无人车语义地图模型构建方法及其在无人车上的应用方法与流程

文档序号:12550893阅读:617来源:国知局
无人车语义地图模型构建方法及其在无人车上的应用方法与流程

本发明主要涉及无人车技术领域,尤其涉及一种无人车语义地图模型构建方法及其在无人车上的应用方法。



背景技术:

近年来,无人车得到了国内外学术界以及工业界的广泛关注,其相关支撑技术有了快速的发展。从系统组成与信息流向来看,一般可以将无人车系统划分为环境感知、决策规划以及运动控制等模块,其中环境感知通过各种传感器来获取交通环境的实时场景信息并生成环境模型(即感知地图);在此基础上,决策规划环境模型的基础上,做出符合交通规则、安全的行为决策以及相应的避障行驶轨迹;运动控制将所规划的轨迹离散化为无人车实际所需要执行的控制指令,如油门、刹车、方向盘转角等,并发送给无人车执行系统执行,实现自主驾驶行为。其中,环境感知充当无人车的“眼睛”的功能,但是目前由于传感器以及信息融合技术的限制,其给出的结果准确性、可靠性较低,难以满足决策规划系统的要求。采用先验的、高精度的路网信息,可以极大地降低无人车对实时感知的依赖,从而有效提高无人车的行驶安全性与质量。

当前,大部分商用导航地图只提供基本的、道路级精度的路网元素信息,其数据内容、数据精度以及组织方式均难以有效表达无人车所面临的复杂场景,难以辅助无人车进行实时场景理解与决策;而无人车实时生成的环境模型,大多采用栅格地图等表达方式,地图搜索需要耗费大量的时间,且难以与先验的路网信息进行有效融合,导致无人车难以实现高精度、高效的场景理解与行为决策。构建语义地图,对先验的路网信息以及实时感知的障碍物信息进行有效融合,可以有效提高信息存储与搜索的效率,对无人车场景理解乃至行为决策有着重要的意义。

公开号为CN104535070A的中国专利(申请号20141083873.5),该专利提供了一种高精度地图数据结构、采集和处理系统及方法,将地图数据结构分为四层:道路网络、车道网路、车道线信息以及特殊信息数据,虽然几个层次之间定义了数据库层次的关联,但是由于缺乏语义信息,无人车难以在此地图数据结构中建立各类地图元素以及交通参与者之间完善的语义关系,分辨无人车实时场景信息,实现场景理解。同时,如路口、掉头等信息难以体现在其数据结构中,对于车道线与车道的关联也不够准确,如某段路可能是两车道变三车道,这样的话三车道中间的那条车道与车道线的关系就会难以表达。

公开号为CN104089619A的中国专利(申请号201410202876.4),该专利提供了一种无人驾驶汽车的GPS导航地图精确匹配系统及其操作方法,通过获取道路信息,确定起始点,获取车辆定位信息,信息匹配与筛选这个流程完成导航地图的精确匹配,但是其匹配方法主要是通过离散的点进行搜索,没有利用地图元素之间的关联性,这样就会导致匹配效率低的问题。



技术实现要素:

本发明目的就是为了弥补已有技术的缺陷,提供一种无人车语义地图模型构建方法及其在无人车上的应用方法。

本发明是通过以下技术方案实现的:

本发明提出一种基于本体论的无人车语义地图模型构建方法,包括语义地图的建模方法及其在无人车上的应用过程。

根据本发明的一个方面,提供一种语义地图的建模方法,包括语义地图的概念结构、语义关系以及真实地图实例化生成语义地图的方法。

1、概念结构,分为两大模块:实体和属性:

11)实体包括自车、路网实体以及障碍物实体,分别代表了自车(无人车)实体、路网元素实体以及障碍物实体。

111)自车指代无人车本身,根据需求,可以扩展为不同类型无人车。

112)路网实体包括区域实体和点实体,分别代表区域类型实体及点类型实体。

1121)区域实体包括整体路段、连接点、边界、道路隔离带、特殊区域、人行横道、车道线、车道、路段。其中,整体路段代表一条道路的整体路段,包括连接点、路段、边界以及道路隔离带;连接区域包括路口、掉头以及车道数增减处区域;路段包含多个同方向的车道;

