信息推送方法和装置与流程

文档序号:11199377阅读:511来源:国知局
信息推送方法和装置与流程

本申请涉及计算机技术领域,具体涉及互联网技术领域,尤其涉及信息推送方法和装置。



背景技术:

随着互联网技术的发展,通过智能设备上所安装的应用获取资讯已经成为人们日常生活中的常见信息获取方式。通常,需要向用户个性化推荐其最感兴趣的信息,以减少用户在网络上搜索所花的时间。

现有的方式通常是通过统计搜索数据结果中与搜索关键词的共同出现的共现关键词,继而基于对共现的频次较高的共现关键词进行信息推送。然而,这种方法无法针对共现频次较低的词语进行分析,因而存在着信息推送的针对性较低的问题。



技术实现要素:

本申请实施例的目的在于提出一种改进的信息推送方法和装置,来解决以上背景技术部分提到的技术问题。

第一方面,本申请实施例提供了一种信息推送方法,该方法包括:对用户浏览的页面内容进行解析,提取页面内容的关键词并确定与关键词相对应的主题;确定预置关键词集合中的、与关键词相匹配的预置关键词;基于预先建立的预置关键词的关联关系,确定与所确定的预置关键词相关联的关联关键词;向用户推送与主题和/或关联关键词对应的信息。

在一些实施例中,对用户浏览的页面内容进行解析,提取页面内容的关键词并确定与关键词相对应的主题,包括:对用户浏览的页面内容进行解析,提取页面内容的关键词,并将关键词输入至预先生成的主题概率分布模型,得到至少一个第一候选主题和至少一个第一候选主题中的各个第一候选主题作为与关键词相对应的主题的概率;将关键词输入至预先生成的泛化模型,得到至少一个第二候选主题和关键词与至少一个第二候选主题中的各个第二候选主题的相似度;将至少一个第一候选主题和至少一个第二候选主题进行融合,确定与关键词相对应的主题。

在一些实施例中,在对用户浏览的页面内容进行解析,提取页面内容的关键词并确定与关键词相对应的主题之前,该方法还包括生成主题概率分布模型的步骤,包括:对预设的多个文本进行解析,确定每一个文本的关键词和主题,并建立该文本的关键词和主题的对应关系;对所建立的对应关系进行统计,确定每一个关键词和各个主题的对应关系的建立次数;基于所确定的每一个关键词和各个主题的对应关系的建立次数,生成与所确定的每一个关键词相对应的主题概率分布模型。

在一些实施例中,在对用户浏览的页面内容进行解析,提取页面内容的关键词并确定与关键词相对应的主题之前,该方法还包括生成泛化模型的步骤,包括:对预设的多个文本进行解析,生成各个文本的关键词集合,并确定各个文本的主题;将相同主题的文本所对应的关键词集合进行合并,以生成与所确定的每一个主题相对应的关键词集合;对于所确定的每一个主题,基于卡方检验方法,从与该主题相对应的关键词集合中提取特征关键词;基于机器学习方法,将与所确定的各个主题相对应的特征关键词作为输入,训练得到泛化模型。

在一些实施例中,对预设的多个文本进行解析,生成各个文本的关键词集合,并确定各个文本的主题,包括:对于预设的多个文本中的每一个文本,对该文本进行分词,并删除分词后所得到的多个词中的停用词、介词和副词,以得到与该文本相对应的关键词集合;将各个文本输入至预先训练的主题模型,确定每一个文本的主题,其中,主题模型用于表征文本与主题的对应关系。

在一些实施例中,在对用户浏览的页面内容进行解析,提取页面内容的关键词并确定与关键词相对应的主题之前,该方法还包括建立预置关键词的关联关系的步骤,包括:对历史搜索数据和历史浏览数据进行解析,确定第一关键词和与每一个第一关键词相关联的至少一个第二关键词;分别将第一关键词、至少一个第二关键词中的各个第二关键词与预置关键词集合中的各个预置关键词进行相似度计算,将预置关键词集合中的、与第一关键词相似度最大的预置关键词确定为第一预置关键词,将预置关键词集合中的、与各个第二关键词相似度最大的预置关键词分别确定为第二预置关键词;分别建立第一预置关键词与各个第二预置关键词的关联关系。

在一些实施例中,在分别建立第一预置关键词与各个第二预置关键词的关联关系之后,该方法还包括:从历史搜索数据和历史浏览数据中统计第一预置关键词与各个第二预置关键词的共现次数;基于所确定的共现次数,确定第一预置关键词到各个第二预置关键词的转移概率,其中,第一预置关键词到每一个第二预置关键词的转移概率为第一预置关键词与该第二预置关键词的共现次数与所确定的各个共现次数的总和的比值。

