中,给定处理阶段的数据可能与其他处理阶段中的数据不同。在接受新数据之前,每个处理阶段都可以完成当前数据的处理。因此,来自一个处理阶段的数据可能不会被发送到下一阶段的处理,直到该下一阶段已经完成了来自上一个周期的处理数据。本领域技术人员将认识到,在不脱离本发明的精神和范围的情况下,可以省略处理阶段或附加处理阶段(各种校正,例如弧度校正等)。

此外,不同示例实施例的元件和/或特征可以在本公开和所附权利要求的范围内彼此组合和/或彼此替代。

此外,本发明的上述和其他示例特征中的任一个可以以装置,方法,系统,计算机程序,计算机可读介质和计算机程序产品的形式来体现。例如,上述方法可以以系统或装置的形式体现,包括但不限于用于执行附图所示方法的任何结构。

进一步地,任何上述方法可以以程序的形式来体现。该程序可以存储在计算机可读介质上,并且适于在计算机装置(包括处理器的装置)上运行时执行上述方法中的任一种。因此,存储介质或计算机可读介质适于存储信息,并且适于与数据处理设备或计算机装置交互,以执行任何上述实施例的程序和/或执行任何上述实施例的方法。计算机可读介质或存储介质可以是安装在计算机装置主体内的内置介质,或者是布置成可以与计算机装置主体分离的可移动介质。内置介质的示例包括但不限于可重写的非易失性存储器,例如rom和闪速存储器以及硬盘。可移动介质的示例包括但不限于诸如cd-rom和dvd的光学存储介质;磁光存储介质,例如mo;磁性存储介质,包括但不限于软盘(商标),盒式磁带和可移动硬盘;具有内置可重写非易失性存储器的介质,包括但不限于存储卡;和具有内置rom的介质,包括但不限于rom卡带。此外,关于存储的图像的各种信息,例如属性信息,可以以任何其他形式存储,或者可以以其他方式提供。

因此所描述的示例性实施例,显而易见的是,它可以以许多方式变化。这些变化不被认为是脱离本发明的精神和范围,并且对于本领域技术人员显而易见的是所有这些修改旨在被包括在所附权利要求的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1