1122)点实体包括地面标识、路边标识以及停止线,分别代表地面交通标识、路边交通标识以及停止线(停止线与路段存在一对一的关系,因此可以简化成一个点即可)。

113)障碍物实体包括动态障碍物、静态障碍物、交通设施类型障碍物、行人、动物、车辆、自然障碍以及道路拦截类障碍物。其中自然障碍包括凹进地面类障碍物(比如:水坑)和凸出地面类障碍物(比如大块石头);道路拦截类障碍物包括故障标示牌、锥桶、水马围栏、分离线以及施工标示牌。

12)属性包括点坐标、区域范围以及约束,分别代表了地图元素的点坐标、区域范围以及地图元素之间的约束类型。约束包括连接约束,代表路段与路段的连接方向约束。连接约束包括左转向连接约束、右转向连接约束、掉头连接约束以及直行连接约束。

2、无人车语义地图建模方法,其特征在于,所述语义关系,包含了在上述定义的各种地图概念间的语义关系。语义关系分为对象属性和数据属性两部分:

21)对象属性部分包括不同概念之间的继承关系(泛化特化)及关联关系。

211)不同概念之间的层次关系在上述发明内容1,概念结构中已说明。

212)不同概念之间的关联关系包含整体路段与道路隔离带、路段、连接点之间的组合关系(其关系名分别为:存在道路隔离带、存在路段、存在连接点);路段与连接点之间的连接关系(其关系名为:关联连接点),与道路隔离带之间的位置关系(其关系名为:关联道路隔离带),与人行横道之间的位置关系(其关系名为:关联人行横道),与停止线之间的位置关系(其关系名为:关联停止线),与边界之间的位置关系(其关系名为:关联边界),与车道之间的关系(其关系名为:存在车道),与路边标识之间的关系(其关系名为:存在路边标识);连接点与连接约束之间的存在关系(其关系名为:存在连接约束),与人行横道之间的关系(其关系名为:存在人行横道);车道与车道线之间的位置关系(其关系名分别为:存在左车道线、存在右车道线),与其他车道之间的方位关系(其关系名分别为:同向左边车道、同向右边车道),与特殊区域之间的位置关系(其关系名为:存在特殊区域),与地面标识之间的关系(其关系名为:存在地面标识);连接约束与路段用以表述连接方向的关系(其关系名分别为:起始路段、目标路段)。自车与障碍物实体之间的方位关系(其关系名分别为:存在左后方障碍物、存在正后方障碍物、存在右后方障碍物、存在左前方障碍物、存在正前方障碍物、存在右前方障碍物、存在正左方障碍物、存在正右方障碍物),与车道之间的位置关系(其关系名为:所属车道);区域实体与区域范围之间的关系(其关系名为:关联区域范围);点实体与点坐标之间的关系(其关系名为:关联点坐标)。

22)数据属性部分包括自车的全局路径规划信息(其关系名为:下个路口转向)以及当前速度(其关系名为:自车实时速度),与下一个即将到达的连接点、人行横道、停止线的距离(其关系名分别为:与连接点距离、与人行横道距离、与停止线距离),与障碍物的距离(其关系名为:与障碍物距离);障碍物实体的当前速度(其关系名为:障碍物速度)以及位姿(其关系名为:障碍物运动方向);点坐标的数据信息(其关系名为:点坐标值);区域范围的数据信息(其关系名为:区域范围值);车道的速度限制信息(其关系名分别为:车道最大车速、车道最小车速)、车道允许转向信息(其关系名为:车道路口转向)、车道是否最左最右车道标识(其关系名分别为:同向最左车道、同向最右车道)以及车道宽度(其关系名为:车道宽度);路段包含的车道数量(其关系名为:路段所含车道数);整体路段的类型信息(其关系名为:整体路段类型);各概念类的基本属性(其关系名分别为:实体ID、实体名)。

3、静态地图数据实例化以及实时障碍物实例化生成语义地图的方法,其步骤如下:

步骤1、通过激光雷达、相机、GPS、卫星照片等感知系统获取真实行驶环境的详细数据信息,并且将地图详细数据按照所述地图概念结构实例化为静态路网实体;

步骤2、通过激光雷达、相机、GPS等传感器获取实时障碍物位姿信息,将障碍物信息实例化为障碍物地图实体;