在一些实施例中,基于预先建立的预置关键词的关联关系,确定与所确定的预置关键词相关联的关联关键词,包括:将所确定的预置关键词作为目标第一预置关键词,从所建立的关联关系中,确定与目标第一预置关键词相关联的第二预置关键词,并提取目标第一预置关键词与相关联的各个第二预置关键词的转移概率;将转移概率大于预设概率的第二预置关键词确定为与目标第一预置关键词的相关联的关联关键词。

在一些实施例中,在对用户浏览的页面内容进行解析,提取页面内容的关键词并确定与关键词相对应的主题之后,该方法还包括:将页面内容的链接呈现在与主题相对应的网页中。

第二方面,本申请实施例提供了一种信息推送装置,该装置包括:第一解析单元,配置用于对用户浏览的页面内容进行解析,提取页面内容的关键词并确定与关键词相对应的主题;第一确定单元,配置用于确定预置关键词集合中的、与关键词相匹配的预置关键词;第二确定单元,配置用于基于预先建立的预置关键词的关联关系,确定与所确定的预置关键词相关联的关联关键词;推送单元,配置用于向用户推送与主题和/或关联关键词对应的信息。

在一些实施例中,第一解析单元包括:第一输入模块,配置用于对用户浏览的页面内容进行解析,提取页面内容的关键词,并将关键词输入至预先生成的主题概率分布模型,得到至少一个第一候选主题和至少一个第一候选主题中的各个第一候选主题作为与关键词相对应的主题的概率;第二输入模块,配置用于将关键词输入至预先生成的泛化模型,得到至少一个第二候选主题和关键词与至少一个第二候选主题中的各个第二候选主题的相似度;融合模块,配置用于将至少一个第一候选主题和至少一个第二候选主题进行融合,确定与关键词相对应的主题。

在一些实施例中,该装置还包括:第二解析单元,配置用于对预设的多个文本进行解析,确定每一个文本的关键词和主题,并建立该文本的关键词和主题的对应关系;第一统计单元,配置用于对所建立的对应关系进行统计,确定每一个关键词和各个主题的对应关系的建立次数;生成单元,配置用于基于所确定的每一个关键词和各个主题的对应关系的建立次数,生成与所确定的每一个关键词相对应的主题概率分布模型。

在一些实施例中,该装置还包括:第三解析单元,配置用于对预设的多个文本进行解析,生成各个文本的关键词集合,并确定各个文本的主题;合并单元,配置用于将相同主题的文本所对应的关键词集合进行合并,以生成与所确定的每一个主题相对应的关键词集合;提取单元,配置用于对于所确定的每一个主题,基于卡方检验装置,从与该主题相对应的关键词集合中提取特征关键词;训练单元,配置用于基于机器学习方法,将与所确定的各个主题相对应的特征关键词作为输入,训练得到泛化模型。

在一些实施例中,第三解析单元包括:分词模块,配置用于对于预设的多个文本中的每一个文本,对该文本进行分词,并删除分词后所得到的多个词中的停用词、介词和副词,以得到与该文本相对应的关键词集合;第三输入模块,配置用于将各个文本输入至预先训练的主题模型,确定每一个文本的主题,其中,主题模型用于表征文本与主题的对应关系。

在一些实施例中,该装置还包括:第四解析单元,配置用于对历史搜索数据和历史浏览数据进行解析,确定第一关键词和与每一个第一关键词相关联的至少一个第二关键词;计算单元,配置用于分别将第一关键词、至少一个第二关键词中的各个第二关键词与预置关键词集合中的各个预置关键词进行相似度计算,将预置关键词集合中的、与第一关键词相似度最大的预置关键词确定为第一预置关键词,将预置关键词集合中的、与各个第二关键词相似度最大的预置关键词分别确定为第二预置关键词;建立单元,配置用于分别建立第一预置关键词与各个第二预置关键词的关联关系。

在一些实施例中,该装置还包括:第二统计单元,配置用于从历史搜索数据和历史浏览数据中统计第一预置关键词与各个第二预置关键词的共现次数;第三确定单元,配置用于基于所确定的共现次数,确定第一预置关键词到各个第二预置关键词的转移概率,其中,第一预置关键词到每一个第二预置关键词的转移概率为第一预置关键词与该第二预置关键词的共现次数与所确定的各个共现次数的总和的比值。

在一些实施例中,第二确定单元包括:第一确定模块,配置用于将所确定的预置关键词作为目标第一预置关键词,从所建立的关联关系中,确定与目标第一预置关键词相关联的第二预置关键词,并提取目标第一预置关键词与相关联的各个第二预置关键词的转移概率;第二确定模块,配置用于将转移概率大于预设概率的第二预置关键词确定为与目标第一预置关键词的相关联的关联关键词。

在一些实施例中,该装置还包括:呈现单元,配置用于将页面内容的链接呈现在与主题相对应的网页中。

第三方面,本申请实施例提供了一种服务器,包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如信息推送方法中任一实施例的方法。

第四方面,本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如信息推送方法中任一实施例的方法。

本申请实施例提供的信息推送方法和装置,通过对用户浏览的页面内容进行解析,以便提取关键词并确定相应的主题,而后确定与该关键词相匹配的预置关键词,之后,基于预先建立的预置关键词的关联关系确定关联关键词,最后向用户推送与主题和/或关联关键词对应的信息,从而可以推送与用户浏览的页面内容对应的主题和/或关联关键词相对应的信息,实现了富于针对性的信息推送。

附图说明

通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:

图1是本申请可以应用于其中的示例性系统架构图;

图2是根据本申请的信息推送方法的一个实施例的流程图;

图3是根据本申请的信息推送方法的一个应用场景的示意图;

图4是根据本申请的信息推送方法的又一个实施例的流程图;

图5是根据本申请的信息推送装置的一个实施例的结构示意图;

图6是适于用来实现本申请实施例的服务器的计算机系统的结构示意图。

具体实施方式

下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。

图1示出了可以应用本申请的信息推送方法或信息推送装置的示例性系统架构100。

如图1所示,系统架构100可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。

用户可以使用终端设备101、102、103通过网络104与服务器105交互,以接收或发送消息等。终端设备101、102、103上可以安装有各种通讯客户端应用,例如网页浏览器应用、新闻资讯类应用、购物类应用、搜索类应用、即时通信工具、邮箱客户端、社交平台软件等。

终端设备101、102、103可以是具有显示屏并且支持网页浏览的各种电子设备,包括但不限于智能手机、平板电脑、膝上型便携计算机和台式计算机等等。

服务器105可以是提供各种服务的服务器,例如对终端设备101、102、103上显示的页面提供支持的后台服务器。后台服务器可以对用户浏览的页面内容进行解析等处理,并确定对应的主题、关联关键词等信息,并向用户推送相关信息。

需要说明的是,本申请实施例所提供的信息推送方法一般由服务器105执行,相应地,信息推送装置一般设置于服务器105中。

应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。

继续参考图2,示出了根据本申请的信息推送方法的一个实施例的流程200。所述的信息推送方法,包括以下步骤:

步骤201,对用户浏览的页面内容进行解析,提取页面内容的关键词并确定与关键词相对应的主题。

在本实施例中,信息推送方法运行与其上的电子设备(例如图1所示的服务器105)可以利用各种分析方法对用户浏览的页面内容进行解析,提取上述页面内容的关键词;而后确定与上述关键词相对应的主题,其中,主题可以是用于表征上述页面内容的类别的词语,例如科技、体育、社会等。实践中,用户可以利用客户端(例如图1所示的终端设备101、102、103)所安装的各种客户端应用(例如浏览器、新闻资讯类应用、搜索类应用等)浏览页面。

作为示例,上述电子设备可以基于预先训练的深度神经网络(deepneuralnetwork,dnn)提取上述页面内容的关键词。具体地,上述电子设备可以将上述页面内容输入至上述深度神经网络中,将上述深度神经网络所输出的词语确定为上述页面内容的关键词,其中,上述深度神经网络可以用于表征文本与关键词的对应关系。作为示例,上述深度神经网络可以是基于大量的训练样本对任意的激活函数(例如,sigmoid函数、softplus函数、双极性sigmoid函数等)进行有监督训练后得到的,其中,训练样本中可以包含大量的文本和与每一个文本相对应的关键词。

在确定上述文本内容的关键词后,上述电子设备可以按照以下步骤确定与上述关键词相对应的主题:上述电子设备可以首先将所提取的关键词输入至主题模型中;而后,将上述主题模型所输出的主题确定为与上述关键词相对应的主题。其中,上述主题模型可以用于表征文本与主题的对应关系。作为示例,上述主题模型可以是基于大量的训练样本对卷积神经网络(convolutionalneuralnetwork,cnn)、支持向量机(supportvectormachine,svm)等现有的用于分类的模型进行有监督训练后得到的,其中,训练样本中可以包含大量的文本和每一个文本信息的主题。

在本实施例的一些可选的实现方式中,上述电子设备可以通过以下步骤提取关键词:第一步,上述电子设备可以利用各种分词方法对上述页面内容进行分词。作为示例,上述分词方法可以是基于统计的分词方法。具体的,可以对上述页面内容中的相邻的各个字的组合的频度进行统计,计算出字的组合出现的频率。当上述概率高于预设概率阈值时,则判定上述组合构成了词,从而实现对上述页面内容的分词。此外,上述分词方法还可以是基于字符串匹配原理的分词方法,利用字符串匹配原理将上述页面内容和预置在上述电子设备中的机器词典中的字符串进行匹配,其中,上述字符串匹配原理可以是正向最大匹配法、逆向最大匹配法、设立切分标注法、逐词遍历匹配法、正向最佳匹配法、逆向最佳匹配法等等。第二步,上述电子设备可以从分割所得到的词中提取关键词。作为示例,可以对分割所得到的词进行重要性计算(例如采用词频-逆向文件频率方法(tf-idf,termfrequency-inversedocumentfrequency)),基于重要性计算的结果确定重要性最高的预设数量(例如5个)的词确定为关键词。作为又一示例,上述电子设备中可以预先存储关键词列表,其中,上述关键词列表中包括多个关键词。上述电子设备将分割所得到的词与上述关键词列表中的关键词进行字符串匹配,将匹配到的词作为关键词进行提取。