步骤3、建立步骤1,2中得到的静态地图和障碍物地图中的实体相互间语义关系,最终得到用于无人车的语义地图。

4、根据本发明的第二方面,一种基于无人车的语义地图的应用方法,通过语义地图、全局规划路径、无人车当前位姿以及周边实时障碍物信息进行语义推理得到无人车局部场景信息,实现无人车的场景理解,辅助无人车决策。具体步骤如下:

步骤1)、通过无人车全局规划系统获取无人车目标行驶路径,并通过GPS/INS定位定向系统实时获取无人车当前位姿;

步骤2)、通过无人车环境感知系统实时感知周边障碍物信息,通过语义推理得到它们与无人车之间的相对位姿;

步骤3)、通过语义地图、全局规划路径、无人车当前位姿以及周边障碍物相对位姿进行语义推理得到无人车局部场景信息;

步骤4)、根据不同场景信息辅助无人车做出不同决策。

本发明克服了以上专利的缺点,具有这些特点:

1)本发明构建的基于本体论的语义地图模型借助本体论知识建模方法的表达与可判定能力,能够清晰有效地描述车道级精度的路网信息以及本车与其他交通参与者的相关位置关系。

2)本发明构建的语义地图模型能够完善地表达高精度车道级路网元素概念以及它们之间存在的复杂的语义关系,通过某个路网元素就能直接或间接关联到其他元素上,可以有效避免普通地图数据库中遍历式的搜索,提高地图搜索的效率。

3)本发明构建的语义地图,能够有效将先验的路网信息与无人车实时感知的障碍物信息进行融合,建立无人车、障碍物以及交通路网中各元素的语义关系,通过无人车当前位姿即可关联到无人车周边场景信息,为无人车的行为决策提供支撑。

4)本发明构建的语义地图模型可以适用于汽车辅助驾驶系统(ADAS)以及全自主无人驾驶汽车的场景理解。

本发明的优点是:本发明构建了一套适用于无人车的地图数据结构,并且地图元素之间设计了充分的语义关系,生成语义地图,通过语义地图、全局规划路径、无人车当前位姿以及周边实时障碍物信息进行语义推理得到无人车局部场景信息,实现无人车的场景理解,辅助无人车进行行为决策。

附图说明

图1为本发明无人车语义地图建模以及应用的流程图。

图2为语义地图元素概念结构图。

图3为语义地图元素包含关系图。

图4为语义地图元素概念关联关系图。

图5为无人车与障碍物方位关系图。

图6为语义地图生成过程示意图。

图7为语义地图实施一图。

图8为语义地图实施二图。

图9为语义推理示意图。

具体实施方式

本发明提出一种基于本体论的无人车语义地图模型构建方法,包括语义地图的建模方法及其在无人车上的应用过程。

实施例一:

如图1,2所示,本实施例提供一种语义地图的建模方法,包括语义地图的概念结构、语义关系以及真实地图实例化生成语义地图的方法。

如图3所示,语义本体分为两大模块:实体和属性:

1)实体包括自车、路网实体以及障碍物实体,分别代表了自车(无人车)实体、路网元素实体以及障碍物实体。

11)自车指代无人车本身,根据需求,可以扩展为不同类型无人车。

12)路网实体包括区域实体和点实体,分别代表区域类型实体及点类型实体。

121)区域实体包括整体路段、连接点、边界、道路隔离带、特殊区域、人行横道、车道线、车道、路段。其中,整体路段代表一条道路的整体路段,包括连接点、路段、边界以及道路隔离带;连接区域包括路口、掉头以及车道数增减处区域;路段包含多个同方向的车道;

122)点实体包括地面标识、路边标识以及停止线,分别代表地面交通标识、路边交通标识以及停止线(停止线与路段存在一对一的关系,因此可以简化成一个点即可)。

13)障碍物实体包括动态障碍物、静态障碍物、交通设施类型障碍物、行人、动物、车辆、自然障碍以及道路拦截类障碍物。其中自然障碍包括凹进地面类障碍物(比如:水坑)和凸出地面类障碍物(比如大块石头);道路拦截类障碍物包括故障标示牌、锥桶、水马围栏、分离线以及施工标示牌。