需要说明的是,上述电子设备还可以结合上述两种方式确定上述页面内容的关键词。作为示例,可以融合上述方式所提取的关键词,从融合后的关键词中选取预设数量(例如5个)的关键词作为上述页面内容的关键词。

在本实施例的一些可选的实现方式中,在确定上述文本内容的关键词后,上述电子设备可以按照以下步骤确定与上述关键词相对应的主题:上述电子设备可以首先将上述页面内容输入至预先训练主题模型中;而后,将上述主题模型所输出的主题确定为与上述关键词相对应的主题。

步骤202,确定预置关键词集合中的、与关键词相匹配的预置关键词。

在本实施例中,上述电子设备中可以预先存储有由大量的预置关键词构成的预置关键词集合。上述电子设备可以通过字符串匹配的方式,将步骤201所提取的关键词与上述预置关键词集合中的预置关键词进行匹配,确定上述预置关键词集合中的、与关键词相匹配的预置关键词。

步骤203,基于预先建立的预置关键词的关联关系,确定与所确定的预置关键词相关联的关联关键词。

在本实施例中,上述电子设备中可以预先存储有上述预置关键词集合中的各个预置关键词的关联关系。作为示例,预置关键词“篮球”与预置关键词“足球”、“网球”相关联。需要说明的是,预置关键词的关联关系可以是技术人员人工预先建立的,也可以是上述电子设备对大量的数据的统计后所预先建立的。上述电子设备可以基于上述预置关键词的关联关系,确定与所确定的预置关键词相关联的关联关键词。作为示例,上述电子设备可以直接将与所确定的预置关键词具有关联关系的预置关键词确定为与所确定的预置关键词相关联的关联关键词。

在本实施例的一些可选的实现方式中,上述预置关键词的关联关系可以通过以下步骤预先建立:第一步,上述电子设备可以对所存储的历史搜索数据和历史浏览数据进行解析,确定第一关键词和与每一个第一关键词相关联的至少一个第二关键词。具体的,上述电子设备可以将历史搜索数据中的搜索词确定为第一关键词,将用户在利用该搜索词进行搜索后所浏览的内容中的关键词作为第二关键词,或将用户在在利用该搜索词进行搜索后所浏览的内容过程中进行再次搜索时所使用的搜索词确定为第二关键词。其中,用户在利用该搜索词进行搜索后所浏览的内容中的提取关键词的具体操作方法可以与步骤201所阐述的方式相同,在此不再赘述。第二步,上述电子设备可以分别将上述第一关键词、上述至少一个第二关键词中的各个第二关键词与预置关键词集合中的各个预置关键词进行相似度计算,将上述预置关键词集合中的、与上述第一关键词相似度最大的预置关键词确定为第一预置关键词,将上述预置关键词集合中的、与各个第二关键词相似度最大的预置关键词分别确定为第二预置关键词。第三步,上述电子设备可以分别建立上述第一预置关键词与各个第二预置关键词的关联关系,以生成上述预置关键词集合中的预置关键词的关联关系。

在本实施例的一些可选的实现方式中,上述电子设备在上述建立上述第一预置关键词与各个第二预置关键词的关联关系之后,还可以从上述历史搜索数据和上述历史浏览数据中统计上述第一预置关键词与各个第二预置关键词的共现次数。而后,可以基于所确定的共现次数,确定上述第一预置关键词到各个第二预置关键词的转移概率,其中,上述第一预置关键词到每一个第二预置关键词的转移概率为上述第一预置关键词与该第二预置关键词的共现次数与所确定的各个共现次数的总和的比值。

在本实施例的一些可选的实现方式中,上述电子设备可以按照以下步骤确定与步骤202所确定的预置关键词相关联的关联关键词:首先,可以将所确定的预置关键词作为目标第一预置关键词,从所建立的关联关系中,确定与上述目标第一预置关键词相关联的第二预置关键词,并提取上述目标第一预置关键词与相关联的各个第二预置关键词的转移概率;而后,将转移概率大于预设概率的第二预置关键词确定为与上述目标第一预置关键词的相关联的关联关键词。其中,上述预设概率可以是技术人员基于大量的统计而预先设定的概率。

步骤204,向用户推送与主题和/或关联关键词对应的信息。

在本实施例中,上述电子设备可以首先检索与上述主题和/或关联关键词对应的信息;之后,可以向上述用户推送检索出的信息。作为示例,上述页面内容的关键词为“手机”和“处理器”,上述主题为“科技”,上述关联关键词为“平板电脑”和“便携式计算机”,则上述电子设备可以“科技”和/或“平板电脑”和/或“便携式计算机”为搜索词进行检索,并将检索出的信息推送给上述用户。