2)属性包括点坐标、区域范围以及约束,分别代表了地图元素的点坐标、区域范围以及地图元素之间的约束类型。约束包括连接约束,代表路段与路段的连接方向约束。连接约束包括左转向连接约束、右转向连接约束、掉头连接约束以及直行连接约束。

如图4所示,包含了语义地图中的语义关系,包含了在前面所定义的各种概念间的语义关系。语义关系分为对象属性和数据属性两部分:

1)对象属性部分包括不同概念之间的继承关系(泛化特化)、及关联关系。

11)不同概念之间的层次关系在上述1、2中已有说明。

12)不同概念之间的关联关系包含整体路段与道路隔离带、路段、连接点之间的组合关系(其关系名分别为:存在道路隔离带、存在路段、存在连接点);路段与连接点之间的连接关系(其关系名为:关联连接点),与道路隔离带之间的位置关系(其关系名为:关联道路隔离带),与人行横道之间的位置关系(其关系名为:关联人行横道),与停止线之间的位置关系(其关系名为:关联停止线),与边界之间的位置关系(其关系名为:关联边界),与车道之间的关系(其关系名为:存在车道),与路边标识之间的关系(其关系名为:存在路边标识);连接点与连接约束之间的存在关系(其关系名为:存在连接约束),与人行横道之间的关系(其关系名为:存在人行横道);车道与车道线之间的位置关系(其关系名分别为:存在左车道线、存在右车道线),与其他车道之间的方位关系(其关系名分别为:同向左边车道、同向右边车道),与特殊区域之间的位置关系(其关系名为:存在特殊区域),与地面标识之间的关系(其关系名为:存在地面标识);连接约束与路段用以表述连接方向的关系(其关系名分别为:起始路段、目标路段)。自车与障碍物实体之间的方位关系(其方位如图5所示,其关系名分别为:存在左后方障碍物、存在正后方障碍物、存在右后方障碍物、存在左前方障碍物、存在正前方障碍物、存在右前方障碍物、存在正左方障碍物、存在正右方障碍物),与车道之间的位置关系(其关系名为:所属车道);区域实体与区域范围之间的关系(其关系名为:关联区域范围);点实体与点坐标之间的关系(其关系名为:关联点坐标)。具体关系如表1:

表1为不同概念之间的关联关系表格

2)数据属性部分包括自车的全局路径规划信息(其关系属性名为:下个路口转向)以及当前速度(其关系名为:自车实时速度),与下一个即将到达的连接点、人行横道、停止线的距离(其关系名分别为:与连接点距离、与人行横道距离、与停止线距离),与障碍物的距离(其关系名为:与障碍物距离);障碍物实体的当前速度(其关系名为:障碍物速度)以及位姿(其关系名为:障碍物运动方向);点坐标的数据信息(其关系名为:点坐标值);区域范围的数据信息(其关系名为:区域范围值);车道的速度限制信息(其关系名分别为:车道最大车速、车道最小车速)、车道允许转向信息(其关系名为:车道路口转向)、车道是否最左最右车道标识(其关系名分别为:同向最左车道、同向最右车道)以及车道宽度(其关系名为:车道宽度);路段包含的车道数量(其关系名为:路段所含车道数);整体路段的类型信息(其关系名为:整体路段类型);各概念类的基本属性(其关系名分别为:实体ID、实体名)。具体关系如表2所示:

表2为数据属性部分关系表

如图6所示,静态地图数据实例化以及实时障碍物实例化生成语义地图的方法,其步骤如下:

步骤1、通过激光雷达、相机、GPS、卫星照片等感知系统获取真实行驶环境的详细数据信息,并且将地图详细数据按照所述地图概念结构实例化为静态路网实体;

步骤2、通过激光雷达、相机、GPS等传感器获取实时障碍物位姿信息,将障碍物信息实例化为障碍物地图实体;