继续参见图3,图3是根据本实施例的信息推送方法的应用场景的一个示意图。在图3的应用场景中,首先,用户利用终端设备301进行页面内容的浏览。而后,服务器302对用户浏览的页面内容解析,提取关键词303和与关键词303相对应的主题304。之后,服务器302从预置关键词集合中确定与关键词303相匹配的预置关键词305,并基于预先建立的预置关键词305的关联关系确定关联关键词306。最后,服务器302将与主题304和/或关联关键词306相对应的信息307发送给终端设备301。

本申请的上述实施例提供的方法,通过对用户浏览的页面内容进行解析,以便提取关键词并确定相应的主题,而后确定与该关键词相匹配的预置关键词,之后,基于预先建立的预置关键词的关联关系确定关联关键词,最后向用户推送与主题和/或关联关键词对应的信息,从而可以推送与用户浏览的页面内容对应的主题和/或关联关键词相对应的信息,实现了富于针对性的信息推送。

进一步参考图4,其示出了信息推送方法的又一个实施例的流程400。该信息推送方法的流程400,包括以下步骤:

步骤401,对用户浏览的页面内容进行解析,提取页面内容的关键词,并将关键词输入至预先生成的主题概率分布模型,得到至少一个第一候选主题和至少一个第一候选主题中的各个第一候选主题作为与关键词相对应的主题的概率。

在本实施例中,信息推送方法运行与其上的电子设备(例如图1所示的服务器105)可以首先利用各种方式对用户浏览的页面内容进行解析,提取页面内容的关键词。需要说明的是,此处提取关键词的操作可以与上述步骤201所涉及的操作基本相同,在此不再赘述。之后,上述电子设备可以将关键词输入至预先生成的主题概率分布模型,得到至少一个第一候选主题和上述至少一个第一候选主题中的各个第一候选主题作为与关键词相对应的主题的概率。其中,上述主题概率分布模型可以用于表征关键词与对应主题的概率的对应关系。作为示例,上述主题概率模型可以是技术人员预先制定的、存储有大量的关键词与对应的主题的概率的对应关系表。

在本实施例的一些可选的实现方式中,上述主题概率分布模型还可以通过以下步骤生成:

首先,可以对预设的多个文本进行解析,确定每一个文本的关键词和主题,并建立该文本的关键词和主题的对应关系。例如,建立关键词“手机”和主题“科技”的对应关系、建立关键词“足球”和主题“体育”、主题“娱乐”的对应关系等。需要说明的是,确定上述多个文本中的各个文本的关键词和主题的操作可以与上述步骤201所涉及的操作基本相同,在此不再赘述。

之后,可以对所建立的对应关系进行统计,确定每一个关键词和各个主题的对应关系的建立次数。例如,关键词“足球”和主题“体育”的对应关系的建立次数为80次,关键词“足球”和主题“娱乐”的对应关系的建立次数为20次等。

最后,可以基于所确定的每一个关键词和各个主题的对应关系的建立次数,生成与所确定的每一个关键词相对应的主题概率分布模型。对于每一个关键词,与该关键词相对应的主题概率分布模型可以用于表征与该关键词对应的各个主题的概率。其中,该关键词与所对应的每一个主题的概率为该关键词与该主题的对应关系的建立次数与该关键词与其所对应的各个主题的对应关系建立总次数的比值。作为示例,与关键词“足球”存在对应关系的主题分别为主题“体育”和主题“娱乐”,与主题“体育”的对应关系的建立次数为80次,与主题“娱乐”的对应关系的建立次数为20次。则该关键词“足球”对应主题“体育”的概率为80%,该关键词“足球”对应主题“娱乐”的概率为20%。

在生成主题概率分布模型后,当将关键词“足球”输入到所生成的主题概率分布模型后,可以将该关键词“足球”对应的主题“体育”和主题“娱乐”分别确定为第一候选主题,并将确定出第一候选主题“体育”作为与关键词相对应的主题的概率为80%,第一候选主题“娱乐”作为与关键词相对应的主题的概率为20%。

步骤402,将关键词输入至预先生成的泛化模型,得到至少一个第二候选主题和关键词与各个第二候选主题的相似度。

在本实施例中,上述电子设备可以将从上述页面内容中提取的关键词输入至预先生成的泛化模型,得到至少一个第二候选主题和上述关键词与所得到的各个第二候选主题的相似度。其中,上述泛化模型用于表征关键词与对应的主题的相似度的对应关系。作为示例,上述泛化模型可以是技术人员预先制定的、存储有大量的关键词与对应的主题的相似度的对应关系表。

在本实施例的一些可选的实现方式中,上述泛化模型还可以通过以下步骤生成:

首先,可以对预设的多个文本进行解析,生成各个文本的关键词集合,并确定各个文本的主题。具体地,首先,对于预设的多个文本中的每一个文本,可以对该文本进行分词,并删除分词后所得到的多个词中的停用词、介词和副词,以得到与该文本相对应的关键词集合;而后,可以将各个文本输入至预先训练的主题模型,确定每一个文本的主题,其中,上述主题模型可以用于表征文本与主题的对应关系。需要说明的是,此处确定主题的操作可以与上述步骤201所涉及的操作基本相同,在此不再赘述。

之后,将相同主题的文本所对应的关键词集合进行合并,以生成与所确定的每一个主题相对应的关键词集合。

而后,对于所确定的每一个主题,可以基于卡方检验方法,从与该主题相对应的关键词集合中提取特征关键词。实践中,卡方检验是通过观察实际值与理论值的偏差来确定理论的正确与否的方法。通常,先假设两个变量(例如某个关键词和某个主题)是独立的(即原假设),然后确定实际值与理论值的偏差程度,如果偏差足够小,则认为误差是很自然的样本误差,是测量手段不够精确导致或者偶然发生的,上述两个变量是独立的,此时就接受原假设;如果偏差大到一定程度,则认为两者实际上是相关的,即否定原假设。因此,可以利用卡方检验方式确定与每一个主题相关的关键词,将所确定的相关的关键词作为特征关键词进行提取。需要说明的是,利用卡方检验方法进行特提取的方法是目前广泛研究和应用的公知技术,在此不再赘述。

最后,可以基于机器学习方法,将与所确定的各个主题相对应的特征关键词作为输入,对朴素贝叶斯(naivebayesianmodel,nbm)、支持向量机等现有的用于基于相似度计算进行分类的模型进行训练得到泛化模型。

步骤403,将至少一个第一候选主题和至少一个第二候选主题进行融合,确定与关键词相对应的主题。

在本实施例中,上述电子设备可以将步骤401得到的至少一个第一候选主题与步骤402得到的至少一个第二候选主题进行各种方式的融合,确定与上述关键词相对应的主题。作为示例,上述电子设备可以首先确定上述至少一个第一候选主题和上述至少一个第二候选主题中的相同主题,将分别得到的、相同主题对应的概率和相似度按预设的权重(例如均为0.5)进行加权求和,将加权求和后的数值确定为该相同主题作为与上述关键词相对应的主题的概率;而后,可以将每一个与第一候选主题均不相同的第二候选主题对应的相似度确定为该第二候选主题作为与上述关键词相对应的主题的概率;最后,可以按照概率从大到小的顺序,对所得到的各个主题进行排序,以上述顺序选取预设数量(例如2个)的主题作为与上述关键词相对应的主题。

步骤404,确定预置关键词集合中的、与关键词相匹配的预置关键词。

在本实施例中,上述电子设备中可以预先存储有由大量的预置关键词构成的预置关键词集合。上述电子设备可以通过字符串匹配的方式,将所提取的关键词与上述预置关键词集合中的预置关键词进行匹配,确定上述预置关键词集合中的、与关键词相匹配的预置关键词。

步骤405,基于预先建立的预置关键词的关联关系,确定与所确定的预置关键词相关联的关联关键词。

在本实施例中,上述电子设备中可以预先存储有上述预置关键词集合中的各个预置关键词的关联关系。上述预置关键词的关联关系可以通过以下步骤预先建立:第一步,上述电子设备可以对所存储的历史搜索数据和历史浏览数据进行解析,确定第一关键词和与每一个第一关键词相关联的至少一个第二关键词。第二步,可以分别将上述第一关键词、上述至少一个第二关键词中的各个第二关键词与预置关键词集合中的各个预置关键词进行相似度计算,将上述预置关键词集合中的、与上述第一关键词相似度最大的预置关键词确定为第一预置关键词,将上述预置关键词集合中的、与各个第二关键词相似度最大的预置关键词分别确定为第二预置关键词。第三步,可以分别建立上述第一预置关键词与各个第二预置关键词的关联关系,以生成上述预置关键词集合中的预置关键词的关联关系。第四步,可以从上述历史搜索数据和上述历史浏览数据中统计上述第一预置关键词与各个第二预置关键词的共现次数。而后,可以基于所确定的共现次数,确定上述第一预置关键词到各个第二预置关键词的转移概率,其中,上述第一预置关键词到每一个第二预置关键词的转移概率为上述第一预置关键词与该第二预置关键词的共现次数与所确定的各个共现次数的总和的比值。

在本实施例中,上述电子设备可以按照以下步骤确定与步骤404所确定的预置关键词相关联的关联关键词:首先,可以将所确定的预置关键词作为目标第一预置关键词,从所建立的关联关系中,确定与上述目标第一预置关键词相关联的第二预置关键词,并提取上述目标第一预置关键词与相关联的各个第二预置关键词的转移概率;而后,将转移概率大于预设概率的第二预置关键词确定为与上述目标第一预置关键词的相关联的关联关键词。其中,上述预设概率可以是技术人员基于大量的统计而预先设定的概率。。