步骤3、建立步骤1,2中得到的静态地图和障碍物地图中的实体相互间语义关系,最终得到用于无人车的语义地图。

如图7,为一段真实地图的建模示例图,其中包括了一个十字路口,一个掉头,多个路段以及其他地图元素,其关键元素都用箭头标识了出来,其地面标识、路边标识分别只取了一个作为示意。首先,获取地图详细数据;然后将地图详细数据按照语义地图概念结构分为不同类别地图元素并且根据前述概念结构实例化为静态路网实体,如图7所示,其中横向与纵向的道路代表了两个整体路段实体,十字路口实体为连接点002,掉头实体为连接点001,每个路段都是通过连接点与其他路段相连,道路中间虚线箭头代表了连接约束实体,与连接点002关联,连接点002此处应有12个连接约束实体,分别代表不同方向路段通过连接点002而存在的连接关系,此处只标注了部分连接约束实体,其他地图元素诸如车道线、车道、道路隔离带、边界等等都已经在图7中标注;将前面完成的地图元素实体之间存在的语义关系建立起来,如路段003存在车道为车道003和车道004,车道003存在左车道线为车道线002,同向左边车道为车道004,其他实体间的属性以此类推,由于全部关联内容比较多,不详细描述。将每个实体的对象属性和数据属性一一建立;通过感知系统实时获取障碍物位姿信息,并且根据前述概念结构实例化为障碍物地图实体,将障碍物实体与静态路网实体建立起语义关系;最后,将前面步骤中得到的静态路网实体、实时障碍物地图实体以及它们的关联统筹起来,得到语义地图。

本发明提供一种基于无人车的语义地图的应用方法,通过语义地图、全局规划路径、无人车当前位姿以及周边实时障碍物信息进行关联推理得到无人车局部场景信息,实现无人车的场景理解,辅助无人车决策。

实施例二:

如图8所示,其地图语义信息皆在图7中,红色方块代表无人车当前位置,当前无人车行驶至接近连接点(连接点可能包括路口、掉头以及车道数增减处等区域),通过实时感知获取无人车当前位姿以及周边障碍物信息,通过语义推理得到与无人车相对位姿,并在此基础上,通过通过语义地图、全局规划路径、无人车当前位姿以及周边障碍物相对位姿进行语义推理得到无人车局部场景信息,从而辅助无人车做出行为决策。图8中发现前方存在障碍物车辆002(与障碍物距离为7m、障碍物速度为0、障碍物运动方向为同向)、右前方存在障碍物车辆001(与障碍物距离为15m、障碍物速度为0、障碍物运动方向为同向)以及右边存在障碍物车辆003(与障碍物距离为2m、障碍物速度为0、障碍物运动方向为同向),因此判断无人车应该停车;同时,如图9所示为一段推理过程示意,根据全局路径规划知道自车下个路口转向为左转,同时自车所属车道为车道004,路段003存在车道车道004,关联连接点为连接点002,连接点002存在连接约束为连接约束004(所属概念类:左转向连接约束(所属父类:连接约束)、起始路段:路段003、目标路段:路段008),因此可以进行语义推理从而预知下一个要到达的路段为路段008,通过路段008可以得到其所在局部地图信息,帮助无人车预先知道下一个要到达的局部地图信息,具体步骤如下:

步骤1、通过无人车全局规划系统获取无人车目标行驶路径,并通过GPS/INS定位定向系统实时获取无人车当前位姿;

步骤2、通过无人车环境感知系统实时感知周边障碍物信息,通过语义推理得到它们与无人车之间的相对位姿;

步骤3、通过语义地图、全局规划路径、无人车当前位姿以及周边障碍物相对位姿进行语义推理得到无人车局部场景信息;

步骤4、根据不同场景信息辅助无人车做出不同决策。

总之,本发明涉及一种基于本体论的无人车语义地图模型构建方法的方法,可以应用在无人车软件系统中,帮助无人车理解场景信息。本发明构建的语义地图模型专门针对无人车所关注的地图信息要素进行模型构建,能准确表达无人车可能面临的场景,并且地图元素以及交通参与者之间都存在着语义关系,通过本发明提供的语义地图应用方法能够帮助无人车快速理解其所在场景。

本发明未详细阐述部分属于本领域技术人员的公知技术。

以上内容是结合具体的实施方式对本发明进行的详细说明,但并不能认定本发明的具体实施只限于这些内容。在不脱离本发明的原理和精神的前提下,本领域技术人员可以对这些实施进行若干调整、修改,本发明的保护范围有所附权利要求及其等同内容限定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1