步骤406,向用户推送与主题和/或关联关键词对应的信息。

在本实施例中,上述电子设备可以首先检索与上述主题和/或关联关键词对应的信息;之后,可以向上述用户推送检索出的信息。

需要说明的是,上述步骤404-步骤406的操作与上述步骤202-204的操作基本相同,在此不再赘述。

从图4中可以看出,与图2对应的实施例相比,本实施例中的信息推送方法的流程400突出了基于主题概率分布模型和泛化模型提取上述页面内容的关键词并确定与所提取的关键词相对应的主题的步骤。由此,本实施例描述的方案可以结合不同的方式确定主题,提高了主题确定的准确性。

进一步参考图5,作为对上述各图所示方法的实现,本申请提供了一种信息推送装置的一个实施例,该装置实施例与图2所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。

如图5所示,本实施例所述的信息推送装置500包括:第一解析单元501,配置用于对用户浏览的页面内容进行解析,提取上述页面内容的关键词并确定与上述关键词相对应的主题;第一确定单元502,配置用于确定预置关键词集合中的、与上述关键词相匹配的预置关键词;第二确定单元503,配置用于基于预先建立的预置关键词的关联关系,确定与所确定的预置关键词相关联的关联关键词;推送单元504,配置用于向上述用户推送与上述主题和/或上述关联关键词对应的信息。

在本实施例中,上述第一解析单元501可以利用各种分析方法对用户浏览的页面内容进行解析,提取上述页面内容的关键词;而后确定与上述关键词相对应的主题。

在本实施例中,上述信息推送装置500中可以预先存储有由大量的预置关键词构成的预置关键词集合。上述第一确定单元502可以通过字符串匹配的方式,将所提取的关键词与上述预置关键词集合中的预置关键词进行匹配,确定上述预置关键词集合中的、与关键词相匹配的预置关键词。

在本实施例中,上述信息推送装置500中可以预先存储有上述预置关键词集合中的各个预置关键词的关联关系。上述第二确定单元503可以基于上述预置关键词的关联关系,确定与所确定的预置关键词相关联的关联关键词。

在本实施例中,上述推送单元504可以首先检索与上述主题和/或关联关键词对应的信息;之后,可以向上述用户推送检索出的信息。

在一些实施例中,上述第一解析单元可以包括第一输入模块、第二输入模块和融合模块(图中未示出)。其中,上述第一输入模块可以配置用于将上述关键词输入至预先生成的主题概率分布模型,得到至少一个第一候选主题和上述至少一个第一候选主题中的各个第一候选主题作为与上述关键词相对应的主题的概率。上述第二输入模块可以配置用于将上述关键词输入至预先生成的泛化模型,得到至少一个第二候选主题和上述关键词与上述至少一个第二候选主题中的各个第二候选主题的相似度。上述融合模块可以配置用于将上述至少一个第一候选主题和上述至少一个第二候选主题进行融合,确定与上述关键词相对应的主题。

在本实施例的一些可选的实现方式中,上述信息推送装置500还可以包括第二解析单元、第一统计单元和生成单元(图中未示出)。其中,上述第二解析单元可以配置用于对预设的多个文本进行解析,确定每一个文本的关键词和主题,并建立该文本的关键词和主题的对应关系。上述第一统计单元可以配置用于对所建立的对应关系进行统计,确定每一个关键词和各个主题的对应关系的建立次数。上述生成单元可以配置用于基于所确定的每一个关键词和各个主题的对应关系的建立次数,生成与所确定的每一个关键词相对应的主题概率分布模型。

在本实施例的一些可选的实现方式中,上述信息推送装置500还可以包括第三解析单元、合并单元、提取单元和训练单元(图中未示出)。其中,上述第三解析单元可以配置用于对预设的多个文本进行解析,生成各个文本的关键词集合,并确定各个文本的主题。上述合并单元可以配置用于将相同主题的文本所对应的关键词集合进行合并,以生成与所确定的每一个主题相对应的关键词集合。上述提取单元可以配置用于对于所确定的每一个主题,基于卡方检验装置,从与该主题相对应的关键词集合中提取特征关键词。上述训练单元可以配置用于基于机器学习方法,将与所确定的各个主题相对应的特征关键词作为输入,训练得到泛化模型。

在本实施例的一些可选的实现方式中,上述第三解析单元可以包括分词模块和第三输入模块(图中未示出)。其中,上述分词模块可以配置用于对于预设的多个文本中的每一个文本,对该文本进行分词,并删除分词后所得到的多个词中的停用词、介词和副词,以得到与该文本相对应的关键词集合。上述第三输入模块可以配置用于将各个文本输入至预先训练的主题模型,确定每一个文本的主题,其中,上述主题模型用于表征文本与主题的对应关系。

在本实施例的一些可选的实现方式中,上述信息推送装置500还可以包括第四解析单元、计算单元和建立单元(图中未示出)。其中,上述第四解析单元可以配置用于对历史搜索数据和历史浏览数据进行解析,确定第一关键词和与每一个第一关键词相关联的至少一个第二关键词。上述计算单元可以配置用于分别将上述第一关键词、上述至少一个第二关键词中的各个第二关键词与预置关键词集合中的各个预置关键词进行相似度计算,将上述预置关键词集合中的、与上述第一关键词相似度最大的预置关键词确定为第一预置关键词,将上述预置关键词集合中的、与各个第二关键词相似度最大的预置关键词分别确定为第二预置关键词。上述建立单元可以配置用于分别建立上述第一预置关键词与各个第二预置关键词的关联关系。

在本实施例的一些可选的实现方式中,上述信息推送装置500还可以包括第二统计单元和第三确定单元(图中未示出)。其中,上述第二统计单元可以配置用于从上述历史搜索数据和上述历史浏览数据中统计上述第一预置关键词与各个第二预置关键词的共现次数。上述第三确定单元可以配置用于基于所确定的共现次数,确定上述第一预置关键词到各个第二预置关键词的转移概率,其中,上述第一预置关键词到每一个第二预置关键词的转移概率为上述第一预置关键词与该第二预置关键词的共现次数与所确定的各个共现次数的总和的比值。

在本实施例的一些可选的实现方式中,上述第二确定单元可以包括第一确定模块和第二确定模块(图中未示出)。其中,上述第一确定模块可以配置用于将所确定的预置关键词作为目标第一预置关键词,从所建立的关联关系中,确定与上述目标第一预置关键词相关联的第二预置关键词,并提取上述目标第一预置关键词与相关联的各个第二预置关键词的转移概率。上述第二确定模块可以配置用于将转移概率大于预设概率的第二预置关键词确定为与上述目标第一预置关键词的相关联的关联关键词。

在本实施例的一些可选的实现方式中,上述信息推送装置500还可以包括呈现单元(图中未示出)。其中,上述呈现单元可以配置用于将上述页面内容的链接呈现在与上述主题相对应的网页中。

本申请的上述实施例提供的装置,通过第一解析单元501对用户浏览的页面内容进行解析,以便提取关键词并确定相应的主题,而后第一确定单元502确定与该关键词相匹配的预置关键词,之后,第二确定单元503基于预先建立的预置关键词的关联关系确定关联关键词,最后推送单元504向用户推送与主题和/或关联关键词对应的信息,从而可以推送与用户浏览的页面内容对应的主题和/或关联关键词相对应的信息,实现了富于针对性的信息推送。

下面参考图6,其示出了适于用来实现本申请实施例的服务器的计算机系统600的结构示意图。图6示出的服务器仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。

如图6所示,计算机系统600包括中央处理单元(cpu)601,其可以根据存储在只读存储器(rom)602中的程序或者从存储部分608加载到随机访问存储器(ram)603中的程序而执行各种适当的动作和处理。在ram603中,还存储有系统600操作所需的各种程序和数据。cpu601、rom602以及ram603通过总线604彼此相连。输入/输出(i/o)接口605也连接至总线604。

以下部件连接至i/o接口605:包括键盘、鼠标等的输入部分606;包括诸如阴极射线管(crt)、液晶显示器(lcd)等以及扬声器等的输出部分607;包括硬盘等的存储部分608;以及包括诸如lan卡、调制解调器等的网络接口卡的通信部分609。通信部分609经由诸如因特网的网络执行通信处理。驱动器610也根据需要连接至i/o接口605。可拆卸介质611,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器610上,以便于从其上读出的计算机程序根据需要被安装入存储部分608。

特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分609从网络上被下载和安装,和/或从可拆卸介质611被安装。在该计算机程序被中央处理单元(cpu)601执行时,执行本申请的方法中限定的上述功能。需要说明的是,本申请所述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(ram)、只读存储器(rom)、可擦式可编程只读存储器(eprom或闪存)、光纤、便携式紧凑磁盘只读存储器(cd-rom)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本申请中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、rf等等,或者上述的任意合适的组合。

附图中的流程图和框图,图示了按照本申请各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

描述于本申请实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器包括第一解析单元、第一确定单元、第二确定单元和推送单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,第一解析单元还可以被描述为“对用户浏览的页面内容进行解析的单元”。

作为另一方面,本申请还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的装置中所包含的;也可以是单独存在,而未装配入该装置中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该装置执行时,使得该装置:对用户浏览的页面内容进行解析,提取该页面内容的关键词并确定与该关键词相对应的主题;确定预置关键词集合中的、与该关键词相匹配的预置关键词;基于预先建立的预置关键词的关联关系,确定与所确定的预置关键词相关联的关联关键词;向该用户推送与该主题和/或该关联关键词对应的信息。

以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1